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Objectives: The aim of this study is to develop an ultrasound-based fusionmodel

of clinical, radiomics and deep learning (CRDL) for accurate diagnosis of benign

and malignant soft tissue tumors (STTs)

Methods: In this retrospective study, ultrasound images and clinical data of

patients with STTs from two hospitals were collected between January 2021 and

December 2023. Radiomics features and deep learning features were extracted

from the ultrasound images, and the optimal features were selected to construct

fusionmodels using support vector machines. The predictive performance of the

model was evaluated based on three aspects: discrimination, calibration and

clinical usefulness. The DeLong test was used to compare whether there was a

significant difference in AUC between the models. Finally, two radiologists who

were unaware of the clinical information performed an independent diagnosis

and a model-assisted diagnosis of the tumor to compare the performance of the

two diagnoses.

Results: A training cohort of 516 patients from Hospital-1 and an external

validation cohort of 78 patients from Hospital-2 were included in the study.

The Pre-FM CRDL showed the best performance in predicting STTs, with area

under the curve (AUC) of 0.911 (95%CI: 0.894-0.928) and 0.948 (95%CI: 0.906-

0.990) for training cohort and external validation cohort, respectively. The

DeLong test showed that the Pre-FM CRDL significantly outperformed

the clinical models (P< 0.05). In addition, the Pre-FM CRDL can improve the

diagnostic accuracy of radiologists.

Conclusion: This study demonstrates the high clinical applicability of the fusion

model in the differential diagnosis of STTs.
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1 Introduction

Soft tissue tumors (STTs) are a group of tumors originating

from mesenchymal tissues with complex and varied histological

presentations (1). Benign STTs are more prevalent, with an

incidence rate of approximately 3 per 1,000 annually (2), whereas

the annual incidence rate of soft tissue sarcomas is about 36 per

million (3, 4). Both benign and malignant tumors can cause pain

and discomfort due to their growth, with malignant tumors having

a poor prognosis and low survival rates. Therefore, early and

accurate diagnosis of these tumors is crucial. Traditional

diagnostic methods rely on pathological examination, which often

requires invasive biopsy, posing physical and psychological burdens

on patients. Ultrasound, as a non-invasive imaging technique, is

widely used for preliminary diagnosis and tracking of tumors due to

its real-time capability, safety, and cost-effectiveness (5, 6).

However, the interpretation of ultrasound images depends heavily

on the clinician’s experience and knowledge, leading to subjectivity

and potential diagnostic uncertainty (7).

In recent years, radiomics and deep learning (DL) have

emerged as promising technologies in tumor research.

radiomics can extract high-throughput quantitative features

from the tumor to reveal its biological characteristics (8).

Previous studies have used magnetic resonance imaging (MRI)-

based radiomics to diagnose STTs and have achieved excellent

performance in validation sets (9, 10). However, manually crafted

radiomics features are often sensitive and low-level, possibly

failing to fully characterize tumor heterogeneity (11). As a data-

driven approach, DL can extract many quantitative, high-

throughput features from medical images, aiding in diagnosis

and prognosis (12). In a previous systematic review, Benjamin

Wang et al. achieved an accuracy of 79% in diagnosing STTs

using an ultrasound-based DL model, comparable to the

performance of two radiology experts (13). In addition, Bin

Long et al. applied a deep learning model to the differential

diagnosis offive benign soft tissue tumors and soft tissue sarcoma,

showing high sensitivity (14).
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Currently, the combination of radiomics and DL provides a new

research avenue to improve the performance of ultrasound

diagnosis (15–17). Data fusion techniques, including feature

fusion and decision fusion, reflect complementary information.

Decision fusion combines independent decision results from

multiple models or algorithms to form a final diagnostic decision

(18). Feature fusion combines different types of features before

constructing the model, enabling the use of more comprehensive

features for training and exploring complex data associations to

improve model generalization. Wang et al. achieved an AUC of 0.94

using an MRI-based radiomics nomogram for STTs diagnosis,

outperforming individual radiomics features and clinical models

(19). Li et al. accurately distinguished axillary lymph node status in

breast cancer patients by constructing an MRI-based radiomics and

DL fusion model (11).

