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VIBE: an R-package for
VIsualization of Bulk RNA
Expression data for therapeutic
targeting and
disease stratification
Indu Khatri 1†, Saskia D. van Asten1†, Leandro F. Moreno1,
Brandon W. Higgs2, Christiaan Klijn3,4, Francis Blokzijl4*

and Iris C. R. M. Kolder1*

1Translational Data Science, Genmab, Utrecht, Netherlands, 2Translational Data Science, Genmab,
Princeton, NJ, United States, 3Target Discovery, Genmab, Utrecht, Netherlands, 4Discovery Data
Science, Genmab, Utrecht, Netherlands
Background: Development of cancer treatments such as antibody-based

therapy relies on several factors across the drug-target axis, including the

specificity of target expression and characterization of downstream signaling

pathways. While existing tools for analyzing and visualizing transcriptomic data

offer evaluation of individual gene-level expression, they lack a comprehensive

assessment of pathway-guided analysis, relevant for single- and dual-targeting

therapeutics. Here, we introduce VIBE (VIsualization of Bulk RNA Expression

data), an R package which provides a thorough exploration of both individual and

combined gene expression, supplemented by pathway-guided analyses. VIBE’s

versatility proves pivotal for disease stratification and therapeutic targeting in

cancer and other diseases.

Results: VIBE offers a wide array of functions that streamline the visualization and

analysis of transcriptomic data for single- and dual-targeting therapies. Its

intuitive interface allows users to evaluate the expression of target genes and

their associated pathways across various cancer indications, aiding in target and

disease prioritization. Metadata, such as treatment or number of prior lines of

therapy, can be easily incorporated to refine the identification of patient cohorts

hypothesized to derive benefit from a given drug. We demonstrate how VIBE can

be used to assist in indication selection and target identification in three user case

studies using both simulated and real-world data. VIBE integrates statistics in all

graphics, enabling data-informed decision-making.

Conclusions: VIBE facilitates detailed visualization of individual and cohort-level

summaries such as concordant or discordant expression of two genes or

pathways. Such analyses can help to prioritize disease indications that are

amenable to treatment strategies such as bispecific or monoclonal antibody

therapies. With this tool, researchers can enhance indication selection and

potentially accelerate the development of novel targeted therapies with the
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goal of precision, personalization, and ensuring treatments align with an

individual patient’s disease state across a spectrum of disorders. Explore VIBE’s

full capabilities using the vignettes on the GitLab repository (https://gitlab.com/

genmab-public/vibe).
KEYWORDS

antibody, disease stratification, visualization, oncology, R package, targeted therapy,
transcriptomics, bioinformatics tool
Introduction

The success of many therapeutic strategies hinges on the accurate

targeting of pathological sites, specific cell types or biological

mechanisms within the body (1). Evaluation of target expression is

pivotal to ensure that the therapeutic agents precisely address the

malfunctioning cells or proteins, thereby minimizing collateral damage

to healthy tissues (2). A prime example of precision targeting is

immunotherapy, where the inherent capacity of antibodies to bind

antigens with high specificity is leveraged to target specific cells.

Antibody therapy provides a precise method for treating diverse

disease types including hematological and solid cancers, HIV, and

autoimmune-related diseases (3–6). Antibodies, composed of two

antigen-specific Fab regions and an Fc region interacting with

immune components (7), facilitate diverse therapeutic effects based

on either agonizing or antagonizing a target, such as direct tumor

growth inhibition, apoptosis induction, and/or recruitment or

inhibition of immune cells. Genetic engineering broadens these

functionalities, for example, by enabling dual-targeting antibodies

that bind two distinct antigens, either on the same or different cells.

One example of this strategy is the therapy Epcoritamab, a bispecific

antibody recently approved for relapse or refractory (R/R) diffuse large

B-cell lymphoma, which binds CD20 on tumor cells and CD3 on T

cells, enhancing T cell-mediated tumor kill (8–10).

Evaluating the mRNA expression of target genes to identify

indications with high levels of target expression is a strategy to select

promising drug candidates and prioritize indications for further study.
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In addition to the target genes, a multitude of other genes – particularly

those involved in downstream signaling pathways of the target gene(s)

– may significantly influence the therapeutic efficacy (11). Therefore,

mRNA co-expression between transcripts can elucidate the underlying

molecular mechanisms and potential resistance pathways within

coregulated patterns, thereby informing the design of more effective

combination strategies (12–14).

