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Background: Medulloblastoma is the most common malignant brain tumor in

children. Most cases are sporadic, but well characterized germline alterations in

APC, ELP1, GPR161, PTCH1, SUFU, and TP53 predispose to medulloblastoma.

However, knowledge about pathogenic/likely pathogenic (P/LP) variants that

predispose to medulloblastoma vary based on genes evaluated, patient

demographics, and pathogenicity definitions.

Methods: Germline exome sequencing was conducted on 160 childhood

survivors of medulloblastoma. Analyses focused on rare variants in 239 known

cancer susceptibility genes (CSGs). P/LP variants were identified using ClinVar

and InterVar. Variants of unknown significance in known medulloblastoma

predisposing genes (APC, ELP1, GPR161, PTCH1, SUFU, TP53) were further

classified for loss of function variants. We compared the frequency of P/LP

variants in cases to that in 1,259 cancer-free adult controls.

Results: Twenty cases (12.5%) had a P/LP variant in an autosomal dominant CSG

versus 5% in controls (p=1.0 x10-3), and 10 (6.3%) of these were P/LP variants in a

known medulloblastoma gene, significantly greater than 0.2% observed in

controls (p=1.4x10-8). The CSGs with the most P/LP variants in cases, and

significantly higher than controls, were ELP1 (p=3.0x10-4) and SUFU (p=1.4x10-3).
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Conclusion: Approximately one in eight pediatric medulloblastoma survivors had

an autosomal dominant P/LP CSG variant. We confirm several known associated

genes and identify novel genes that may be important in medulloblastoma.
KEYWORDS
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Introduction

Medulloblastoma is the most common malignant brain tumor in

children, with an incidence of up to 11 cases per 1,000,000 people

worldwide (1–3). It is of embryonal origin and can be further classified

into four molecular subgroups (WNT, Sonic Hedgehog (SHH), Group

3, and Group 4) based on distinctive tumor transcriptional and

epigenetic signatures that demarcate clinically relevant subtypes (4,

5). Germline predisposing variants are important in the etiology of

medulloblastoma. Although most cases are sporadic, medulloblastoma

can occur in nevoid basal cell carcinoma (NBCCS) and Li-Fraumeni

syndromes. These cancer predisposition syndromes are predominantly

associated with germline mutations in PTCH1 or SUFU, and

TP53, respectively (6–12). Individuals with Familial Adenomatous

Polyposis (FAP) caused by pathogenic variants in APC have also

been linked to medulloblastoma, sometimes referred to as Turcot

Syndrome Type 2 (10).

In addition to PTCH1, SUFU, TP53 and APC, recent

medulloblastoma studies have identified germline pathogenic or

likely pathogenic (P/LP) variants in a few well described cancer

susceptibility genes (CSG), including ELP1 and GPR161 (13–17).

Homozygous and compound heterozygous BRCA2 and PALB2 P/

LP variants have also been identified in a subset of patients with

SHH subgroup medulloblastoma with Fanconi Anemia caused by

homologous recombination repair deficiency, though the estimated

risk of developing medulloblastoma from a single P/LP variant in

BRCA2 or PALB2 remains low (15, 18). Approximately 5% of all

pediatric patients with medulloblastoma have been found to carry a

P/LP variant in a CSG. The studies ranged from 120 to 1,022

participants, and the frequency of these variants varied based on

subgroup with up to 20% in the SHH subgroup and only 0-2% in

the Group 3 and Group 4 subgroups (14–17).

Despite the importance of germline susceptibility in a subset of

patients with medulloblastoma, the rates of P/LP variants in CSGs

remain uncertain because of the heterogeneity of medulloblastoma

and variation in study designs particularly related to genes

evaluated, participant demographics, and pathogenicity pipelines.

