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Hypoxanthine in the
microenvironment can enable
thiopurine resistance in acute
lymphoblastic leukemia
Xiaohong Wang1,2, Jason Ostergaard1,2, Jongseok Kang1,2,
Grace Sagong1,2, Rachel Twite1,2, Andrea Vargas-Morales1,2

and Peter M. Gordon1,2*

1Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota,
Minneapolis, MN, United States, 2Masonic Cancer Center, University of Minnesota, Minneapolis,
MN, United States
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy,

with relapse being a major obstacle to successful treatment. Our understanding

of the mechanisms driving chemotherapy resistance and ultimately relapse in

leukemia remains incomplete. Herein, we investigate the impact of the tumor

microenvironment on leukemia cell drug responses using human plasma-like

media (HPLM), designed to mimic physiological conditions more accurately ex

vivo. We demonstrate that while most chemotherapeutics maintain an efficacy in

HPLM comparable to standard tissue culture media, the thiopurines 6-

mercaptopurine (6-MP) and 6-thioguanine (6-TG) exhibit significantly reduced

potency and efficacy against both B- and T- leukemia cells in HPLM. By merging

our understanding of thiopurines’ mechanism of action with the metabolites

supplemented in HPLM compared to standard media, we proposed and

subsequently validated the hypothesis that hypoxanthine, a purine derivative, is

responsible for conferring resistance to the thiopurines. Importantly, the

concentration of hypoxanthine required for resistance is comparable to

physiological levels found in vivo, supporting clinical relevance. Our findings

demonstrate the utility of a more physiologic media in identifying and

characterizing mechanisms by which the microenvironment can enable

resistance. Understanding such interactions may inform strategies to

overcome drug resistance and improve therapeutic outcomes in

pediatric leukemia.
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Introduction

Acute lymphoblastic leukemia (ALL) is the most common

childhood malignancy. Despite significant advances in leukemia

therapy, approximately 15-20% of pediatric patients experience

disease relapse (1). As a result, relapse is the most common cause

of treatment failure in ALL and relapsed ALL is as common as most

pediatric solid tumors and acute myeloid leukemia in childhood.

Relapsed leukemia is often refractory to conventional

chemotherapy and confers a poor prognosis. How leukemia cells

escape the effects of multi-agent chemotherapy and persist during

several years of treatment is incompletely understood but likely a

combination of genetic, epigenetic, and metabolic mechanisms of

drug resistance (2–5).

Accordingly , ident i fying mechanisms of leukemia

chemoresistance is critical for developing more efficacious

therapies that fully eradicate the disease. Ex vivo drug testing in

tissue culture is a rapid and economical approach for elucidating

drug responses and mechanisms of action that can provide a crucial

foundation for subsequent in vivo investigations and clinical trials.

Nonetheless, a drawback of this approach lies in traditional tissue

culture media, originally designed to support cancer cell growth ex

vivo rather than replicate the intricate tumor microenvironment in

vivo. Consequently, conventional tissue culture approaches may fail

to identify environmentally driven metabolic adaptations in cancer

cells that can enable drug resistance. However, recent developments

of commercially available and affordable tissue culture media

supplemented with metabolites found in human plasma (human

plasma-like media) have facilitated the discovery of novel and

physiologically relevant mechanisms of drug resistance previously

obscured by traditional media formulations (6–11).

Herein, we compared the efficacy of multiple chemotherapeutics

used in ALL therapy in regular tissue culture media with human

plasma-like media (HPLM). Using this approach, we identified the

purine metabolite hypoxanthine as a leukemia cell extrinsic mediator

of thiopurine resistance.
Methods

Cell culture

Leukemia cell lines were obtained from American Type Culture

Collection (ATCC) or DSMZ. Leukemia cell lines were cultured in

RPMI or human plasma-like media (ThermoFisher Scientific)

supplemented with regular or dialyzed Fetal Bovine Serum (FBS)

10% and Penicillin-Streptomycin. Every two months leukemia cells

in culture were replaced with new cells from the original expansion.
Drugs and reagents

6-mercaptopurine, 6-thioguanine, cytarabine, doxorubicin, L-

asparaginase, vincristine, etoposide, and clofarabine were purchased

from MedChemExpress. Hypoxanthine was from Sigma-Aldrich.