Several existing tools facilitate the visualization of expression at the

individual gene level. For example, TCGAplot (15) and GEPIA (16)

provide visualizations for single genes and their correlations to

immune-related genes, but they lack capabilities for visualizing gene

pairs or implementing expression thresholds for prioritization.

Likewise, cBioPortal (17) offers visualizations for individual targets

alongside disease stratification across various clinical parameters, but it

does not accommodate the visualization of gene pairs, pathways, or

user-defined groups. Devis (18), GENAVi (19), and SEQUIN (20)

focus on RNASeq data processing and visualization of differentially

expressed genes, yet they do not support the exploration of multiple

genes or pathways for target prioritization and patient stratification.

Thus, there exists a need for a novel tool that provides the

functionalities absent in existing platforms. Such a tool would be

indispensable for advancing the field of targeted antibody therapies

by facilitating a deeper understanding of inter-gene relationships and

pathway dynamics.

Here, we present VIBE, an R package uniquely tailored for the

VIsualization of Bulk RNA Expression data applicable to technologies

such as bulk RNA-seq, EdgeSeq, and microarray technologies. With

VIBE, researchers can delve into the expression of specific genes or

gene pairs within large transcriptomic datasets, such as the publicly

available TCGA (21), GTEx (22, 23) or XENA (24) databases, as well as

custom datasets. Moreover, VIBE provides averaged scores for gene

sets, such as pathway-associated genes, informing a comprehensive

overview of gene interactions and functions within the pathway of

interest. VIBE simplifies the characterization and visualization of target

and pathway expression in specific cancer types or subtypes.
Methods

The package offers a wide range of functions, each with

customizable parameters. All VIBE visualizations are generated
frontiersin.org
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with the data-visualization package ggplot2 (25), which can easily

be adjusted to individual requirements with additional ggplot2

commands. Detailed vignettes are available on the GitLab page. A

dummy data set is included upon installation to enable out-of-the-

box exploration of VIBE’s functionalities.
Generating a simulated data set

The simulated data was generated using the rnorm (12) package

with mean and standard deviation for 35 genes (including “Tumor

target” and “Immune target”) for 16 solid tumor types (Table 1)

pre- and post-treatment. The Stringi (12) package was used to

randomly generate the patient IDs and sample IDs. The patient IDs

were generated to match pre- and post-treatment data. For every

tumor type, the “dummy” log2 transcripts per million (TPM) values

were randomly generated for 100 patients, 50 each for pre- and

post-treatment samples (Table 1). Users can define categories based

on their research question. To illustrate this process, an additional

parameter was added such that patients were assigned to two

different databases (database1 or database2) as an example.
Harmonizing the expression datasets

The expression dataset for VIBE should consist of the following

essential columns: i) patient ID, ii) sample ID, iii) gene or feature
Frontiers in Oncology 03
name, iv) expression values, v) the unit used for plotting captions,

and vi) grouping or plotting columns such as indication and

treatment. To ensure the dataset is structured optimally for

analysis and visualization, VIBE offers the harmonize_df()

function. This function harmonizes the dataset by updating

column names and generates additional columns that serve as

grouping variables for statistical analysis or visualization purposes

(Figure 1A). Users have the flexibility to choose which additional

columns to retain, enabling them to create multiple comparative

visualization schemes tailored to their specific research needs.

In line with the pathway-supported decision-making process,

VIBE provides the harmonize_df_pathway() function. This function

offers users the capability to define a list of genes representing gene

signatures or pathways. Utilizing this information, the function

calculates the average expression values of all the genes within each

gene signature or pathway. The harmonize_df_pathway() function

then returns a structured data frame that is ready for further

visualization using VIBE’s functionalities.
Defining thresholds

Rather than imposing arbitrary thresholds for identifying

indications or classifying samples into high or low-expression

bins, our methodology allows users to pre-define thresholds based

on the mean, median, or 75% quantile. This is achieved using the

get_threshold() function in VIBE (Figure 1B). For consistency
TABLE 1 Description of VIBE’s simulated dummy dataset.

