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Genomic instability stands out as a pivotal hallmark of cancer, and PARP

inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy

drugs meticulously crafted to inhibit the repair of DNA single-strand breaks

(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of

ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer

characterized by homologous recombination(HR) repair deficiencies due to

mutations in BRCA1/2 or other DNA repair associated genes and acquiring the

designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy

in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the

synergistic approach of combining PARPi with agents that induce HR defects, or

with chemotherapy and radiotherapy to induce substantial DNA damage,

significantly enhances the efficacy of PARPi in BRCA wild-type or HR-

proficient patients, supporting extension the use of PARPi in HR proficient

patients. Therefore, we have summarized the effects and mechanisms of the

combined use of drugs with PARPi, including the combination of PARPi with HR

defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like

VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage

such as chemotherapy or radiotherapy. In addition, this review discusses several

ongoing clinical trials aimed at analyzing the clinical application potential of these

combined treatment strategies.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1441222/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1441222/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1441222/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1441222&domain=pdf&date_stamp=2024-08-02
mailto:huaxinduan_123@sina.com
mailto:xiaoping.yang@hunnu.edu.cn
https://doi.org/10.3389/fonc.2024.1441222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1441222
https://www.frontiersin.org/journals/oncology


Xie et al. 10.3389/fonc.2024.1441222
1 Introduction

Base excision repair (BER) is the primary mechanism for

removing oxidized bases producing single strand break (SSB)

intermediates. PARP1 (and PARP2) recognizes SSB and gaps in

the DNA and catalyzes the addition of chains of ADP-ribose

molecules to proteins in a process known as poly-ADP-

ribosylation (PARylation) (1). PAR facilitates BER/SSBR by

recruiting DNA repair factors and chromatin remodellers.

PARP1/2 not only plays a crucial role in the repair of SSB (2).

When PARP1/2 is deleted or inhibited, SSB accumulates and

encounters replication forks during proliferation, which converts

to DNA double-strand damage (DSB) (3). DSB is the most toxic

DNA damage in cells, which is mainly repaired by high-fidelity HR

pathway (4). When HR is deficient, DSB are primarily repaired

through error-prone non-homologous end joining (NHEJ)

pathway, and erroneous DNA repair can lead to genomic

instability and cell death (5). Therefore, simultaneously inhibiting

PARP1/2 and HR will lead cells to undergo synthetic lethality.

Synthetic lethality refers to the phenomenon that the simultaneous

inactivation of two genes will lead to cell or individual death, while

the cell or individual can survive normally when either gene is

inactivated alone. The application of the concept was first validated

clinically in cancers with BRCA1 and BRCA2 mutations leading to

HR repair deficiency (6, 7). Subsequently, PARP inhibitors (PARPi)

have developed rapidly in clinical trials for ovarian and breast

cancers with BRCA1/2 mutations and other HR gene defects.

Currently, six oral clinical PARPi effectively inhibit the catalytic

function of PARP1 and PARP2 by competing with NAD+ for

binding to PARP1/2 (8). Olaparib, Rucaparib, Niraparib, and

Talazoparib have been approved by the Food and Drug

Administration (FDA) for ovarian, breast, pancreatic and prostate

cancer patients with BRCA mutations (8). In addition to catalytic

inhibition, most PARPi also possess the ability to trap PARP on

DNA, thereby preventing PARP1 protein from undergoing

PARylation modification and releasing from damaged sites (9,

10). The formation of PARP1-DNA complex, which is trapped on

the DNA, hinders the progression of replication fork and promotes

DSB formation (10), which is the major mechanism by which

PARPi kills HR-deficient cancer cells (10, 11). PARPi have high

trapping capacity and can effectively kill cells with HR defects.

Although PARPi have achieved great success in the treatment of

BRCA mutated patients, it has limited efficacy in BRCA1/2 wild-

type patients. According to research data, only about 20% of high-

grade serous ovarian cancer patients who have BRCAmutations are

more sensitive to PARPi, while the remaining approximately 80% of

BRCA wild-type patients do not benefit from PARPi (12–14).

Similarly, approximately 80% of triple-negative breast cancer

(TNBC) patients without BRCA mutations do not respond to

PARPi (15, 16). Due to the intact HR pathways in BRCA wild-

type cells, even if PARPi prevent the repair of SSB and subsequent

occurrence of DSB, tumor cells can still maintain chromosome

stability and cell viability through HR (17). Consequently, the

exploration of utilizing PARP inhibitors for treating BRCA1/2

wild-type cancer patients has piqued the interest of researchers.

Studies have revealed that, besides BRCA1/2, proteins such as
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MRN, ATM, CHK1, CtIP, RAD51 play direct roles in the HR

process (Figure 1). Upon DNA damage, the MRE11A-NBS1-

RAD50 (MRN), serves as a damage sensor by detecting DNA

damage and binding to the break end (18). This complex then

mediates the activation of ataxia telangiectasia mutated (ATM),

which leads ATM to switch from an inactive dimer to an active

monomer, phosphorylates sites at Ser-367, Ser-1893, Ser-1981, and

Ser-2996 (19). These signals are relayed to CHK1 and BRCA1, while

CtIP is ubiquitinated to facilitate S and G2 arrest (20, 21).

Subsequently, RAD51 binds to the damaged DNA ends, forming

DNA-RAD51 nucleoprotein filaments. At the same time, RAD51

can recognize a sister strand that matches the damaged DNA

sequence, enabling recombination exchange between the two

strands for DNA repair (22). Considering this, a basic strategy is

to combine PARPi with drugs that may induce HR defects. For

example, inhibiting ATR, CHK, and RAD51 to downregulate HR

can enhance the sensitivity of BRCA wild-type patients to PARPi

(23). Furthermore, the combination of PARP inhibitors with drugs

that indirectly interfere with HR, such as VEGFR, BRD4, EZH2,

HDAC, and PD-L1 inhibitors, results in synthetic lethality in

BRCA1/2 wild-type tumors, expanding the scope of PARP

inhibitor applications (24–26) (Figure 2). Apart from HR

inhibition, synergistic effects can be achieved by combining

chemotherapy drugs or radiotherapy with PARP inhibitors, as

those leads to further enhancement of DNA damage. In this

review, we summarize the basic principles of combining PARP

inhibitors in wild-type BRCA cancers, ongoing clinical trials, and

analyze the future directions of PARPi combination therapy.
2 Inhibitors that directly suppress HR