Betaine was from Selleck Chemicals.
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Proliferation and apoptosis assays

Leukemia cell proliferation and viability were assessed with the

CellTiter-Glo Luminescent Cell Viability Assay (Promega) and a

Tecan Infinite M200 Pro plate reader. All experiments were

performed with at least 3 wells per condition. Leukemia cell

apoptosis was measured using the Caspase-Glo 3/7Assay

(Promega), according to the manufacturer’s instructions.
Statistical analysis

Results are shown as the mean plus or minus the SD. All

experiments were performed at least twice, and most often at least

three times, with representative data of one experiment presented.

Student’s t-test or ANOVA were used for statistical comparisons

between groups and are described in the figure legends. P-values <

0.05 were considered statistically significant. All graphing, curve

fitting [non-linear regression, sigmoidal, four-parameter logistic, X

is log(concentration)], and statistical significance testing were

performed using GraphPad Prism 10.1.1 software (GraphPad

Software, La Jolla, CA).
Results

We generated dose-response curves for mult ip le

chemotherapeutics used in ALL therapy with both B- (NALM-6,

REH, SEM) and T-ALL (CEM, Jurkat) cell lines in either regular

(RPMI) or human plasma-like media (HPLM). Drugs tested

included doxorubicin, 6-mercaptopurine (6-MP), vincristine,

cytarabine, asparaginase, etoposide, and clofarabine. While all the

leukemia cells line were very sensitive to 6-MP in regular media they

became almost completely resistant in HPLM (Figures 1A–E). For

the other drugs tested there was very little difference in leukemia cell

sensitivity in regular media compared to HPLM, except for

cytarabine and asparaginase for which several, but not all, cell

lines were moderately less sensitive to both drugs in HPLM media

(Supplementary Figures 1-3).

We next tested whether this HPLM-mediated chemoresistance

extended to other thiopurine antimetabolites drugs in addition to 6-

MP. Accordingly, we generated 6-thioguanine (6-TG) dose-

response curves in both regular and HPLM media. Leukemia cells

were significantly more resistant to 6-TG in HPLM compared to

regular media, supporting a generalizable effect of HPLM on

thiopurine antimetabolite resistance (Figures 1F–J). However, the

effect of HPLM on 6-TG was slightly more modest than that seen

with 6-MP. We next measured caspase activity in leukemia cells to

further assess whether HPLMwas rescuing the effects of thiopurines

on apoptosis specifically. In agreement with the prior data, 6-MP

and 6-TG caused significantly less caspase 3/7 activation in

leukemia cells in HPLM relative to regular media. (Figures 2A, B).

To define the mechanism(s) of HPLM-mediated thiopurine

resistance we compared the components of RPMI and HPLM

media. We identified hypoxanthine and betaine as compounds

unique to HPLM media that potentially could modulate the
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mechanism of action for thiopurines (12–15). Hypoxanthine is a purine

derivative and an intermediate in adenosine metabolism and in the

formation of purine nucleic acids by the salvage pathway. Similarly,

betaine is a modified amino acid that serves as a methyl donor for the

regeneration of S-adenosyl methionine (SAM) and the subsequent

metabolic detoxification of thiopurines. We next generated 6-MP and

6-TG dose-response curves in regular media supplemented with either
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betaineorhypoxanthine to testwhether either of thesemetabolites could

enable thiopurine resistance. Betaine had no effect on the sensitivity of

leukemia cells to either 6-MP or 6-TG (Supplementary Figure 4). In

contrast, hypoxanthine caused significant resistance to 6-MP

(Figures 3A–E) and, to a lesser extent, 6-TG (Figures 3F–J).