To better understand the genetic etiology of medulloblastoma, we

performed a comprehensive exome sequencing analysis of 160
02
pediatric medulloblastoma survivors and characterized the

frequency of germline pathogenic variants in CSGs compared to

1,259 cancer-free controls.
Methods

Study population

A total of 160 survivors of medulloblastoma were assembled

from two studies, including 134 participants from the Childhood

Cancer Survivor Study (CCSS; named Case set 1) and 26

participants diagnosed at the Children’s National Medical Center

(CNMC; named Case set 2). The CCSS is a multi-institutional effort

funded by the National Cancer Institute (NCI) grant U24CA55727

of the National Institutes of Health since 1994. It established a large

cohort of 14,361 participants who survived childhood or adolescent

cancer for five or more years diagnosed at one of 26 North

American hospitals between 1970 and 1986 (19–21). CCSS

participants are younger than 21 years of age at diagnosis and

various cancer types were included, with medulloblastoma

characterizing 2.6% of participants (13). The participants

diagnosed at CNMC are part of a medulloblastoma natural

history study conducted at the NCI (22, 23), and all participants

with available DNA for germline exome sequencing were included

in this study. Controls consisted of 1,259 cancer-free adults (not

selected for family history of cancer) from two large studies: the

Prostate, Lung, Colon and Ovarian Cancer Prevention clinical trial

(n=1,054; mean age of 62.5 years) (24, 25), and the American

Cancer Society Cancer Prevention Study II (ACS; n=205; mean age

of 62.8 years); hereafter, “controls” (26). Overall, the controls were

50% male and 74% European (Supplementary Table 1). The genetic

ancestry was determined for the study group and the control group

using exome sequencing data based on structure and principal

component analyses, as previously described and further details in

Supplemental Methods (27). Participants with more than 80%

European ancestry were considered European. All participants

provided written informed consent and were recruited through

institutional review board-approved protocols.
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Exome sequencing and variant analysis

Germline DNA was extracted from whole blood or buccal cell

samples for all participants. Exome sequencing was performed at the

Cancer Genomics Research Laboratory, National Cancer Institute

(CGR, NCI) as previously described (13, 28, 29). All participants and

controls were jointly called with comparable QC and coverage. In

brief, variants were aligned to reference genome hg19 with

NovoAlign (http://www.novocraft.com) and then jointly called by

FreeBayes (v0.9.14), GATK UnifiedGenotyper (v3.1), and GATK

HaplotypeCaller (v3.3). Poor quality and contaminated samples

were excluded from the dataset; any variants that were flagged with

our custom pipeline quality control metric (CScorefilter), had a read

depth < 10, ABHet < 0.2 or > 0.8, or genotype quality scores <20

were excluded from the analysis. The average read depth was 50X in

participants and 55X in controls (Supplementary Figure 1). The

analysis was restricted to variants with a minor allele frequency

(MAF) of less than 1% in all non-cancer ethnic subgroups in The

Genome Aggregation Database (gnomAD, version 2.1.1, excluding

cancer), Exome Aggregation Consortium (ExAC, excluding the

Cancer Genome Atlas data) (30), 1000 Genomes Project (31), and

the Exome Sequencing Project (32). Please see Supplemental

Methods for additional information on exome sequencing.
Cancer-susceptibility genes and
pathogenicity classification

We investigated 239 candidate CSGs from published studies

(12, 14–17, 33, 34), including six autosomal dominant (AD)

genes known to predispose to medulloblastoma (SUFU, ELP1,

GPR161, PTCH1, APC, and TP53). In addition, we evaluated two

additional pathways known to be important in medulloblastoma: SHH

pathway (16 total genes) and WNT pathway (24 total genes) (35–37).

CSGs were grouped by the previously reported mode of inheritance,

including autosomal dominant (AD; n=167), autosomal recessive (AR;

n=54), X-linked recessive (XLR; n=10), Y-linked recessive (YLR; n=1),

and uncertain mode of inheritance (n=7); we additionally created a

subcategory of known germline medulloblastoma genes, as noted

above, that overlapped with the AD genes (n=6). The total list of

candidate genes is summarized in Supplementary Table 2, and CSG

mode of inheritance was determined by the original publication and

confirmed by gene review.