To our knowledge, no studies have developed a fusion model to

differentiate between benign and malignant STTs. Therefore, we

aim to develop a fusion model that integrates clinical information,

radiomics, and DL to improve the diagnostic accuracy of

malignant STTs.
2 Materials and methods

2.1 Patients

In this study, we retrospectively collected data from 594 patients

with superficial STTs at Hospital-1 and Hospital-2 between January

2021 and December 2023. Inclusion criteria were: (a) STTs

confirmed by biopsy or surgery with complete pathological data;

(b) images free of needle and foreign object interference; (c)

ultrasound images including both 2D grayscale and color Doppler

images; (d) clear images; (e) ultrasound examinations performed

within one month before obtaining pathology results. Exclusion

criteria were: (a) no histopathological findings; (b) interference by

biopsy needles and other external objects; (c) prior neoadjuvant

therapy. The patient recruitment flowchart is shown in Figure 1.
FIGURE 1

Patient selection flowchart.
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Data from Hospital-1 served as the training cohort (TC), and data

from Hospital-2 served as the independent external validation

cohort (EVC). To dichotomize STTs, a small proportion of

intermediate lesions (n = 11) were considered malignant for

model training and evaluation. The study was approved by the

Ethics Committee (approval number: KY2024-043-1) and informed

consent was waived.
2.2 Clinical feature evaluation

Patient’s age and gender were extracted from the electronic

medical record systems of the two hospitals. Routine semantic

features of ultrasound were evaluated and extracted by two

radiologists (with 10 and 20 years of experience, respectively) on

the picture archiving and communication system (PACS) of the two

hospitals. Ultrasound semantic features included maximum

diameter, blood flow signal (0-1/2-3), morphology (regular/

irregular), boundary (clear/unclear), and internal echo (uniform/

uneven). If disagreement arises, the third radiologist is consulted to

decide. A detailed description of the semantics is given in

Supplementary Table 1.
2.3 Ultrasound imaging

Two images were selected for each patient, a greyscale image

and a Doppler color image, which were used to train and evaluate

the model. Images were acquired using 7-14 MHz linear array

probes on HITACHI ALOKA3, Samsung HS70A, or PHILIPS

HD154 systems under default instrument parameters. Images

were exported and stored in digital imaging and communications

(DICOM) format.
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2.4 Analysis workflow

The workflow of this study includes region of interest (ROI)

segmentation, clinical, radiomics, and deep learning feature

extraction, and construction of pre-fusion and post-fusion

models (Figure 2).
2.5 Image segmentation

To ensure data uniformity, a standardization process was

implemented for all image data to eliminate possible intensity

differences caused by different equipment and scan parameter

settings. Image segmentation was performed independently by

two radiologists who had no prior knowledge of the diagnostic

histopathological findings. They performed the segmentation using

the in-built region competition growth algorithm of the 3D-Slicer

software (version 4.10.2, www.slicer.org) and performed a careful

manual correction of the results. In case of disagreement, the

decision was made in consultation with a third radiologist.

To evaluate feature stability, 50 patients were randomly selected

from the training cohort after two weeks, and radiologists re-

segmented the tumors to assess the inter- and intra-class correlation

coefficients (ICC) between the extracted radiomics and DL features.
2.6 Signature extraction and construction

The open-source package “PyRadiomics” was leveraged to derive

radiomics characteristics (20). In total, 851 radiomics features were

extracted from the region of interest (ROI) for each patient. The

handcrafted radiomics features included histogram, morphological,

intensity, regularity, wavelet, and texture features. We adapted a 3D-
FIGURE 2

Workflow of model construction.
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ResNet to develop a deep convolutional neural network for DL

feature extraction (15, 21). In our study, we employed the pre-

trained 3D ResNet-18 model to automatically extract DL features

from three-dimensional medical images. Initially, necessary

preprocessing steps were applied to each image, including

normalization and masking to remove non-interest areas.

Specifically, we modified the ResNet model’s first layer to handle

single-channel input and removed the final classification layer to

extract feature vectors from the penultimate layer. A total of 511 DL

features were extracted from the ROI of each patient. All features

were normalized using the z-score method to standardize the values.

The extracted clinical, radiomics, and DL features will be

combined to construct features for the pre-fusion model (Pre-FM).

The Pre-FM features include clinical + radiomics features, clinical +

DL features, and clinical + radiomics + DL features. To determine the

correlation between the selected features, a Student’s t-test was used to

screen and identify variables with significant discriminatory potential.

Least Absolute Shrinkage and Selection Operator (LASSO) regression

with 10-fold cross-validation was then used to select features that

were highly correlated with identifying benign and malignant STTs.