2.1 ATR inhibitors

ATR (ataxia telangiectasia and Rad3-related) is a member of the

Phosphoinositide 3-kinase (PIKK) family of serine/threonine

protein kinases (27). ATR is a key regulatory factor of the DNA

damage response (DDR) pathway, working together with other

DDR proteins to initiate and coordinate the cell’s response to DNA

damage and stress (28). Activated ATR kinase regulates various

cellular processes, including inducing cell cycle arrest, replication

initiation inhibition or restart and DSB repair (29–33). Multiple

studies have identified BRCA1 as a target of ATR. BRCA1

expression is regulated by E2F, which in turn can be controlled

by the ATR-CHK1 pathway (34–36). Prolonged chronic inhibition

of ATR signaling depletes abundance of key HR factors such as

BRCA1 and PALB2, significantly suppressing the cell’s ability to

utilize HR-mediated DNA repair. Long-term treatment with ATR

inhibitors(ATRi) can render HR-proficient cancer cells sensitive to

PARPi (37). ATR promotes HR by phosphorylating PALB2 and

enhances its repair of DNA damage by interacting with BRCA1

(38). Inhibition of ATR kinase aims to target tumor cells highly

sensitive to high replication stress. While inhibiting ATR activity

may induce replication fork stalling and collapse in normal cells,

leading to some cytotoxicity, this cytotoxicity is further exacerbated

in cancer cells with high replication stress (39–41). PARPi alone are
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FIGURE 2

Signaling pathways that indirectly target HR. Rb, Retinoblastoma gene;ER, Retinoblastoma gene;TSC, Tuberous Sclerosis Complex; FOXM1,Forkhead box M1.
FIGURE 1

Signalling pathways that directly target HR. PARPi,PARP inhibitors;HR, homologous recombination;BRCAwt, BRCA wild-type;ATM, Ataxia
Telangiectasia Mutated.
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insufficient to kill BRCA wild-type cancer cells, but their

combination with ATRi shows synergistic inhibitory effects on

cancer cells, leading to increased DNA damage (42). ATRi in

combination with PARPi synergistically induce tumor cell death

through inhibiting DNA repair pathways, leading to a synthetic

lethality effect (43–45). Phosphorylation of Histone H2AX at Ser-

139 is a marker of DNA damage. The ATR inhibitor Ceralasertib

(AZD6738) can block CHK1 phosphorylation and increase gH2AX

expression (46, 47). Preclinical studies have shown significant

synergistic efficacy of Ceralasertib in combination with Olaparib

in BRCA wild-type triple-negative breast cancer (TNBC) xenograft

models, achieving complete tumor regression by increasing the

dosage of Olaparib or Ceralasertib to twice daily (48).

Many patients develop resistance to PARPi, with acquired

PARPi resistance being a major obstacle in treating tumors. A

study on a patient-derived xenograft (PDX) model for platinum-

resistant BRCA wild-type patients showed that the combination of

ATRi and PARPi have a synergistic effect, leading to increased DNA

damage and sustained regression of ovarian tumors, significantly

improving patient survival (49). Currently, there is no definitive

data on clinical trials of PARPi-ATRi therapy for BRCA wild-type

patients. Additionally, identifying cancer types sensitive to

combination treatments and optimizing combination dosages are

key to the successful clinical application of combined PARPi and

ATRi therapy in BRCA1/2 wild-type cancer patients, necessitating

further large-scale studies.
2.2 CHK inhibitors

Research indicates that DNA damage repair enables cells to

respond to various stresses threatening genome stability. This

response involves two main signaling pathways, ATM/Chk2 and

ATR/CHK1, with the dysfunction of CHK1/2 closely linked to

tumorigenesis (50, 51). CHK1 is a major effector downstream of

ATR, becoming phosphorylated at Ser317 and Ser345 sites by the

ATR kinase during replication stress-induced DNA damage (52, 53).

While CHK2 acts as a serine/threonine kinase, it is a downstream

phosphorylation substrate of ATM and is activated when DSB occur

(54, 55). Further mechanistic studies showed that ATR-mediated

phosphorylation and activation of CHK1 induced cell cycle arrest

after DNA damage, which in turn led to the phosphorylation and

degradation of cell division cycle factor 25 (CDC25), thereby

inhibiting cell cycle progression to mitosis (M) and ultimately

leading to cell cycle arrest to gain time for DNA repair. In contrast,

when CHK1 is inhibited, CDC25 will be dephosphorylated, leading to

the activation of C8/CDK complex. Although the presence of DNA

damage will lead to programmed cell death, this complex will still

drive cells to complete cell cycle progression. The primary functions

of CHK1 not only involve regulating the cell cycle to prevent

premature entry into the M phase but also stabilizing stalled

replication forks and regulating HR (56, 57). Overall, CHK

inhibitors (CHKi) play a crucial role in promoting cancer cells

apoptosis through the aforementioned pathways.

In the process of homologous recombination repair after DNA

damage, the binding of RAD51 to BRCA2 depends on the CHK1
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phosphorylation of the C-terminal domain of BRCA2. RAD51 is

responsible for regulating the invasion of ssDNA into the

complementary parental strand to generate an extendable primer-

dsDNA. CHK1-mediated phosphorylation of BRCA2 is important

for the stability of BRCA2 and the efficient recruitment of RAD51 to

sites of DNA damage, thereby facilitating effective DNA repair

through homologous recombination (58, 59). CHK1 repairs

excessive DNA damage in cancer cells, while inhibition of CHK1

leads to downregulation of DNA repair protein RAD51 and

enhanced DNA damage (60). Therefore, CHK1i block the

activation of HR by inhibiting the localization of RAD51 to

nuclear lesions during DNA damage, thereby inhibiting the

function of RAD51. The above studies elucidate the important

role of CHK1i in blocking cell cycle progression, weakening

replication forks, and inhibiting HR. DDR is coordinated by

CHK1 and CHK2, acting independently to delay cell cycle

progression and provide time for DNA repair. The ability of

CHK1 to inhibit HR enhances the efficacy of PARPi on BRCA

proficient tumors (61). Additionally, PARPi treatment upregulates

p-ATR and p-CHK1, indicating the activation of the ATR-CHK1

protective pathway is critical in PARPi resistance. In fact,

combination therapy with ATRi or CHK1i and PARPi

synergistically reduces the survival and colony formation of

BRCA wild-type cancer cells compared to monotherapy. Notably,

PARPi treatment leads to cell cycle G2 arrest, while ATRi or CHK1i

induces premature entry into mitosis, increasing chromosomal

aberrations and cancer cell apoptosis (62). The combination of

PARPi and CHK1i increases DSB and gH2AX expression. Studies

have shown that ATM knockdown inhibits drug-induced CHK1

and ERK1/2 phosphorylation and enhances the cytotoxicity of

PARPi and CHK1i on tumor cells (63) Prexasertib (LY2603618)