Indication
Abbreviated
indication

Paired pre- and post-
treatment samples

Unmatched database samples

database1 database2

Bladder cancer BLCA 50 52 48

Breast cancer BRCA 50 100 0

Cervical cancer CERV 50 50 50

Colorectal cancer CRC 50 62 38

Head and neck squamous
cell Carcinoma HNSCC 50 50 50

Neuroendocrine tumors NET 50 50 50

Non-small lung cancer NSCLC 50 0 100

Ovarian cancer OV 50 56 44

Pancreatic adenocarcinoma PDAC 50 36 64

Prostate cancer PRAD 50 44 56

Renal cell carcinoma RCC 50 38 62

Sarcoma SARC 50 54 46

Small cell lung cancer SCLC 50 50 50

Stomach adenocarcinoma STAD 50 64 36

Triple-negative breast cancer TNBC 50 50 50

Uterine carcinoma UTEN 50 54 46
frontiersin.org

https://doi.org/10.3389/fonc.2024.1441133
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Khatri et al. 10.3389/fonc.2024.1441133
throughout this manuscript, we have chosen the median as

the threshold.

To calculate thresholds, the median mRNA expression of each

selected gene was computed separately for all categories

(Mediancategory). Subsequently, the median expression of all

samples (MedianAll) was determined to dichotomize the category

binarily. Specifically, if Mediancategory was greater than MedianAll,

the category is considered to be of interest for the new therapeutic.

Additionally, the percentage of samples per category per dataset was

calculated where Mediancategory is greater than MedianAll. This

approach allows for a flexible and user-defined thresholding

strategy, enabling meaningful analysis and comparisons across

different datasets and indications.
Frontiers in Oncology 04
Analysis of gene associations and gene-
pathway interactions

One of the distinctive features that set VIBE apart from other

applications is its capacity to visualize complex interactions and

correlations between multiple genes or pathways simultaneously.

For composite assessments of two genes or pathways, VIBE utilizes

the previously generated thresholds to classify samples into four

quadrants based on the expression levels (e.g., high/high, high/low,

low/high, low/low) of the selected genes or pathways. Users have

the flexibility to choose any quadrant for visualization and can use

the calculate_percentage_per_quadrant() function to calculate the

percentage of samples within the chosen quadrant (Figure 1C).
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FIGURE 1

Implementation and overview of the statistics and visualization capabilities of the VIBE package. (A) The df_harmonize() function harmonizes dummy
data, creating a structured dataframe with appropriate column names and format for VIBE functionalities. The harmonize_df_pathway() function
combines genes into pathways for VIBE visuals. (B) The get_thresholds() function defines gene-specific thresholds (mean, median or 75% quantile
(Q3)) for expression analysis and indication selection. (C) The calculate_percentage_per_quadrant() function extends get_thresholds() for dual-gene
analysis, displaying percentage of samples in quadrants, correlation, and statistical significance (Spearman correlation). (D) plot_expression_box()
presents a boxplot with sample distribution, thresholds, percentage satisfying thresholds, and user-defined grouping variables and groups (i.e. “intr”)
generated when harmonizing the dataframe. (E) plot_expression_scatter() plots a scatterplot with user-selected grouping variables and groups and
statistics calculated by calculate_percentage_per_quadrant() function. (F) heatmap_sample_expression() visualizes gene expression via heatmaps,
allowing grouping variable selection, group plots, gene splitting, and ordering of genes. (G) heatmap_samples_above_median() represent the
percentage of samples satisfying threshold for all the genes with similar functionalities as mentioned in heatmap_sample_expression(). The barplots
above the heatmap depict the distribution of samples across four quartiles based on percentage: Q1 (0–25%), Q2 (25–50%), Q3 (50–75%), and Q4
(75–100%). The indications are clustered using Hierarchical clustering, as indicated by the dendrograms. (H) plot_expression_box_split() function
visualizes the expression of Gene 1 grouped by additional grouping columns with statistics (% above median for each group, the fold change (FC)
and Kruskal-Wallis p-value (Pval)) above.
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Additionally, VIBE calculates the Spearman or Pearson correlation

depending on user input between the selected genes or pathways,

providing insights into their potential interactions and associations.