Variants were characterized as pathogenic (P), likely pathogenic

(LP), variant of uncertain significance (VUS), likely benign (LB),

or benign (B) using a hierarchical classification system based

on ClinVar and InterVar as outlined in Supplementary Figure 2.

Our classification system was based on previous reports (13, 27) and

on the guidelines recommended by the American College of

Medical Genetics and Genomics and the Association for

Molecular Pathology (38). Variants of unknown significance in

the six genes known to predispose to medulloblastoma were further

characterized as LP if predicted as loss of function (pLoF) by SnpEff

(39). All P/LP variants observed in the participants are described

in Supplementary Table 3. All P/LP variants had their sequence
Frontiers in Oncology 03
reads (BAM files) manually reviewed using Integrative Genomics

Viewer (IGV) to exclude potential sequencing and analysis artifacts

that could represent false positives (40).
Statistical methods

We compared the frequency of P/LP variants in cases to that of

1,259 controls using Fisher’s exact tests. To mitigate type I error

from multiple tests, a Bonferroni correction was applied based

on the number of genes with a P/LP variant detected (n=30) that

were compared among the cases and controls, and a p‐value

threshold of <1.6 x 10-3 was considered statistically significant.

For the purposes of this study, the terms “nominally significant”

and “enriched” refer to results with a p-value <0.05 but not meeting

the Bonferroni threshold, and “statistically significant” refers to

results with a p-value <1.6 x 10-3. We also compared differences

between cases with and without a P/LP variant by ancestry, sex,

vital status, and age at diagnosis, using Fisher’s exact tests and

Mann-Whitney U Tests.
Results

We assessed the frequency of CSG P/LP variants in 160 pediatric

survivors of medulloblastoma. 90% of cases (n=144) were of
TABLE 1 Demographics and clinical characteristics of all participants.

Characteristics
Case set 1,
No. (%)

Case set 2,
No. (%) Total (%)

Total Participants

134 (83.8) 26 (16.3) 160 (100)

Sex

Male 74 (55.2) 16 (61.5) 90 (56.3)

Female 60 (44.8) 10 (38.5) 70 (43.8)

Ancestry

European 123 (92) 21 (80.8) 144 (90)

Non-European 11 (8) 5 (19.2) 16 (10)

Vital Status

Alive 120 (89.6) 26 (100) 146 (91.3)

Dead 14 (10.4) 0 (0) 14 (8.8)

Median Diagnosis Age in years (range)

7.9 (0.5-18.3) 5.3 (1.8-22.4) 7.6 (0.5-22.4)

Follow Up Duration in years (range)

32.2 (12.5-44.4) 7.7 (0.8-19.4)
30.6

(0.8-44.4)
Case set 1 are participants from the Childhood Cancer Survivor Study and Case set 2 are from
the natural history study conducted at the National Cancer Institute, diagnosed at Children’s
National Medical Center. European defined as CEU >80% using genotyping data (Northern
and Western European ancestry). The non-European participants included nine cases of
African ancestry and two of Asian ancestry from Case set 1 and three cases of African ancestry
and two of Asian ancestry in Case set 2.
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European ancestry, the median age at diagnosis was 7.6 years (age

range, 0.5-22.4 years), and 56.3% (90 cases) weremale (Table 1). Most

cases were alive at last follow-up (91%) with the time of follow-up

longer for Case set 1 versus Case set 2, and the median length of

follow-up time was 32.2 years versus 7.7 years, respectively.

Overall, 33 (20%) medulloblastoma cases had a total of 40

germline P/LP variants in at least one of the 239 CSGs, which was

nominally higher than the frequency observed in the controls

(13.8%, 174/1259; p= 0.017) (Figure 1). Restricting the analysis to

the European cases and controls, the results showed similar

patterns, but were not significantly different; 21% of cases and

14.8% of controls had a P/LP variant (p=0.084).