is the first selective CHK1/2 inhibitor. Hye-Yon Cho found that the

combination therapy of Prexasertib with Rucaparib exhibits

significant anticancer effects in BRCA wild-type ovarian cancer

cell lines, consistent with the study by Hyoung Kim (64). Based on

these preclinical studies, the potential of CHK1i and PARPi

combination therapy as a novel treatment for BRCA wild-type

patients have been confirmed.
2.3 RAD51 inhibitor

Histone H2AX and RAD51 are key proteins involved in the

DNA repair pathway (65, 66). Histone H2AX is phosphorylated

into gH2AX, leading to the formation of other DNA repair proteins,

such as RAD51, at the site of DSB (67, 68). Consequently, in

preclinical and clinical samples, the formation of gH2AX and

RAD51 foci are used as a biomarker for DSB (69). RAD51 and its

family play multiple roles in DSB repair, replication stress, and

meiosis. Downregulation of RAD51 expression reduces the DNA

damage repair capacity of tumor cells, thereby enhancing the

efficacy of tumor gene toxic therapy (70). It has been reported

that RAD51 is a key protein that mediates HR, and RAD51

chromatin loading is the core step of HR (71). As a downstream

effector molecule of the BRCA2 protein, RAD51 can be loaded onto

ssDNA to promote the formation of RAD51-ssDNA nucleoprotein
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filaments and catalyze strand exchange reactions to initiate

homology-directed repair (HDR) (72, 73). In fact, RAD51 foci are

known biomarkers for the HR repair pathway in vitro. When tumor

cells are exposed to DNA-damaging agents, RAD51 is recruited to

the sites of DNA damage and forms distinct foci in a proficient HR

repair environment (74). Targeting the specific interaction of

RAD51-BRCA2 can mimic the effect of BRCA deficiency. Data

suggest that in BRCA1 wild-type TNBC, strategies targeting RAD51

can enhance the therapeutic efficacy of PARP inhibitors (75).

Additionally, Scott et al. found that RAD51 inhibitor CAM833

enhances the damage effects of PARP inhibitors on BRCA wild-type

cells by blocking the BRCA2-RAD51 protein interaction and

preventing RAD51-mediated HR (76). In conclusion, RAD51 is

the core protein of HR, and the combination of its inhibitor and

PARPi is a promising treatment for BRCA wild-type tumors, which

deserves further study.
2.4 WEE1 inhibitors

WEE1 is a type of tyrosine kinase, functioning as a key

regulatory factor of the G2-M cell cycle checkpoint (77). The

expression of WEE1 in cancer cells has dual biological roles. As a

tumor suppressor, WEE1 can delay cell entry into mitosis by

inhibiting CDK activity, thereby maintaining genomic stability.

However, loss of WEE1 may lead to the accumulation of genetic

abnormalities, promoting the development of pre-neoplastic

lesions. As an oncogene, WEE1 promotes cancer cells to evade

the effects of DNA damage and abnormal mitosis (78). WEE1 as an

oncogene is highly expressed in various cancer types, including

breast cancer. Cancer cells often exhibit defects in the G1-S

checkpoint and heavily rely on the G2/M checkpoint to resist

endogenous and exogenous DNA damage (79, 80). Activated

WEE1 during DNA damage response maintains ATR and CHK1

phosphorylation to delay cell entry into mitosis (81). Similar to

ATR, WEE1 is also involved in replication fork protection through

direct interaction and negative regulation of DNA cleavage by

endonuclease MUS81 (82). The MUS81 has a structure-specific

activity for the Holliday junction formed during HR (83). Inhibition

of WEE1 activates CDK1, leading to phosphorylation of BRCA2

and slowing down the progression of replication forks, thereby

limiting HR (84–86). Since Adavosertib (AZD1775) usually

regulates the G2/M checkpoint, the combination of Olaparib and

AZD1775 significantly attenuates G2 arrest. AZD1775 reduces the

expression of CtIP and RAD51 and disrupts HR repair (87). The

increased susceptibility of cells to DNA damage induced by PARPi

is due to the lack of CDK1/2-mediated phosphorylation-induced

DNA repair defects and WEE1 inhibition(WEE1i).

Research has shown that combination therapy using PARPi and

WEE1i synergistically induces cell death through replication stress

and DNA damage (88). Cyclin E, as a key cell cycle regulatory

factor, is a biomarker mediating replication stress in cancer. In

tumor cells, it accumulates in the cytoplasm in a low molecular

weight form. By co-administering Niraparib and WEE1i

(Adavosertib) acting on Cyclin E, apoptosis in BRCA wild-type
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cells can be accelerated (89). Studies by Teo et al. have also

demonstrated the synergistic effect of combining these two drugs

in controlling tumor growth. The combination of Olaparib and

Adavosertib triggers an increased anti-tumor immune response,

including activation of the STING pathway. Combined use with

STING (stimulator of interferon genes) agonists can further

enhance persistent tumor regression in BRCA1/2 wild-type TNBC

mouse tumor models, significantly improving survival

outcomes (90).
2.5 CDK inhibitors

The progression of the cell cycle largely depends on cyclin-

dependent kinase (CDK), and the imbalance of CDK is associated

with two key features of cancer cells, cell cycle dysregulation, and

abnormal proliferation (91). The CDK-RB-E2F axis constitutes a

central transcriptional mechanism that drives cell cycle progression,

dictates the timing and fidelity of genome replication, and ensures

the accurate transmission of genetic material in each cell division

cycle (92). E2Fs are the main transcriptional regulatory factors of

cell cycle-dependent gene expression, and they are highly active in

almost all cancers, usually due to the inactivation of their main

binding partner and key regulator RB (retinoblastoma),

overexpression of CDK, or inactivation of CDK inhibitors (CDKi)

(93, 94). Studies have confirmed that cyclin and its catalytic part

control the transition between different stages of the cell cycle (95).