For composite assessment of antibodies versus multiple genes

or pathways, VIBE calculates the percentage of samples within the

chosen quadrant for each comparison. These results can be

effectively visualized in a heatmap, allowing users to easily discern

and interpret patterns and trends across various comparisons.

Statistical analysis and visualization

The visualization capabilities of the VIBE package extend beyond

basic graphics, enabling researchers to draw meaningful statistical

inferences directly from the plots. The visuals are extended using

ggplot2 (12) and ComplexHeatmap (12) functionalities. The

plot_expression_box() function, for instance, provides a boxplot that

incorporates the threshold and percentage of samples satisfying the

threshold within the plot itself. This eliminates the need for a separate

table and facilitates the selection of user-defined groups (Figure 1D).

Additionally, the plot_expression_scatter() function offers a scatterplot

between two genes, where quadrant-specific colors are defined by

the thresholds of the two genes. This scatterplot not only visualizes the

percentage of samples in the selected quadrant but also displays the

correlation between the two genes and its statistical significance within

the given dataset using Spearman correlation (Figure 1E). The

functions provided also enable the plotting of specific indication

categories. To ensure statistical robustness, the thresholds for these

categories are calculated using the complete dataset. Visualizations are

then generated specifically for the categories chosen by the user.

For a comprehensive overview of relevant genes in the dataset,

VIBE offers the heatmap representation of gene expression in user-

defined groups (Figure 1F). Moreover, the heatmap also shows the

percentage of samples that are above the user-defined threshold, aiding

researchers in identifying significant gene expression patterns

(Figure 1G). Furthermore, the plot_expression_box_split() function

accommodates additional grouping variables, as an extension of

plot_expression_box() with statistics (% above median for each group,

the fold change (FC) and Kruskal-Wallis p-value (Pval)) depicted above

(Figure 1H). This function allows users to compare the expression of a

gene in control versus treatment conditions, providing valuable insights

into the impact of different conditions on gene expression.

VIBE offers additional advanced visualization and statistical

inferences for comprehensive genomic data analysis. Demonstrated

in its vignette and results section, VIBE enables researchers to

identify indications of interest, assess gene and pathway

correlations, and make data-driven decisions, enhancing precision

in drug development and disease research.
Results

The robust capabilities of VIBE are demonstrated here through

three case studies. In the first case study, the statistical and visual

representations are leveraged to effectively identify cancer indications

of interest for a hypothetical antibody-drug conjugate (ADC). In the

second case study, VIBE’s comprehensive pathway and gene
Frontiers in Oncology 05
signature analyses are used to showcase how researchers can assess

the potential impact of multiple pathways in tandem with target

expression. The third use case leverages publicly available RNA-seq

datasets to uncover potential therapeutic targets in melanoma

patients who progressed on nivolumab using VIBE. Together, these

three use cases highlight how VIBE can provide valuable support in

making well-informed decisions regarding therapeutic interventions,

enhancing the precision and effectiveness of treatment strategies.

VIBE as a tool for identifying indications of
interest for a hypothetical antibody-drug
conjugate (Case study 1)

In this first case study, VIBE was used in a hypothetical scenario

to identify potential cancer indications of interest for an ADC

directed against the ‘Tumor target’ gene. In the dummy dataset,

high expression levels of the “Tumor target” gene is important for

drug-target engagement and informing both the pharmacodynamics

and potential efficacy for this targeting strategy. The “Tumor target”

expression levels were visualized using boxplots across the cancer

types revealing that expression was the highest in CRC, SCLC, PRAD,

UTEN, NET and STAD (Table 1). These cancer types may therefore

be considered as potential candidates for the ADC therapy

(Figure 2A). However, these findings should still be confirmed

using single-cell approaches to determine whether the “Tumor

target” gene is indeed highly expressed by cancer cells, and not

healthy (immune) cells. In addition, protein expression in the top-

ranking tumor types should be confirmed in further experiments, for

example by immunohistochemistry.