Following the feature selection process, we proceeded to

evaluate the stability of the selected features. To mitigate the

variability across the TC and the EVC, the data underwent

normalization through the z-score technique. The consistency of

the classified semantic features extracted by different radiologists

was critically assessed using Kappa statistics.
2.7 Model development

Four types of models were developed in this study: 1) Clinical Model

(CM); 2) Single Modality Models (Rad-based and DL-based); 3) Pre-

FMs (i.e., Clinic + Rad, Clinic + DL, and Clinic + Rad + DL [CRDL]);

and 4) Post-fusion Models (Post-FMs, i.e., Clinic + Rad, Clinic + DL,

and CRDL). Development of CM, single modal models, Pre-FM and

Post-FM using Support Vector Machines (SVM) as classifiers. SVM is

widely used in radiomics due to its efficient learning capability and has

shown good performance in previous studies (22, 23). Data were split

into training and internal validation cohorts on a TC. Using 5-fold cross-

validation, 4/5 of the samples were randomly defined as the TC to train

the model, and the remaining 1/5 were defined as the internal validation

cohort to optimize parameters. This process was strictly repeated five

times to obtain the optimal hyperparameter combination. Then, the

model’s performance was tested on the EVC. Independence between the

training and external validation data was strictly ensured to prevent data

leakage. The optimal parameters for CRDL were: gamma, auto/kernel,

and rbf. Other model parameters are provided in the Supplementary

Data 1.1 (Supplementary Table A). The model code is in the

Supplementary Data 1.2.
2.8 Radiologist study

Two radiologists with different qualifications (Radiology A, 20

years of experience, and Radiology B, 5 years of experience)

performed the diagnosis without knowledge of the pathological
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findings only on greyscale and Doppler images of 78 patients in the

EVC. Second diagnosis was then made with the aid of the Pre-FM

CRDL. A comparison of the radiologist’s diagnostic performance

before and after the two diagnoses yielded the performance and

clinical value of the Pre-FM CRDL.
2.9 Statistical analysis

Feature extraction, selection, model development, and

validation were conducted using Python 3.7.1 (www.python.org).

Statistical analyses were performed using SPSS software (version

25.0). Student’s t-test compared continuous variables and different

models, while Pearson’s chi-square test or Fisher’s exact test

compared categorical variables. The diagnostic performance of

radiologists was compared using the McNemar test. Kappa

statistics assessed the consistency of categorical semantic variables

extracted by different radiologists. ICC was used to assess the

consistency of continuous features extracted by radiologists. Model

performance was evaluated using the area under the receiver

operating characteristic (ROC) curve (AUC), accuracy (ACC),

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV). DeLong’s test determined whether there were

significant differences in AUCs between models (20). Calibration

curves assessed the agreement between observed outcomes and the

Pre-FMCRDL predictions. Decision curve analysis (DCA) quantified

net benefit to evaluate the clinical usefulness of models in diagnosing

benign and malignant STTs. A p-value less than 0.05 indicated

statistical significance in all analyses.
3 Results

3.1 Clinical characteristics

The clinical and imaging characteristics of the patients are shown in

Table 1, and the distribution of the pathological findings is shown in

Supplementary Table 2. Comparison of the relevant clinical and

ultrasound characteristics of the patients with TC and EVC showed

differences in age, tumor size and boundary. There was no statistically

significant difference in the sample size of benign andmalignant patients

between the two groups, indicating a balanced subgroup sample size.

The factors found to be significantly associated with the degree of

malignancy of STTs by univariate and multivariate analyses are shown

in (Supplementary Table 3). Patient age, tumor size, morphology, blood

flow signal, and internal echo were independent predictors of the

malignancy of STTs. Figure 3 demonstrates 2D greyscale and color

doppler images of Schwann cell tumor, trichoblastoma, and

pleomorphic undifferentiated sarcoma. Malignant STTs tend to

exhibit poorly defined borders and more abundant blood flow signals.
3.2 Feature stability

Both radiologists extracted ultrasound semantic variables with

Kappa values greater than 0.80, indicating good agreement. The
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ICC of the radiomics and DL features extracted by two radiologists

exceeded 0.80, indicating a high degree of consistency.
3.3 Radiomics and clinical features