For the 196 AD CSGs and WNT/SHH pathway genes, the

frequency of P/LP variants in all cases [12.5% (20/160)] was

statistically significantly higher versus 5.1% of controls (65/1259;

p=1.0 x10-3); the results were similar when restricted to cases of

European ancestry (12.4% vs. 5.3%; p=2.5 x10-3). 18 of the 20 cases

with AD P/LP variants were classified based on ClinVar or InterVar,

and two were classified based on pLoF (Supplementary Table 3), and

none of these same AD P/LP variants were found in the controls. 3.1%

(5/160) of cases had more than one P/LP variant, compared to 1.3% of

the controls (p=0.078), and these individuals had either two dominant

P/LP variants, a dominant and a recessive P/LP variant, or two

recessive P/LP variants in different genes. Cases with an AD P/LP

variant (n=20) did not differ significantly from cases without (n=140)

by age, ancestry (European vs. non-European), sex, or vital status

(Supplementary Table 4). The AD CSGs with the highest number of P/

LP variants in cases, and statistically significantly higher than controls,

were ELP1 (5 total cases, one was non-European ancestry; p=3.0x10-4)

and SUFU (3 European cases; p=1.4x10-3). CHEK2, which has not been

previously associated with medulloblastoma, had nominally more P/LP
Frontiers in Oncology 04
variants when compared to controls (3 European cases; p=0.012)

(Figure 2). A pathogenic variant in BRCA1 was also noted and was

the only BRCA-associated medulloblastoma in our cohort.

In the known medulloblastoma predisposition AD genes, 6.3%

of cases (10/160) had a P/LP variant, which was statistically

significantly higher than observed in controls (0.2%, 2/1259; p=

1.4x10-8), and none of these same P/LP variants in the cases were

also found in the controls. We identified P/LP variants in four of the

six medulloblastoma genes: APC, ELP1, GPR161, and SUFU

(Supplementary Table 3). The case-control results were similar

when restricted to European ancestry individuals (5.6% of cases

vs. 0.1% of controls; p=3.9x10-7). The cases with a medulloblastoma

gene P/LP variant (n=10) did not significantly differ from cases

without (n=150) by age, sex, ancestry, or vital status

(Supplementary Table 4). We did not observe any P/LP variants

in the WNT pathway genes or SHH pathway, except for SUFU.

In the 56 AR CSGs, we did not identify any cases who were

homozygous or compound heterozygous carriers of P/LP variants

in AR genes. There was also no difference between the carrier

frequency of heterozygous P/LP variants in the cases and controls in

the AR CSGs; 8.3% of European cases (12/144) had a heterozygous

P/LP variant versus 9.5% of European controls (89/937; p=0.76).

Furthermore, five AR genes had the same P/LP variants in the cases

(FANCC, G6PC, MUTYH, NTHL1, SERPINA1) and in the controls

(Supplementary Table 3). AGL was the only AR gene that had P/LP

variants enriched in cases compared to controls (p=0.035; Figure 3)

and has not been previously associated with medulloblastoma. No

P/LP variants were identified in the ten XLR genes, the single YLR

gene, or the 7 genes of unknown inheritance.

We identified multiple P/LP variants in 4.3% of cases (7/160),

two included a known medulloblastoma gene, versus 1.3% in
FIGURE 1

Frequency of rare pathogenic or likely pathogenic variants in cancer susceptibility genes in participants with medulloblastoma vs. controls. Includes
all 160 medulloblastoma survivors and 1,259 cancer-free controls. Variants of unknown significance in known medulloblastoma CSGs predicted to
be loss of function are included with P/LP variants for autosomal dominant and MBL genes. CSG, cancer susceptibility genes; P, pathogenic; LP,
likely pathogenic; MBL genes, six genes known to predispose to medulloblastoma.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1441958
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rees et al. 10.3389/fonc.2024.1441958
controls (16/1259; p=0.014), none of these were in a known

medulloblastoma gene.
Discussion

We identified a statistically significant enrichment of P/LP

variants in dominantly inherited CSGs in approximately one

eighth of 160 pediatric medulloblastoma survivors compared to

1,259 cancer-free controls with comparable exome data. This was

mainly driven by 6.3% of the survivors harboring a P/LP variant in a

known AD medulloblastoma gene. The CSGs with the most P/LP

variants in cases, and significantly higher than controls, were the

known medulloblastoma genes ELP1 and SUFU.