To further test whether hypoxanthine within HPLM media is

enabling thiopurine resistance we capitalized on the prior
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FIGURE 1

Human plasma-like media (HPLM) attenuates leukemia cell sensitivity to thiopurine chemotherapeutics. 6-MP (A–E) and 6-TG (F–J) dose-response
curves for leukemia cells (NALM-6, A, F; REH, B, G; SEM, C, H; Jurkat, D, I; CEM, E, J) in regular or HPLM media. Leukemia cell viability was assessed
after 48 hours of drug treatment using the CellTiter-Glo Luminescent Cell Viability Assay. Error bars represent the mean ± SD of three
technical replicates.
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observation that highly proliferative cells rapidly utilize and deplete

hypoxanthine in tissue culture (16). Accordingly, we cultured

leukemia cells in media in the absence of any drugs for 48 hours

to allow for hypoxanthine depletion (‘pre-incubation’) prior to

adding thiopurines in the presence or absence of hypoxanthine

for an additional 48 hours (Figures 4, 5). Pre-incubation in HPLM

media restored leukemia cell sensitivity to 6-MP (Figures 4A–E)

and 6-TG (Figures 5A–E) to an extent that was relatively

comparable to that seen in regular media. However, if

hypoxanthine was supplemented after the pre-incubation period,

the effect of pre-incubation was reversed, and the leukemia cells

were again significantly resistant to both 6-MP (Figures 4F–J) and

6-TG (Figures 5F–J). Together, these experiments support that

hypoxanthine within HPLM can rescue thiopurine toxicity in

leukemia cells.

Finally, to further assess if these results are potentially clinically

applicable, we asked whether the hypoxanthine concentration

required for rescuing thiopurine toxicity was comparable to

hypoxanthine levels measured in vivo. Accordingly, we generated

hypoxanthine dose-response curves in the absence and presence of

a fixed thiopurine dose that caused ~80-90% cell death (Figure 6).

For these experiments we also used dialyzed FBS as dialysis removes

any hypoxanthine present in the FBS. In agreement with our prior

data, hypoxanthine completely rescued the effects of the thiopurine
Frontiers in Oncology 04
toxicity at higher doses. The hypoxanthine EC50 values calculated

from the dose-response curves were in the ~5-15 mM range for 6-

MP and moderately higher for 6-TG. For 6-MP, in particular, this is

a physiologically relevant hypoxanthine concentration and support

that in vivo hypoxanthine may modulate thiopurine efficacy in

eradicating leukemia cells (17–19).
Discussion

Soluble factors in the tumor microenvironment, such as

proteins and metabolites, can exert a critical influence on cancer

cell drug resistance (2, 20). Soluble factors achieve this by diverse

mechanisms including altering drug uptake and metabolic

pathways, as well as by regulating cancer cell signaling pathways

that drive drug resistance. Unlike genetic or epigenetic mechanisms

of drug resistance, the effects of these soluble factors on cancer cells

are often reversible. As a result, removal or effective targeting of

these factors can often restore cancer cell drug sensitivity.

To identify soluble factors impacting drug resistance in ALL, we

assessed the effectiveness of multiple chemotherapeutic agents

commonly used in ALL therapy in a commercially available human

plasma-like medium (HPLM). This medium was designed to mimic

the metabolite composition of human plasma more closely than
B

A

FIGURE 2

Human plasma-like media (HPLM) attenuates thiopurine-mediated leukemia cell apoptosis. Caspase 3/7 activity was assessed in leukemia cells
cultured in HPLM or regular media after 48 hours of treatment with either 6-MP 10 mM (A) or 6-TG 10 mM (B). Error bars represent the mean ± SD of
three technical replicates. P: **, <0.01 and ***, <0.001 by ANOVA. ns, not significant.
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traditional tissue culture media (6–10). While the addition of these

metabolites had minimal impact on most of the drugs tested, we

observed a significant attenuation of the potency and efficacy of 6-

mercaptopurine (6-MP) and 6-thioguanine (6-TG) in HPLM. 6-MP

has been a cornerstone of ALL therapy for over 60 years and is

administered daily during the critical maintenance phase of therapy

necessary for long-term cures (21). Notably, poor adherence to

chemotherapy (< 90%–95%) during maintenance therapy has been
Frontiers in Oncology 05
linked to a substantial increase in relapse risk, underscoring the

importance of 6-MP in achieving cure (21, 22).