Firstly, we constructed CM using five features: age, size, blood

flow signal, morphology, and internal echo. Secondly, we developed

single-modality models based on radiomics features and DL

features. Next, we integrated clinical, radiomics, and DL features

to build pre-fusion models, including Pre-FM Clinic + Rad, Pre-FM

Clinic + DL, and Pre-FM CRDL. Finally, we developed three models

by using SVM to fuse the probabilities from the respective model

sets: Post-FM Clinic + Rad, Post-FM Clinic + DL, and Post-FM

CRDL. The specific features and development parameters for all

models are provided in Supplementary Data 1.1.
Frontiers in Oncology 05
3.4 Model performance

Both the Pre-FMs and Post-FMs exhibited commendable

accuracy in the diagnosis of STTs. In the preoperative diagnosis
FIGURE 3

Two-dimensional grey-scale and color Doppler images of three
patients with soft tissue tumors. (A, B) Images showing
Schwannoma with regular morphology, well-defined borders,
uneven internal echogenicity and blood flow grade 2. (C, D) Images
showing trichoblastoma with irregular morphology, well-defined
borders, uneven internal echogenicity and blood flow grade 1.
(E, F) Images showing pleomorphic undifferentiated sarcoma with
irregular morphology, poorly defined borders, uneven internal
echogenicity and blood flow grade 3.
TABLE 1 Clinical features in the training and external validation cohorts.

Variable Training
cohort
(n = 516)

External
validation
Cohort
(n = 78)

P Value

Anthropometric

Age 45.70 ± 18.89 52.35 ± 20.98 0.002

Sex 0.960

Female 246 38

Male 270 40

Pathological grading 0.101

Benign 410 55

Malignant 106 23

Semantic features

Maximum
diameter (mm)

4.15 ± 3.26 5.10 ± 3.26 0.005

Blood flow

0-1 385 48 0.022

2-3 131 30

Boundary (Margin) <0.001

Clear 428 47

Blur 88 31

Morphology 0.339

Regular 311 52

Irregular 205 26

Uniformity 0.304

Yes 152 18

No 364 60
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of STTs, Pre-FM CRDL demonstrated the best performance in the

EVC (AUC 0.948, 95% CI 0.906-0.990). The ROC curves for Pre-

FM in the training and EVC are shown in Figures 4A, B. The ROC

curves for other models in the training and EVC are presented in

Supplementary Figures 1A–D. Using a weighted Youden index to

set the operating point, the sensitivity of the Pre-FM CRDL in the

TC and EVC was 90.8% and 83.6%, respectively. Similarly, the

specificity of Pre-FM CRDL in the TC and EVC was 81.0% and
Frontiers in Oncology 06
89.3%, respectively. The statistical results for the CM and Pre-FM

are presented in Table 2. Detailed statistical results for the single

modality models and Post-FM are presented in Supplementary

Tables 4, 5.

The DeLong test was employed to determine if there was a

significant difference in the AUC of the models in the two cohorts.

As shown in Table 3, among Pre-FMs, the CRDL significantly

outperformed CM (0.948 vs. 0.870, P = 0.01) and Clinic + Rad
FIGURE 4

Receiver operating characteristic (ROC) curves for the pre-fusion model in the training (A) and external validation (B) cohorts.
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(0.948 vs. 0.923, P = 0.017). However, there was no significant

difference in diagnostic performance between CRDL and Clinic +

DL (0.948 vs. 0.938, P = 0.625). Among Post-FMs, CRDL, Clinic +

Rad, and Clinic + DL could all distinguish benign from malignant

STTs; however, there were no significant differences in diagnostic

performance between models, as shown in Supplementary

Table 6.

The actual outcomes of STTs patients were consistent with the

predictions of the Pre-FM CRDL in TC and EVC. The calibration

curves of Pre-FMs in the two cohorts are shown in Figures 5A, B.

Calibration curves for other models are presented in Supplementary

Figure 2. The discriminatory power of these models was assessed

using DCA to determine their clinical utility. The Pre-FM CRDL’s

curve is higher than the other models at most risk thresholds,
Frontiers in Oncology 07
suggesting that it has better performance in predicting high risk.

DCA for Pre-FM in TC and EVC is shown in Figures 5C, D. DCA

for other models is presented in Supplementary Figure 3.
3.5 Radiologist study results

Two musculoskeletal radiologists independently classified the

external validation set and then reclassified with the assistance of

Pre-FM CRDL. The results showed that Pre-FM CRDL improved the

radiologists’ diagnostic accuracy. The younger radiologist reached the

diagnostic level of the 20-year experienced radiologist with

the model’s assistance. The ROC curves in Figure 6 show the

performance comparison between the model and the two

radiologists. Table 4 compares the sensitivity, specificity, PPV,

NPV, and accuracy of the two radiologists with the model.