Cyclin D1 is considered a key oncogenic driver in cancer (96),

promoting the G1/S phase transition by binding and activating

CDK4 and CDK6 (97). CDK4/6i effectively block cancer cell

proliferation by inducing G1 cell cycle arrest (98). Furthermore,

Cyclin D1 can inhibit Cyclin A-CDK2-dependent Ser329

phosphorylation and promote the binding of RAD51 to the C-

terminal domain of BRCA2, while down-regulation of Cyclin D1

leads to low HR efficiency (99). Interfering with the HR repair

pathway by blocking CDK1 can mimic BRCA1 mutations and

increase the sensitivity of TNBC cells to PARPi by 100-fold (100).

Wild-type BRCA also participates in G1 cell cycle arrest. Aprelikova

found that BRCA1 binds to hypophosphorylated RB and interacts

with the E2F transcription factor to block transcription and inhibit

cell proliferation (101). Research has shown that inhibiting CDK1,

suppressed and transformed BRCA1 express ion and

phosphorylation transforms BRCA wild-type cancer cells into

HR-deficient cells, making them more susceptible to synthetic

lethality induced by PARPi (102, 103).

Additionally, the Johnson et al. discovered that the CDKi

Dinaciclib reduces the expression of HR genes in BRCA wild-type

TNBC cells and sensitizes these cells to Veliparib. Another study

developed a dual PARP and CDK6 inhibitor named P4i, which is a

new compound that links PARPi Olaparib and CDK6i Palbociclib

through an o-phenylenedione moiety. This inhibitor significantly

induces DNA damage and cell apoptosis, inhibiting the

proliferation of TNBC cells through the signaling pathways

involving PARP1 and CDK6 in BRCA wild-type cells (104).

However, the interplay between the Cyclin/CDK pathway, HR,
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and BRCA wild-type remains complex, requiring further

exploration and confirmation through future randomized

clinical trials.
3 Inhibitors that indirectly
suppress HR

3.1 VEGFR inhibitors

The vascular endothelial growth factor (VEGF or VEGF-A) was

initially identified as a vascular permeability factor (VPF) and is one

of the key molecules associated with angiogenesis (105). Patel

pointed out that the angiogenic pathway, which develops new

blood vessels from the existing vascular system, is a crucial step

in tumor growth and metastasis (106). Studies have shown that

hypoxia-induced by anti-angiogenic therapy inhibits HR repair by

suppressing the expression of key factors such as BRCA1 and

BRCA2, leading to a deficiency in DDR and rendering BRCA1/2

wild-type cancer cells sensitive to PARPi (107, 108). BRCA wild-

type tumor cells are more sensitive to the VEGFR3 inhibitor Maz51.

The addition of Maz51 can lead to BRCA gene down-regulation,

inducing cell cycle arrest and leading to BRCAness, benefitting

BRCA wild-type patients treated with PARPi (109). Furthermore,

numerous studies have reported a synergistic effect of VEGFR

inhibitors combined with PARPi in reducing the proliferation and

invasion capabilities of tumor cells (110–112).

Early preclinical studies have shown that the anti-angiogenic

agent Cediranib can inhibit the pro-survival and anti-apoptotic

AKT signaling, significantly enhancing the inhibitory effects of

ribonucleotide reductase inhibitor Triapine and Olaparib on

BRCA wild-type epithelial ovarian cancer cells and extending the

survival time of mice (113). Results from the clinical study

NT02354131 also indicate that the combination of Bevacizumab

and Niraparib is more effective than Niraparib monotherapy in

treating BRCA wild-type ovarian cancer (114). Similarly, another

phase III study showed that the combination of Bevacizumab and

Olaparib than placebo plus bevacizumab significantly prolonged

progression-free survival (PFS) in patients without BRCA gene

mutation (28. 1 months vs 16. 6 months) (115). In addition, a

phase II study also showed that the combination of Cediranib and

Olaparib significantly improved the overall survival of patients with

BRCA1/2 wild-type ovarian cancer (37. 8 months vs 23. 0 months)

(116). Subsequently, another phase III trial of J. F Liu showed that

the remission rate of patients in the Olaparib/Cediranib

combination group was significantly improved (117). Through

preclinical and clinical studies, the efficacy of combining PARPi

with VEGFR inhibitors have been widely recognized. Li et al.

developed the first dual VEGFR/PARP inhibitor, which inhibits

angiogenesis and invasion by negatively regulating the expression of

VEGFR and PARP, thereby suppressing the growth and metastasis

of BRCA wild-type breast cancer (118). These studies highlight the

advantages of VEGFR/PARP dual inhibition in treating BRCA wild-

type patients, with the potential to benefit more patients in the

future. However, the exact mechanisms of combination therapy are

not fully understood and may vary depending on the specific
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VEGFR inhibitors used, thus further research is needed to

elucidate the precise mechanisms through which these

combination therapies exert their anti-cancer effects.
3.2 EZH2 inhibitors

Epigenetic modifications are closely associated with

tumorigenesis, mainly through regulating gene function and

express ion levels via DNA methylat ion and Histone

modifications, thereby controlling cell differentiation (119).

Enhancer of zeste homolog 2(EZH2) is the catalytic subunit of

polycomb repressive complex 2(mainly composed of EZH2,

embryonic ectoderm development (EED), suppressor of zeste 12

(SUZ12)), also a major regulator of cell cycle progression,

autophagy, and apoptosis (120), and its overexpression can

promote DNA damage repair and tumorigenesis (121). Therefore,

any dysregulation of EZH2 might facilitate cancer development,

while inhibiting its function and expression could make it an ideal

target for epigenetic drug therapy. Numerous studies suggest that

the combination of EZH2 inhibitors(EZH2i) and PARPi exhibits

improved anticancer activity (122, 123). The typical mechanism

involves tri-methylation of H3K27me3 by catalyzing EZH2,

mediating transcriptional silencing to inhibit HR, thereby

synergistically inducing synthetic lethality with PARPi (122, 124–

128). Given the role of EZH2 as a transcriptional regulator,

extensive research efforts have been devoted to identifying

downstream targets or pathways driven by EZH2. In addition,

mounting evidence indicates that EZH2 also plays a non-

canonical role as a transcriptional activator, activating oncogenic

pathways in a PRC2-independent manner, and directly modulating

the activity of transcription factors and other proteins (129, 130).