In clinical trials evaluating novel oncological agents, the patient

cohort frequently comprises individuals who have previously undergone

one or more treatments. Consequently, it is imperative to analyze and

compare the expression levels of the drug’s target in samples collected

before and after treatment. This approach is critical for understanding

the therapeutic’s potential efficacy and mechanism of action within a

treatment-experienced population. VIBE’s specialized function

plot_box_pre_post() plots paired pre- and post-treatment samples and

calculates the fold-change and p-value between the two states. Using this

functionality in the dummy dataset, STAD was identified as the tumor

type where the “Tumor target” expression was lower in post-treatment

samples compared to pre-treatment samples (Figure 2B). This indicates

that the ADC therapy could be less effective in post-treatment STAD

patients compared to pre-treatment patients.

VIBE allows for the inclusion of additional labels or groups of

interest with unmatched samples in the dataset. To exemplify such an

analysis, the dummy data was processed using VIBE’s harmonize_df

() function while keeping the additional column representing

unmatched samples from “database1” and “database2” (Figure 1A).

VIBE’s function plot_expression_box_split() allows comparison of

gene expression differences between the unmatched samples. In the

dummy data, the “Tumor target” expression was lower in STAD

samples in database 2 compared to database 1 (Figure 2C), indicating

that the underlying data for this indication warrants further

investigation. The plot_expression_box_split() function can also be

used to compare tumor to normal samples e.g. GTEx vs TCGA in a

real-world setting.
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VIBE as a tool for pathway-guided
indication selection for a novel monoclonal
or bispecific antibody (Case study 2)

In this case study, an analysis involving more than two genes or

pathways was conducted. Depending on the intended mechanism of

action (MoA), the efficacy of a novel therapy may depend on the (co)-
Frontiers in Oncology 06
expression of multiple genes or even entire pathways. Consequently, high

expression of specific genes and pathwaysmay inform therapy-enhancing

hypotheses. As an example, this case study aims to select cancer

indications for a bispecific antibody targeting both tumor (“Tumor

target”) and immune (“Immune target”) cells. This bispecific antibody’s

MoA promotes immune cell-tumor cell interaction, leading to immune

cell activation, and resulting in tumor cell kill by the immune cell.
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FIGURE 2

“Tumor target” expression highlights indications of interest for a novel ADC. (A) VIBE’s plot_expression_box function shows a box for each group of
interest, indication in this example, showing simulated data included in the VIBE package. Dots indicate individual samples; the orange line indicates
the median expression of the plotted gene across all samples in the dataset. The percentage of samples with higher than median expression is
printed above each box, while the number of samples in each group is shown just above the x-axis. (B) The plot_box_pre_post function plots a box
for pre- and post-treatment samples, with each dot representing a sample, while lines connect paired samples. The fold change (FC) and Kruskal-
Wallis p-value (KW p) are printed above each group of interest. (C) The plot_expression_box_split function allows for the comparison of non-
matched data and includes the fold change (FC) and Kruskal-Wallis p-value (Pval) between the two groups. The number of samples included in each
dataset is printed just above the x-axis. The orange dotted-line indicates the median expression for this gene across all samples in the combined
dataset. Indication abbreviations are listed in Table 1.
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To exemplify the capabilities of VIBE, we used the “Immune

target” and “Tumor target” variables from the dummy dataset to

visualize targets from a bispecific antibody therapy. Only the

indications with a median expression higher than the threshold

for the “Tumor target” (Case study 1) were selected for

further analysis.

Of note, these threshold values continue to be calculated based

on the entire dataset to ensure statistical validity and robustness. By

examining the percentage of samples falling within the second

quadrant of the scatterplot (Figure 3A) and the corresponding bar

plot (Figure 3B), we identified PDAC pre-treatment, STAD pre-

treatment, CRC pre-treatment, and CRC post-treatment as

potential indications and treatment groups of interest for the

bispecific antibody.

The evaluation of pathways is crucial in assessing the

effectiveness of antibodies with an MoA that is associated with

modulation of multiple canonical biological processes and plays a

pivotal role in the selection of suitable indications and treatment

groups. For instance, in scenarios where mRNA signatures such as

T cell infiltration or activation are associated with an antibody

therapy MoA, high expression of genes in these pathways is

essential to represent an inflamed, or “hot tumor”. VIBE offers

two distinct scenarios for pathway assessment: (1) evaluating

individual genes within a pathway, and (2) composite analysis of

pathways using summarized expression of signature genes. To

represent the first scenario, heatmap visualizations were used to

illustrate gene expression (Figure 3C) and the percentage of samples

with expression above the median threshold (Figure 3D). In the

second scenario, averaged expression of genes to represent

pathways, were visualized alongside the “Tumor target” in a

heatmap (Figure 3E). Using these visuals, PDAC and STAD

emerged as relevant indications for further investigation.