McNemar’s test results indicated no significant differences between

the radiologists’ independent diagnosis and model-assisted

diagnosis results.
4 Discussion

In this study, we successfully developed three pre-fusion models

based on feature level and three post-fusion models based on

predictive probability for the diagnosis of benign and malignant

STTs. Among these, the Pre-FM CRDL demonstrated high

diagnostic accuracy (86.5%), excellent sensitivity (85.6%), and

specificity (90.3%) by integrating clinical information, radiomics

features, and DL features. Additionally, the Pre-FM CRDL

improved the diagnostic accuracy of radiologists, indicating

significant potential in differentiating benign from malignant

tumors. As far as we know, this is the first study to use an

ultrasound-based feature fusion model to predict the benign and

malignant nature of STTs. Through innovative multi-feature fusion,

it provides a new approach for the diagnosis of STTs.

Malignant STTs are characterized by irregular morphology,

heterogeneous low echogenicity, and increased internal blood flow

compared to benign tumors (24). Our multivariate analysis identified
TABLE 2 Performance of clinical models and pre-fusion models in training and external validation cohorts.

Group Model Auc Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

TC Model Clinic 0.916 (0.900-0.932) 91.9 81.7 96.1 67.5 90.2

Pre-FM Clinic + Rad 0.911 (0.894-0.928) 90.1 82.2 96.7 59.0 89.0

Pre-FM Clinic + DL 0.906 (0.890-0.922) 91.4 73.9 94.0 65.6 88.2

Pre-FM CRDL 0.911 (0.894-0.928) 90.8 81.0 96.2 62.3 89.2

EVC Model Clinic 0.870 (0.820-0.921) 88.1 84.2 94.5 69.6 87.2

Pre-FM Clinic + Rad 0.923 (0.881-0.965) 81.4 81.5 95.5 47.8 81.4

Pre-FM Clinic + DL 0.938 (0.897-0.980) 87.1 93.8 98.2 65.2 88.5

Pre-FM CRDL 0.948 (0.906-0.990) 83.6 89.3 97.3 54.3 84.6
AUC, area under receiver operating characteristic curve; CRDL, clinical and radiomics and deep learning; DL, deep learning; EVC, external validation cohort; NPV, negative predictive value;
PPV, positive predictive value; Pre-FM, pre-fusion model; Rad, radiomics; TC, training cohort.
TABLE 3 Comparison of diagnostic performance between pre-
fusion models.

Model vs. Model P Value

TC

Model Clinic vs. Pre-FM Clinic + Rad 0.463

Model Clinic vs. Pre-FM Clinic + DL 0.969

Model Clinic vs. Pre-FM CRDL 0.735

Pre-FM Clinic + Rad vs. Pre-FM Clinic + DL 0.106

Pre-FM Clinic + Rad vs. Pre-FM CRDL 0.044

Pre-FM Clinic + DL vs. Pre-FM CRDL 0.417

EVC

Model Clinic vs. Pre-FM Clinic + Rad 0.108

Model Clinic vs. Pre-FM Clinic + DL 0.035

Model Clinic vs. Pre-FM CRDL 0.010

Pre-FM Clinic + Rad vs. Pre-FM Clinic + DL 0.450

Pre-FM Clinic + Rad vs. Pre-FM CRDL 0.017

Pre-FM Clinic + DL vs. Pre-FM CRDL 0.625
CRDL, clinical and radiomics and deep learning; DL, deep learning; EVC, external validation
cohort; Pre-FM, pre-fusion model; Rad, radiomics; TC, training cohort.
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FIGURE 5

Calibration curves for pre-fusion models in the training (A) and external validation (B) cohorts; Decision curve analysis (DCA) of pre-fusion models in
training (C) and external validation (D) cohorts.
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tumor size, morphology, blood flow signal, and internal echo as

independent predictors of malignancy, aligning with traditional

clinical experience and supporting the clinical value of radiomics in

diagnosis (25). However, boundary clarity was not an independent

predictor of malignancy, likely because most STTs, regardless of

malignancy, have relatively clear margins. This finding is consistent

with Hexiang Wang’s research, suggesting that traditional

macroscopic imaging features might still have limitations in early

malignant tumor diagnosis even with advanced imaging technologies

(26). Fusion models that combine these macroscopic features

extracted by radiologists with microscopic features provide a

comprehensive diagnostic perspective, aiding clinicians in making

more accurate treatment decisions.