For instance, EZH2 transcriptionally upregulates IDH2 and

promotes ovarian cancer growth by enhancing the tricarboxylic

acid cycle activity to facilitate OXPHOS (131). However, the

combination of EZH2i and PARPi can also elicit negative effects

in the tumor microenvironment (TME). For example, the dual loss

caused by PARP1 and EZH2 due to PRC2 deficiency exerts an

oncogenic effect in BRCA wild-type breast cancer, primarily

activating the NF-kB signaling pathway by forming a ternary

complex with RelA and RelB (121), inducing the differentiation of

tumor-promoting M2-type macrophages, disrupting the TME

(132). Nevertheless, whether EZH2 inhibitors can fully suppress

its biological functions to the extent of EZH2 loss remains

inadequately studied.

GSK126 is one of the earliest discovered two selective EZH2i. It

is more than 1000 times selective to EZH2 compared to other 20

methyltransferases, capable of reducing H3K27me3 levels and

reactivating silenced PRC2 target genes (133). By 2020, the latest

generation of EZH2i Tazemetostat, also known as a competitive

inhibitor of SAM, was approved by the FDA (134). Tazemetostat

may have higher selectivity, better pharmacokinetic properties,

better clinical efficacy and fewer side effects compared to GSK126,

these advantages make it a more potential EZH2 inhibitor. In 2021,

Wang et al. designed the first PARP and EZH2 dual inhibitor for

treating BRCA wild-type TNBC, and its anti-proliferative activity
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was 15-80 times higher than that of Olaparib in BRCA wild-type

cells (135), suggesting that the combination of EZH2i and PARPi

holds promising prospects in the future.
3.3 HDAC inhibitors

As anti-tumor drugs, HDAC inhibitors(HDACi) can regulate the

expression of HR-related genes, induce cell cycle arrest, apoptosis,

and differentiation in tumor cells, leading to oxidative stress and

DNA damage (136, 137). Preclinical studies have shown that Histone

H3-Ser10 is a major target for ADP-ribosylation, and specific Histone

acetylation marks have been found to block this activity. Among

them, ADP-ribosylation induced by DNA damage is inhibited by

jointly destroying post-translational modification (PTM) pathways

such as acetylation-ADP-ribosylation (138). It has been reported that

the HDACi SAHA induces acetylation of Histone H3 and induces

degradation of the UHRF1 protein which is involved in maintenance

DNA methylation and DNA damage repair. Combination therapy

with Veliparib and SAHA can synergistically reduce the levels of

BRCA1 by targeting the UHRF1/BRCA1 protein complex, and

decreased UHRF1 levels can lead to BRCA1 protein degradation

(139). New evidence indicates that dysregulation of HDAC function

leads to downregulation of DNA repair genes such as RAD51,

BRCA1/2, causing DNA repair defects and accumulation of DNA

damage. Inhibition of HDAC can enhance the anti-tumor effect of

PARPi in TNBC patients by blocking the DNA repair pathway (140).

Research has shown that the combination therapy of PARPi and

HDACi significantly enhances the sensitivity of BRCA wild-type

tumor cells to PARPi (141, 142). Synergistic effects of PARPi and

HDACi have been observed in various cancer cells in vitro and in

vivo studies. HDACi can inhibit DNA damage repair, downregulate

HR and induce “BRCAness”, enhancing the biological activity of

PARPi in TNBC regardless of BRCA1 mutation status (143, 144).

Researchers have found that the anti-tumor efficacy of HDACi is

partially attributed to the downregulation of PARylation, inhibiting

DNA repair proteins. This repair inhibition, combined with cancer

cell-specific high levels of reactive oxygen species (ROS) and DNA

replication stress, makes cancer cells highly sensitive to HDACi/

PARPi combination therapy (145). As early as 2017, Yuan et al.

constructed hydroxamic acid derivatives of Olaparib as dual

inhibitors of PARP and HDAC, which significantly induced

apoptosis in MDA-MB-231 cells (146). In conclusion, the

combination therapy of PARPi and HDACi holds great promise

as a cancer treatment, providing strong theoretical support for the

treatment of BRCA wild-type patients, with more clinical trials to

validate these research findings in the future.
3.4 BRD4 inhibitors

Bromodomain-containing protein 4 (BRD4) belongs to the

bromodomain and extra-terminal domain (BET) family of

proteins. Acting as a key factor in chromatin structure and
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transcription regulation, BRD4 plays a significant role in DNA

damage repair and cell proliferation (147, 148). The survival of

cancer cells is known to rely on aberrant transcription driven by

super-enhancers (SEs), providing valuable targets for cancer

treatment. Inhibiting BRD4 can disrupt the communication

between SEs and promoters, effectively suppressing the

transcription and expression of oncogenes, reducing cancer cell

proliferation and viability. Specific inhibition of oncogenes leads to

tumor cell death, making this mechanism the most recognized

action of BET inhibitors(BETi) (149, 150). Further research has

shown that inhibiting BRD4 can downregulate the transcription

levels of 7 MTC(m6A methyltransferase complex) components,

resulting in an overall decrease in m6A(N6-methyladenosine)

modification. BETi significantly downregulate multiple genes in

the HR pathway through the MTC-m6A mechanism, while also

upregulating several pro-apoptotic genes. Studies using PDX

models have revealed the synergistic effect of BETi/PARPi in

targeting tumors through the BRD4-MTC-HR signaling axis

(151). Recent studies indicate that regardless of BRCA1/2 status,

inhibiting BRD4 with BETi decreases the expression of the DNA

repair factor CtIP, inducing HR defects and enhancing DNA

damage induced by PARP inhibitors in cancer cells (152). These

findings not only confirm the synergistic effects of BETi with DDR-

targeted drugs but also demonstrate the potential of extending the

efficacy of PARP inhibitors to non-BRCA1/2 mutant cancers.

Yang et al. ‘s study demonstrates that inhibiting or depleting

BET proteins affects the transcription of BRCA1 and makes various

tumor cells sensitive to PARP inhibitors (153). JQ1, as the first

extensively studied BET family inhibitor, competitively binds to the

acetylated lysine recognition motif or bromodomain (154).