Although scatterplots, as shown in Figure 2A, offer detailed

insights into quadrant-specific sample distributions, they become

complex when comparing one target with multiple genes or

pathways. To address this, the heatmap_composite_score()

function presents a user-defined quadrant-specific percentage of

samples in a heatmap (Figure 3F). This allows users to quickly

assess and identify patient groups of interest. For example, NSCLC

pre-treatment and PDAC pre-treatment patient cohorts showed

high expression of both the “Tumor target” and Pathways 1, 2, and

3, (e.g. T-cell activation, T-cell exhaustion or T-cell infiltration)

making them potentially relevant indications. On the other hand,

SCLC pre- and post-treatment patient cohorts would be of interest,

showcasing high expression of the “Tumor target” and pathway 4

(e.g. NK cell signature). Users can flexibly choose the pathways and

targets to be represented in the analysis.

This comprehensive approach allows researchers to gain a

deeper understanding of the interactions and functional

significance of gene pathways, facilitating informed indication

selection for therapeutic antibody development. In summary,

VIBE’s comprehensive visualization capabilities enable researchers

to explore and compare complex interactions between the drug’s

target gene(s) and multiple genes or pathways, aiding effectively in

the selection of potential indications for therapy development.
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VIBE as a tool for prioritizing potential
therapeutic targets in melanoma patients
refractory to nivolumab (Case study 3)

To demonstrate the application of VIBE on real-world data, we

employed a publicly available melanoma dataset (GSE91061) to

identify potential antibody therapy targets for patients who

progressed on Nivolumab (26). This dataset includes 51 samples

collected before Nivolumab treatment and 58 samples taken after

treatment from 65 patients, complete with clinical outcome

information (complete or partial responders (CR/PR), progressive

disease (PD), and stable disease (SD)). The authors identified 2,670

differentially expressed genes (DEGs) between pre- and on-therapy

samples of responders and non-responders (26). 81 DEGs

associated with stromal, tumor, and host-immunity pathways

were highlighted as being of the most significance. Of these

DEGs, we focused on 31 genes known to be expressed on the cell

surface (27, 28), identifying these as potential antibody therapy

targets. Additionally, we manually curated a list of genes indicative

of the presence of CD3 cells, CD8 cells, Tregs (29), T cell activation

(30), T cell infiltration (31), T cell exhaustion (29), and T cell

cytotoxicity [Tc1, Tc2, Tc3 and Tc4] (32) each evaluated

individually (Supplementary Table 1).

The expression of the selected genes and T-cell signatures was

visualized using a heatmap across response and treatment

categories at baseline (Figure 4A). PDCD1, CD3, and the Treg

signature were overexpressed in patients exhibiting a CR/PR as

compared to SD and PD. Similarly, Figure 4B shows that a high

percentage of samples, both pre- and post-treatment, with above-

median expression levels of PDCD1 and CD3 were observed in

patients exhibiting CR/PR indicating that these markers may be

predictive of positive treatment outcomes on nivolumab.

Conversely, we identified several genes with elevated expression

in patients with PD and SD when compared to CR/PR (Figure 4A),

notably Tyrosinase-related protein-1 (TYRP1) and markers

associated with cytotoxic T cells (Tc1, Tc2, Tc9, and Tc17).

TYRP1 is a transmembrane glycoprotein that is specifically

expressed in melanocytes and melanoma cells. Preclinical data

suggest that monoclonal antibodies targeting TYRP1 confer anti-

melanoma activity (33). Additionally, the potential of TYRP1 as a

therapeutic target is being explored in a clinical trial testing

RO7293583, an investigational drug for TYRP1-positive

unresectable metastatic melanomas (NCT04551352). RO7293583

(anti-TYRP1/CD3 T-cell engager) binds to both CD3 on cytotoxic

T lymphocytes (CTLs) and TYRP1 found on TYRP1-expressing

tumor cells. In line with this, we assessed the percentage of samples

with high expression of TYRP1 and Tc1 cytotoxic T cell signature in

the GSE91061 dataset (Figure 4C). While 28% of post-treatment SD

samples had a relatively high expression of both TYRP1 and the Tc1

signature, overall, the correlation between the two was non-

significant or negative across the different outcome groups. To

further explore the broad applicability of an anti-TYRP1/CD3 bi-

specific across various cancer types we leverage data from the

publicly available TCGA dataset (21). TYRP1 expression was

highest in SKCM, followed by LUAD, and LUSC (Figure 4D).
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FIGURE 3