Previous studies have shown that radiomics and DL models can

predict the nature of STTs (14, 27, 28). Masataka Nakagawa et al.

achieved an AUC of 0.89 using an MRI-based clinical information

and radiomics fusion model for STTs diagnosis, outperforming

individual radiomics features and clinical models (29). Long et al.’s

ultrasound-based DL model, although performing well in the

validation cohort, was limited by its generalization capability,
Frontiers in Oncology 09
only including diagnoses of five benign tumors (14). Moreover,

despite its high sensitivity, their model’s specificity was below 50%,

indicating a high rate of misdiagnosis. Benjamin Wang et al.’s study

achieved 79% accuracy in the validation cohort but lacked external

validation (13). In contrast, our Pre-FM CRDL not only exhibited

high diagnostic accuracy but also balanced sensitivity and

specificity, effectively reducing misdiagnosis and missed diagnosis,

which is crucial for clinical decision-making.

Xie et al. developed a fusion model combining ultrasound-based

deep learning features with clinical features (30). The model was

able to significantly improve the diagnostic accuracy of soft tissue

sarcomas by young radiologists in a prospective dataset. This result

is similar to our study, suggesting that the fusion model has good

potential for application in improving diagnosis. Our established

Pre-FM CRDL model performed satisfactorily in clinical aid

diagnosis. Specifically, the model enabled younger radiologists to

achieve diagnostic levels comparable to those of 20-year

experienced radiologists. Additionally, the misdiagnosis rate for

malignant STTs significantly decreased with the model’s assistance,

which is crucial for patient treatment and prognosis.
FIGURE 6

Comparison of Receiver operating characteristic (ROC) curves from the pre-fusion CRDL model with ROC curves from two radiologists.
TABLE 4 Comparing radiologists’ performance in independent and model-assisted diagnosis.

Parameter ACC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) P

Radiologist 1 84.6 (78.1-89.4) 82.6 (69.3-90.9) 85.5 (77.7-90.8) 70.4 (57.2-80.9) 92.2 (85.3-96.0)
0.79

Radiologist 1 with Pre-FM CRDL 91.0 (85.5-94.6) 93.5 (82.5-97.8) 90.0 (83.0-94.3) 79.6 (67.1-88.2) 97.1 (91.7-99.0)

Radiologist 2 74.4 (67.0-80.6) 60.9 (46.5-73.6) 80.0 (71.6-86.4) 56.0 (42.3-68.8) 83.0 (74.7-89.0)
0.08

Radiologist 2 with Pre-FM CRDL 82.1 (75.3-87.3) 65.2 (50.8-77.3) 89.1 (81.9-93.6) 71.4 (56.4-82.8) 86.0 (78.4-91.2)
fron
CRDL, clinical and radiomics and deep learning; Pre-FM, pre-fusion model.
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However, this study has some limitations. First, due to the

diversity and rarity of STTs subtypes, this study cannot encompass

all subtypes. Future research should increase sample size and

further explore the characteristics of different subtypes. Second,

the ultrasound images in this study were obtained from different

devices and scanning parameters, which, while increasing the

model’s robustness in real-world applications, may also introduce

additional image heterogeneity, potentially affecting diagnostic

accuracy and model stability (2, 19). Future research should

consider standardizing the imaging acquisition process or

developing advanced algorithms to mitigate device differences.

Fourth, for some large STTs, the analysis may miss key radiomics

and DL features due to the selection of non-maximal area complete

2D sections, potentially affecting diagnostic accuracy. Lastly, in this

study, participants could only rely on pre-selected static 2D

grayscale and color Doppler images for judgment. This design

limitation might underestimate the actual diagnostic ability of

radiologists. Finally, ultrasound contrast and elastography offer

unique advantages in the diagnosis of STTs and may further

improve diagnostic accuracy if these functional imaging are

routinely performed in the future (31, 32).
Conclusion

Compared to traditional radiomics and DL models, the

ultrasound-based fusion model demonstrated superior performance

in predicting benign and malignant STTs. Additionally, the fusion

model provided clinical net benefits in DCA. Future studies should

conduct international multicentre large sample studies to validate and

optimise the diagnostic models with a view to achieving wider clinical

applications and providing a scientific basis for individualised

treatment of STTs.
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