Preclinical studies indicate that the combination treatment of JQ1

with Olaparib can reduce the IC50 of Olaparib in OVCAR3 cells by

approximately 50-fold, synergistically inhibiting the growth of

BRCA1/2 wild-type cells through inducing apoptosis (155).

Further research reveals that simultaneous damage to the HR and

BER pathways can induce significant death in BRCA wild-type

TNBC cells. This implies that BET directly regulate HR-mediated

DNA repair and induce the BRCAness phenotype in BRCA1 wild-

type TNBC cells (156). However, since many BRD4 inhibitors are

pan-BET inhibitors rather than solely targeting BRD4, there is a risk

of off-target effects. Therefore, the development of PARP/BRD4

dual inhibitors have become one of the future research directions.

Wang et al. synthesized a highly selective PARP/BRD4 dual

inhibitor, which displayed good synergistic anti-tumor efficacy in

BRCA wild-type PDAC cells by blocking the cell cycle progression,

inhibiting DNA damage repair, and promoting autophagy-related

cell death (157). In 2022, another researcher designed a dual

inhibitor (BP44) that can block G0/G1 transition and cell mitosis,

reverse Olaparib-induced adaptive resistance, inhibit DNA damage

repair, and promote DNA damage to induce death in BRCA wild-

type TNBC cells (158). These findings collectively suggest that the

combination of PARPi and agents specifically targeting BRD4 may

present a novel strategy and direction for treating patients with

BRCA wild-type cancers.
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3.5 PI3K inhibitors

The dysregulation or mutation of the PI3K/AKT/mTOR

pathway is one of the most common aberrant activation pathways

in human malignancies, with increased PI3K signaling also

considered as a hallmark of cancer (159, 160). Inhibiting the

PI3K signaling pathway induces feedback upregulation of ERK,

leading to increased activation of the ERK-related transcription

factor ETS1 (161, 162). As ETS1 is a negative regulator of BRCA1/2

expression, the upregulation of ETS1 results in downregulation of

BRCA and HR damage, making BRCA wild-type TNBC cells

sensitive to PARP inhibitors (163–165). Studies have shown that

treatment with Olaparib and Rucaparib leads to significant

upregulation of the PI3K/mTOR pathway (p-mTOR, p-AKT, and

pS6). Additionally, negative regulators of the PI3K pathway such as

LKB1 and its targets AMPK and TSC are significantly

downregulated. Following PARP depletion, phosphorylation of

mTOR, AKT, and S6 increases while LKB1 signaling diminishes

(166). Preclinical studies indicate that the combination of the PI3K

inhibitor Buparlisib (NVP-BKM120) and Olaparib delays tumor

proliferation in mouse models for over 70 days and in BRCA1-

related tumor xenograft models for over 50 days, suggesting that

combined PI3K and PARP inhibition could be an effective

treatment for BRCA1-related tumors (167). BKM120 blocks PI3K

by reducing HR ability, increasing ROS-mediated accumulation of

gH2AX and DNA oxidative damage and inhibiting the expression

of BRAC1/2 and RAD51/52 (168). BKM120 downregulates the

expression of PARP1 and PARP2 to assist in PARP-mediated SSB

repair blocking by Olaparib through the PI3K/Akt/NFkB/c-Myc

signaling pathway and PI3K/Akt/FOXM1/Exo1 signaling pathway

inhibiting HR. The combination of PI3K inhibitor BKM120 and

Olaparib significantly reduces the proliferation of BRCA-proficient

TNBC cells (169).

Based on successful preclinical studies, several clinical trials

have demonstrated that the combination of PI3K/PARP inhibitors

sensitizes BRCA wild-type TNBC, ovarian, and breast cancers to

PARPi (170, 171). In 2020, researchers synthesized the first PARP/

PI3K dual inhibitor, which can significantly inhibit the growth of

BRCA wild-type cells by inhibiting the PI3K signaling pathway,

down-regulating BRCA expression and inducing DNA damage and

apoptosis (172). At present, an increasing number of dual inhibitors

targeting BRCA wild-type cells have been developed, demonstrating

superior anti-proliferative characteristics (173, 174).
3.6 Estrogen receptors

Estrogens regulate cell growth and development by acting on

two different estrogen receptors ERa and ERb. Among them, ERa
can drive up to 70% of breast cancer, therefore targeting estrogen-

positive receptors (ER+) is the standard approach for treating

metastatic breast cancer (175, 176). Additionally, as a steroid

hormone, estrogen plays a crucial role in maintaining sexual and

overall health by regulating gene expression through interactions
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with transcription factor proteins in the cell nucleus rather than

directly binding to DNA (177, 178). Since the BRCA1 gene is a

susceptibility gene for breast cancer, it can regulate the proliferation

and differentiation of breast cells (179). During puberty and

pregnancy, estrogen levels rise rapidly, leading to excessive

mammary gland development and promoting the expression of

BRCA1 wild-type gene (180). Early studies indicate that by

modulating the transcriptional activity of ERa to limit its

stimulatory effect on proliferation of mammary epithelial cells,

the occurrence of breast cancer can be effectively suppressed (181,

182). Furthermore, BRCA1 wild-type can also reduce estrogen levels

by inhibiting aromatase expression, thereby further decreasing

ERa-mediated transcriptional activity (183).

As mentioned earlier, estrogen can inhibit cancer cells through

various pathways. Recent research has shown that estrogen can

suppress the expression of the BRCA1 gene by stimulating the

release of nitric oxide in ER+ breast cancer cells. This results in

the accumulation of DSBs based on H2AX foci formation, reducing

the HR repair mechanism in wild-type BRCA cancer cells, thereby

enhancing the sensitivity of BRCA wild-type tumors to PARPi

(184). On the other hand, as the most important and active

hormone in estrogen, estradiol (E2) is closely related to the

proliferation, differentiation and DNA damage of breast cells.