Identification of indications for bi-specific or pathway-guided single ADC. (A) Scatterplot representing the distribution of samples in 4 different quadrants
based on the user-defined threshold (“Tumor target” vs “Immune target”). VIBE’s plot_expression_scatter() function generates a flow cytometry-like
scatterplot, dividing samples into four quadrants based on the median expression of “Tumor target” and “Immune target” across all samples. The
plot_groups argument of the function was used to select the indications as shown in Figure 1A. Indications and treatment groups with over 40% of
samples expressing high levels of both “Tumor target” and “Immune target” are highlighted in orange. (B) Boxplot representing the percentage of
samples in user-defined groups and quadrants. The plot_perc_pop() function in VIBE generates a boxplot that displays the percentage of samples
expressing high levels of both “Tumor target” and “Immune target”. (C) Heatmap representing the expression of user-defined grouping of genes
(pathways) in user-defined/selected indications. VIBE’s heatmap_sample_expression() function is based on the ComplexHeatmap package (12), enabling
easy grouping of genes into pathways and visualization of their expression along with the target of interest, such as the “Tumor Target” in this case. One
can easily visualize the change in the expression of genes in pathways compared to the “Tumor target”. (D) Heatmap representing the percentage of
samples in user-defined grouping of genes (pathways) and user-defined/selected indications. VIBE’s heatmap_samples_above_median() function, also
based on ComplexHeatmap (12), allows users to visualize the percentage of samples with high expression levels of individual genes within the defined
pathways. (E) Heatmap representing the expression of pathways in user-defined/selected indications. VIBE’s heatmap_sample_expression() function
allows users to visualize the average expression of genes in pathways in conjunction with the “Tumor Target”. Comparing the composite pathway
expression to individual genes, as shown in Figure 3C, offers a more robust approach for making decisions on indication selection, particularly when
considering the mode of the ADC’s mechanism. (F) Composite analysis of pathways vs ADC. VIBE’s heatmap_composite_scores() function generates a
heatmap representing the percentage of samples in the Q2 quadrant of the scatterplot. The function allows the user to define a threshold to select
indications based on the scores. In this case, a threshold of 20 was used.
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Yet, the proportion of samples exhibiting high levels of both TYRP1

and CD3D samples was comparatively low in SKCM relative to the

lung cancers (Supplementary Figure 1). This observation suggests

that the targeting strategy in melanoma with an anti-TYRP1/CD3

bispecific modality might be challenging. Nevertheless, the

expression of TYRP1 in tumors was lower for both LUAD and

LUSC compared to adjacent normal tissue, implying a lack of tumor
Frontiers in Oncology 09
specificity of this gene in these tumor types (Figure 4E). For SKCM,

this comparison could not be adequately assessed due to the lack of

normal samples (n=1). In conclusion, the VIBE analysis conducted

on the GSE91061 and TCGA datasets suggests that TYRP1 holds

potential as a therapeutic target for melanoma. However, the use of

a TYRP1/CD3 bi-specific antibody may not represent the most

effective strategy for targeting this malignancy.
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adjacent normal tissues are indicated here as well. In panels (D, E), the orange line indicates the median expression for this gene across all samples
in the dataset. The number of samples is printed just above the x-axis. Panels D, E include the following TCGA-project abbreviations: SKCM, skin
cutaneous melanoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; ESCA, esophageal carcinoma; STAD, stomach
adenocarcinoma; READ, rectum adenocarcinoma; PAAD, pancreatic adenocarcinoma; COAD, colon adenocarcinoma; OV, ovarian serous
cystadenocarcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; HNSC, head and neck squamous cell carcinoma; UCEC,
uterine Corpus Endometrial Carcinoma; KIRC, kidney renal clear cell carcinoma; CESC, cervical squamous cell carcinoma and
endocervical adenocarcinoma.
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Discussion

The VIBE package is a new visualization tool for developing

hypotheses around disease stratification and targeted therapy. This

tool facilitates composite analyses of multiple genes or pathways

with user-defined thresholds, enabling researchers to understand

gene expression dynamics comprehensively. This insight is

instrumental for making informed and data-driven decisions in

antibody development and targeted therapeutic design.