It is difficult to directly compare the frequencies of CSG P/LP

variants across studies due to differences in variant classifications,

databases used, and the two largest medulloblastoma germline

genetic studies to date included both survivors and non-survivors.

In a cohort of 230 cases with all subtypes of medulloblastoma
Frontiers in Oncology 05
represented, Grobner et al. (14) reported that 6% of all cases

harbored a P/LP variant in a CSG, compared to our cohort at

12.5% (20/160) using their gene list. In a large cohort of 1,022

patients with medulloblastoma, Waszak et al. (15) reported a P/LP

carrier prevalence of 5.6%, compared to 12.5% (20/160) in our

cohort when restricting to their gene list. These differences could

also be due to different classifications of pathogenicity across the

studies and may not represent a true difference in P/LP variant

prevalences among survivors and non-survivors. We used ClinVar,

InterVar, and predicted LOF variants for our pathogenicity

classifications, which were not all incorporated in the other

pipelines. The two predicted LOF variants should be interpreted

with caution since they have not been previously reported and we

do not have functional data to confirm pathogenicity. It is also

important to acknowledge that only the P/LP variants in

medulloblastoma genes have been previously associated with

medulloblastoma. The other P/LP variants should be replicated in

additional studies to confirm their pathogenicity. However, 85% of

our P/LP variants were identified by ClinVar, and even if we only
FIGURE 3

Frequency of pathogenic and likely pathogenic variants in cancer susceptibility genes with autosomal recessive inheritance in medulloblastoma
cases vs. controls by gene of interest. Includes all 160 medulloblastoma survivors and 1,259 cancer-free controls. Predicted loss of function (pLoF)
included two variants in known medulloblastoma CSGs only. No participants were found with homozygous or compound heterozygous inheritance
P/LP variants in these recessive cancer susceptibility genes or to have predicted loss of function. Only p-values <0.05 are noted in the figure.
FIGURE 2

Frequency of pathogenic and likely pathogenic variants in cancer susceptibility genes with autosomal dominant inheritance in medulloblastoma
cases vs. controls by gene of interest. Includes all 160 medulloblastoma survivors and 1,259 cancer-free controls. Predicted loss of function (pLoF)
included two variants in known medulloblastoma CSGs. Only p-values <0.05 are noted in the figure.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1441958
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rees et al. 10.3389/fonc.2024.1441958
used ClinVar classifications, 11% of cases carried a P/LP variant in

an AD CSG and 4% in a known medulloblastoma gene. Some

ClinVar classifications are expected to change over time as

knowledge advances, which likely also contributed to differences

based on ClinVar information at different times. Similarly, a

previous exome study across all pediatric cancer survivors that

included many participants in this study had identified 6.3% of

medulloblastoma cases with a P/LP variant in an AD CSG (13); this

study also used ClinVar classifications and illustrates the dynamic

nature of these classifications.