Preclinical trials have shown that the combination of PARPi and

E2 has a synergistic effect, with E2 enhancing PARPi-induced DNA

damage and effectively inhibiting the recurrence of BRCA1/2 wild-

type tumors (185). Endocrine therapy for breast cancer was one of

the earliest molecular targeted therapies used in cancer treatment,

and besides causing endocrine-related symptoms, it does not lead to

severe adverse events. The combination of PARPi and targeted

estrogen therapy in breast cancer treatment has significant

advantages and may become one of the important strategies in

the field of personalized medicine in the future.
4 The combined application of PARP
inhibitors and immune
checkpoint inhibitors

PD-1 is a cell surface molecule that regulates adaptive immune

responses. It transmits signals inhibiting T cell proliferation, cytokine

production, and cytotoxic function by binding to its ligands, PD-L1

or PD-L2 (186, 187). High expression of PD-L1 serves as a prognostic

biomarker for tumor progression and predicts the efficacy of immune

checkpoint inhibitors (ICIs) in certain cancers (188). In recent years,

multiple studies have also demonstrated an association between

tumor immunity and HR, providing a theoretical basis for the

combined use of PARPi and ICI (189–191). For instance, PD-L1

can promote DNA end resection to regulate HR in BRCA1 wild-type

tumor cells, enhancing HR repair capacity in tumor cells. Thus, the

lack of PD-L1 can lead to increased DNA damage accumulation and

improved tumor control of PARP inhibition in BRCA1 wild-type

tumors, while triggering synthetic lethality to PARP inhibitors in

vitro (192).
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On the other hand, PARPi can also indirectly activate dendritic

cells by activating the cGAS-STING signaling pathway (193).

PARPi increases the number of dendritic cells and enhances the

antigen presentation mechanism by inducing the upregulation of

two different signals, the co-stimulatory proteins CD80 and CD86,

and MHC II (major histocompatibility complex class II), which

mediates the presentation of antigens to T cells (194, 195). These

two signals are also key components in the activation of naïve T

cells, which after activation can control the expression of cell surface

receptors such as CTLA-4 and PD-1 (196). PARPi-mediated DDR

rapidly increases type I interferon expression through the cGAS-

STING pathway and is a favorable factor in the treatment of ICI

(197). DNA damage and cytoplasmic DNA-mediated cGAS-

STING pathway contributes to the remodeling of the immune

supportive environment. In addition, a series of studies have

shown that PARPi-mediated DNA damage can enhance T cell

recruitment and infiltration by activating the cGAS-STING

pathway (194, 198, 199). For example, niraparib can activate

STING-mediated type I interferon release and enhance T cell

infiltration in tumors. In BRCA wild-type tumor models, inducing

changes in the tumor microenvironment favored its combination

with ICIs showing synergistic anti-tumor activity (200). Thus,

combining PARPi to target these co-inhibitory pathways of ICIs

in the context of cancer could be effective in achieving long-term

anti-tumor effects. A mechanistic rationale for the use of PARPi as

an immunomodulator to harness the therapeutic benefits of

immunotherapy is provided.

The combination of ICI and PARPi has shown a synergistic effect

in preclinical studies involving BRCA wild-type cancer, leading to the

advancement of multiple clinical trials. A phase II clinical study of

Olaparib and Durvalumab in the combination therapy for recurrent

ovarian cancer has demonstrated that the combination of PARPi and

anti-PD-L1 creates an immune stimulatory environment that can

enhance durable anti-tumor immune response in the BRCA wild-

type population toward immune checkpoint blockade (201). In the

phase II trial (NCT03167619), the PFS of Olaparib in combination

with Durvalumab was significantly longer compared to historical

controls, with the subgroup of platinum-sensitive advanced TNBC

patients with BRCAwild-type gaining sustained disease control (202).

Another phase I and II clinical trials of Niraparib in combination

with Pembrolizumab have shown an improved efficacy in tBRCA

wild-type compared to monotherapy (ORR, 19%). Notably, among 8

patients with a response duration of over 6 months, 5 had platinum-

refractory or platinum-resistant ovarian cancer and tBRCA wild-type

tumors (203). Furthermore, the use of MEK inhibitors/PARPi

combination or MEK inhibitors/PARPi/anti-PD-L1 triple therapy

in BRCA wild-type tumor patients in NCT03695380 has

demonstrated overall ORR and PFS superiority over single-agent

Rucaparib (204, 205). The triple therapy combining ICI, PARPi, and

Bevacizumab in the MEDIOLA trial (NCT02734004) has also shown

promising activity, especially in BRCA wild-type tumor patients

(206). The combination of ICI with PARPi may be a potential

approach to enhance PARPi anti-tumor activity; however, these

efficacy results still need to be confirmed in phase III clinical trials

and compared to controls using PARPi alone.
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5 The combined application of PARP
inhibitors and chemotherapy
Chemotherapy, as a widely recognized cancer treatment method,

typically uses cytotoxic drugs to treat various cancers (207).

Chemotherapeutic agents are generally designed to kill tumor cells

and prevent their proliferation, thereby inhibiting further growth and

spread of the tumor. Chemotherapy can also cause DNA damage

through various mechanisms, contributing adjunctively to enhancing

the efficacy of other treatments, such as targeted therapies (208). For

example, alkylating agents are the most common chemotherapy

drugs, acting to chemically modify DNA at the level of base pairs.

This DNA base damage may not immediately induce cytotoxic effects

but rather induce cell cycle arrest by disrupting replication forks,

leading to further cell damage like replication-associated DSB, mitotic

catastrophe and cellular apoptosis. Considering the critical role of

DSB repair pathways in cancer therapy resistance, inhibitors targeting

different DSB repair pathways have been developed as potential

sensitizers for conventional cancer treatments (209). Among them,

PARPi play a pivotal role in blocking the DSB repair mechanism,

which can maintain DSB damage and eventually lead to tumor cell

death. Therefore, combination chemotherapy is more commonly

used than single therapy.

Despite the strong theoretical basis for the combination therapy

of PARPi and chemotherapy, it has not been proven to be as

effective as other targeted HR inhibitors treatment strategies so far.

One major issue is the narrow therapeutic window of drug

treatment, as the synergistic effect of chemotherapy combined

with PARPi is non-selective for tumor cells. Particularly, when

PARPi is combined with platinum-based drugs, it enhances

chemotherapy toxicity, including hematologic toxicity (210). A

Phase III VELIA trial (NCT02470585) demonstrated no

difference in ORR and PFS in the combination group compared

to the control group in the BRCA wild-type population (211).