Our demonstration of VIBE’s functionalities, utilizing both

simulated data and publicly available datasets, underscores its

value in stratifying cancer types and identifying novel antibody

targets. This is particularly relevant in oncology, where the precision

in indication selection can significantly impact therapeutic success

rates. It is also useful in dissecting drug resistance mechanisms —a

prevalent challenge in cancer treatment— by highlighting gene

expression and pathway alterations associated with drug

resistance to develop strategies for overcoming treatment

challenges. Moreover, its ability to represent intricate genes and

pathways interactions makes it valuable for systems biology

research by providing insights into broader regulatory networks

and systems. In essence, VIBE offers insights into gene expression

dynamics across vital pathways, with broad implications for

advancing personalized treatments and understanding disease

intricacies. In VIBE, we utilized classical statistical measures such

as fold change and p-value, focusing on the task of indication

selection. This approach, aimed at swiftly visualizing therapeutic

targets, is designed to expedite decision-making in early drug

development by emphasizing target potential over extensive

statistical validation.

While tools such as DESeq (34) for differential expression and

ReactomeGSA (35) for pathway analysis are available, they lack

VIBE’s specialized focus on detailed indication selection. VIBE

permits manual gene selection for pathway analysis, offering user-

driven flexibility and transparency, particularly for oncology

researchers who demand a more tailored approach. In case study

3, we applied VIBE to analyze DEGs found by other tools, showing

the expression of these genes and gene signatures across outcome

groups and TCGA indications, thereby identifying TYRP1 as a

potential target for melanoma patients who have progressed on

nivolumab. In addition, this analysis suggested that a CD3 bi-

specific antibody may not be the optimal therapeutic modality due

to relatively low expression levels of the underlying genes in the

tumor microenvironment, but other options such as TYRP1 CAR-

therapy may prove viable (36). This approach positions VIBE as a

complementary addition to the existing suite of genomic data

analysis tools, addressing a unique niche in the field.

For future development of the VIBE package, we aim to

introduce enhanced features that will expand its analytical

capabilities and user experience, including the integration of

additional statistical methods and user interface improvements.

Simultaneously, we plan to foster community engagement

through the establishment of an open-source development

platform and user forums. This will not only facilitate valuable
Frontiers in Oncology 10
feedback and collaborative improvements but also ensure that VIBE

evolves in response to the real-world needs of researchers, thereby

strengthening its role as a crucial tool in genomic analysis and

targeted therapy research.

Overall, the VIBE package distinguishes itself by focusing on the

niche of indication selection in the domain of gene expression data

analysis. This tool not only integrates statistics in visualizations for

single-gene exploration but also provides comprehensive

visualizations tailored for pathway-guided single- and dual-

targeting antibodies. The visuals including expression levels of

target gene(s), genes corresponding to the related MoA and the

statistics are instrumental in making data-driven decisions in the

indication identification and patient stratification process. These

capabilities position VIBE as a relevant resource in the field of

oncology, facilitating the drug development pipeline by simplifying

the processes of indication selection and patient stratification.
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SUPPLEMENTARY TABLE 1

Genes corresponding to the signatures used for visualizing pathways.

SUPPLEMENTARY FIGURE 1

TYRP1, CD3D and CD3E expression in selected TCGA projects. The

scatterplots show the distribution of samples in four quadrants based on
the median expression level of TYRP1 and CD3D. The samples are colored

based on the expression level of CD3E. Expression levels are reported in log2

(TPM+1). The scatterplot also reports the spearman correlation and p-value
along with the percentage of samples in Q2 quadrant. COAD, colon

adenocarc inoma; ESCA, esophageal carc inoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, Pancreatic

adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneous
melanoma; STAD, stomach adenocarcinoma.
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