In our study, the CSGs with the highest number of P/LP

variants in cases versus controls included ELP1 and SUFU. The

prevalence of P/LP variants in ELP1 in our cases (3.1%, 5/160) was

similar to what has previously been reported in a large cohort of

cases with medulloblastoma (3.2%, 23/713) (16). In this larger

cohort, ELP1 was associated with a more favorable outcome, with

a five-year overall survival rate of 92%. In our study, cases with P/LP

variants in ELP1, although based on small numbers, seemed to also

have favorable outcomes. The median age of diagnosis was 10.3

years (range 3.7-14.6), and four of the five cases were alive at last

follow-up, with a median overall survival of 30 years (range 19.4-

36.5). ELP1 is a subunit of the elongator complex and was recently

discovered to be pathogenic for SHH medulloblastoma, while other

subunits have previously been linked with other cancers such as

breast cancer and melanoma (41). The consistent prevalence of P/

LP variants in ELP1 in multiple cohorts provides supportive

evidence for adding ELP1 to cancer susceptibility gene lists,

especially for medulloblastoma. The prevalence of P/LP variants

in SUFU in our survivors (1.9%) also compares similarly to what has

been previously reported (15). Patients with medulloblastoma who

harbor P/LP variants in SUFU typically present in infancy with a

median age at diagnosis of 1.5 years (14, 15), and two of our three

cases were diagnosed at similar ages (age at diagnosis for these cases

were 1 year, 1.5 years, and 4 years).

There were two genes (CHEK2 and AGL) that had P/LP variants

enriched in medulloblastoma cases compared to controls that were

not previously associated with medulloblastoma. CHEK2 is a tumor

suppressor gene with a large footprint in the literature primarily

focused on associations with hereditary nonpolyposis colorectal

cancer and breast cancer (42), but given its high mean allele

frequency in the general population, it is difficult to interpret its

importance as a susceptibility gene here (43). Loss of AGL is

classically associated with glycogen storage disease and has also

been found to be associated with bladder cancer and proliferation of

bladder cancer cells, although none of the patients in the current

study had bladder cancer (44, 45). CHEK2 and AGL require follow-

up in future studies to determine their relationship with

susceptibility to medulloblastoma.

Two notable genes not observed to have any P/LP variants in

our cohort were PTCH1 and TP53. Cases from our smaller cohort

from CNMC (Case set 2) with NBCCS that had variants in PTCH1

were excluded from the current study (22). Interestingly, the larger

group of cases from the CCSS cohort (Case set 1) had no variants in

PTCH1. In previous larger studies, the prevalence of PTCH1 ranged

from 0.4% (14) to 4.5% (17). P/LP variants in PTCH1 have been

associated with infant medulloblastoma (14), and since our cohort
Frontiers in Oncology 06
has a limited number of infants this may be a factor. P/LP variants

in TP53 are associated with both poor medulloblastoma survival

and subsequent primary cancers, and thus are less likely to be

identified in a long-term survivor cohort. A P/LP variant in GPR161

was present in only one case. Similar to SUFU, GPR161 variants

seem to be found primarily in infant medulloblastoma; previously

reported in 3.4% of pediatric SHH medulloblastoma cases (5 of 6 of

our reported cases were under the age of 12 months) (17),

compared to only one 10-year-old case with a P/LP GPR161

variant in our cohort. Of note, only six cases from our study were

diagnosed at less than one year of age.

A unique aspect of our study is its focus entirely on a survivor

cohort, allowing identification of genes that could be related to

prognosis and treatment response, and this likely limited P/LP

variants in genes related to poor survival. However, a limitation of

our study is that it includes decades-old cases, which limits

generalizability to contemporary survivor cohorts, and limits the

ability to classify these cases based on the contemporary criteria of

different subtypes. In addition, other limitations of our study

include the low power for evaluations of individual susceptibility

genes, the inability to assess family history in most of our cases, and

the potential for selection bias favoring cases with better prognosis

that is innate to any survivor cohort.

In summary, one in eight pediatric medulloblastoma survivors in

this study had an autosomal dominant germline pathogenic variant in

a CSG. As well as confirming results for several known

medulloblastoma susceptibility genes, we identified new genes of

potential interest in the development of medulloblastoma. Further

studies are needed to validate these observations and identify

associations by histologic or molecular subtype. Our findings

improve the understanding of the germline genetic etiology of

pediatric medulloblastoma and provide insight into specifically

medulloblastoma survivors. These results could have important

implications for genetic testing in pediatric patients and their families

with medulloblastoma specifically for known medulloblastoma genes.
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