Furthermore, clinical trials with paclitaxel regimens showed that

weekly dosing improved PFS in BRCA wild-type patients compared

to every three weeks dosing (carboplatin and paclitaxel with

Veliparib) (18. 0 months vs 12. 9 months). However, while

increasing the dosage to enhance efficacy, toxicity also increased

accordingly (212). A Phase II clinical trial (NCT02595905) showed

that adding Veliparib to cisplatin improved progression-free

survival in BRCA1/2 wild-type metastatic triple-negative breast

cancer patients compared to cisplatin with placebo (18. 3% vs 4.

7%). Although the study showed that the Veliparib combination

improved PFS, the exact conclusion on the efficacy of the

combination therapy stage could not be drawn due to the

potential impact of previous ICI treatment on Veliparib treatment

effectiveness (213). The combination of chemotherapy and PARPi

leads to additive toxicities such as bone marrow suppression,

limiting patient treatment. Optimizing combination therapy

regimens (including dosage and administration sequence) to

reduce side effects while maintaining efficacy is a challenge that

needs to be addressed when combining PARPi targeting HR repair

with chemotherapy drugs.
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6 The combined application of PARP
inhibitors and radiotherapy

Radiotherapy (RT) is one of the cornerstones of cancer

treatment, involving the use of high-energy ionizing radiation

(IR) to kill cancer cells (214). The ideal treatment scenario

involves selectively damaging only the tumor cells throughout the

body while minimizing damage to healthy cells (215). However, the

clustered DNA damage caused by IR does not always result in

cancer cell death but rather triggers various complex DNA repair

processes such as BER (216, 217). In such cases, PARPi are used as

radiosensitizers to enhance the effects of radiation on tumors,

improving anti-tumor responses with lower toxicity (218). The

combination with ionizing radiation can enhance the

radiosensitivity of various tumor cells, driving tumor cell death

(219–224). The mechanism involves PARPi blocking the repair of

radiation-induced damaged DNA through the BER pathway,

increasing the likelihood of replication fork collapse to form

persistent specific DSB and inhibiting HR and NHEJ repair

pathways (225–228). Therefore, based on the ability of PARPi to

amplify unrepaired DNA damage, the combination of PARPi and

RT has become an effective treatment method (67, 229–231).

Different preclinical studies have shown that the combination of

RT and PARPi is beneficial in the treatment of BRCA wild-type

cells. Preclinical studies have demonstrated that the PARPi 3-

aminobenzamide (3-AB) can enhance radiosensitivity in BRCA
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wild-type cell lines by blocking the repair of radiation-induced

SSB (232). Additionally, the combination of Olaparib and PI-103

has enhanced radiation-induced cell death in BRCA wild-type cells

(165). Another preclinical study showed that the combination of

Olaparib, RT, and ATRi (AZD6738) significantly inhibited the

growth of HR-proficient tumors (233). However, to date, only a

limited number of preclinical studies have provided insights into

the therapeutic potential of combining PARPi and RT for the

treatment of BRCA wild-type cancer. Further investigation into

the mechanism of action of this combination therapy is still needed

in clinical trials. In conclusion, all these preclinical trials suggest that

PARPi combined with radiotherapy is a promising strategy to

enhance tumor DNA damage. By increasing DSB load through,

PARPi combined with RT can make BRCA wild-type cancer cells

radiosensitive and promote the death of these cells.
7 Conclusions

Although PARPi have achieved great success in treating

patients with BRCA1/2 mutated cancers, the current application

of PARPi still faces some challenges, especially in improving the

efficacy of PARPi in BRCA1/2 wild-type cancer patients and

overcoming acquired resistance to PARPi. Currently, early trials

combining PARPi with targeted drugs such as ATRi, WEE1i, and

VEGFRi have shown some progress. Additionally, research on the
TABLE 1 Clinical trials in combination with PARPi for BRCA wild-type patients.

Trial
identifier

Phase Patient population
PARP
inhibitor

Combination agent(s) Reference

NCT03924245 I/II
Recurrent, Platinum-Refractory, Resistant Ovarian, Primary
Peritoneal, Fallopian Tube Cancers

Olaparib Entinostat (234)

NCT03101280 I
Advanced Gynecologic Cancers and Triple-Negative
Breast Cancer

Rucaparib Atezolizumab (235)

NCT02354131 I/II Platinum-sensitive Epithelial Ovarian Cancer Niraparib Bevacizumab (236)

NCT01968213 III
Relapsed High Grade Serous or Endometrioid
Ovarian Cancer

Rucaparib Placebo (237)

NCT01116648 I/II
Recurrent Ovarian, Fallopian Tube, Peritoneal Cancer 、
Recurrent TNBC

Olaparib Cediranib Maleate (238)

NCT02477644 III Ovarian Cancer Olaparib
platinum-taxane chemotherapy
、bevacizumab

(239)

NCT02446600 III
Platinum Sensitive Ovarian, Fallopian Tube, or Primary
Peritoneal Cancer

Olaparib
Carboplatin、Cediranib 、

Gemcitabine
(240)

NCT04361370 II
BRCA Non-mutated Patients With Platinum-sensitive
Recurrent Ovarian Cancer

Olaparib Pembrolizumab、Bevacizumab (241)

NCT01434316 I Advanced Solid Tumors Veliparib Dinaciclib (242)

NCT03462212 III
Advanced Ovarian, Primary Peritoneal and Fallopian
Tube Cancer,

Rucaparib
Carboplatin、Paclitaxel
Bevacizumab

(243)

NCT03740165 III BRCA Non-mutated Advanced Epithelial Ovarian Cancer Olaparib
Pembrolizumab、Carboplatin、
Paclitaxel、Bevacizumab、Docetaxel

(244)

NCT03278717 III Ovarian Cancer Patients Olaparib Cediranib (245)

NCT03598270 III Recurrent Ovarian Cancer Paclitaxel Carboplatin (246)
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combination of PARPi with DNA-damaging agents such as

cytotoxic chemotherapy and radiation therapy are progressing,

but there are challenges of cumulative toxicity when PARPi is

used in combination with DNA-damaging agents. Finally, some

trials found that PARPi combined with immunotherapy can

enhance anti-tumor immune responses and improve treatment

outcomes. In summary, this review outlines the basic principles

and ongoing clinical trials (Table 1) of PARPi in combination

therapy with various agents, expecting that the indications for

PARPi will be optimized and expanded in the coming years.
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