6-MP and 6-TG are thiopurines that target the purine pathway

and DNA synthesis. Both drugs undergo several metabolic

conversions prior to incorporation into DNA which then triggers

induction of the DNA damage response and apoptosis (21). By

comparing the metabolites supplemented in HPLM relative to

regular media in the context of thiopurines’ mechanism of action
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FIGURE 3

Hypoxanthine supplementation of regular media enhances leukemia cell resistance to thiopurines. 6-MP (A–E) and 6-TG (F–J) dose-response
curves for leukemia cells (NALM-6, A, F; REH, B, G; SEM, C, H; Jurkat, D, I; CEM, E, J) in regular media supplemented with hypoxanthine or DMSO
control. Leukemia cell viability was assessed after 48 hours of drug treatment using the CellTiter-Glo Luminescent Cell Viability Assay. Error bars
represent the mean ± SD of three technical replicates.
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we quickly hypothesized, and subsequently confirmed, that

hypoxanthine within HPLM mediated thiopurine resistance.

Hypoxanthine, a purine derivative, is produced in the metabolism

of adenosine but can also be utilized in the purine salvage pathway

that complements de novo purine synthesis (15). Whole exome

sequencing in relapsed ALL patients recently identified mutations
Frontiers in Oncology 06
in phosphoribosyl pyrophosphate synthetase 1 (PRPS1), a key

enzyme in the purine synthesis pathway (23). PRPS1 mutations

conferred thiopurine resistance through activation of de novo

purine synthesis and accumulation of intracellular hypoxanthine

that competitively inhibited 6-MP conversion and subsequent DNA

damage. Of note, 6-MP undergoes several additional enzymatic
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FIGURE 4

Hypoxanthine in HPLM media contributes to 6-MP resistance. (A–E) 6-MP dose-response curves for leukemia cells (NALM-6, A; REH, B; SEM, C;
Jurkat, D; CEM, E) pre-incubated in HPLM or RPMI for 48 hours prior to the addition of 6-MP. After an additional 48 hours of drug treatment,
leukemia cell viability was assessed using the CellTiter-Glo Luminescent Cell Viability Assay. Error bars represent the mean ± SD of three technical
replicates. (F–J) 6-MP dose-response curves for leukemia cells (NALM-6, F; REH, G; SEM, H; Jurkat, I; CEM, J) pre-incubated in HPLM for 48 hours
prior to the addition of 6-MP +/- hypoxanthine 10 mM. After an additional 48 hours of drug treatment, leukemia cell viability was assessed using the
CellTiter-Glo Luminescent Cell Viability Assay. Error bars represent the mean ± SD of three technical replicates.
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activation steps than 6-TG which may contribute to the increased

hypoxanthine-mediated resistance to 6-MP than 6-TG that we

observed in our cytotoxicity assays (21, 24).

Our findings complement this genetic work and suggest that

hypoxanthine in the leukemia microenvironment can also attenuate

thiopurine efficacy. In agreement, it was previously shown that
Frontiers in Oncology 07
hypoxanthine had similar effects on a single acute promyelocytic

leukemia cell line (HL-60) (25). Importantly, we demonstrated that

6-MP resistance induced by hypoxanthine occurs at concentrations

similar to those found in plasma. Additionally, hypoxanthine levels

vary significantly across tissues and under various physiological and

pathological conditions, including several that have been shown to
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FIGURE 5

Hypoxanthine in HPLM media contributes to 6-TG resistance. (A–E) 6-TG dose-response curves for leukemia cells (NALM-6, A; REH, B; SEM, C;
Jurkat, D; CEM, E) pre-incubated in HPLM or RPMI for 48 hours prior to the addition of 6-TG. After an additional 48 hours of drug treatment,
leukemia cell viability was assessed using the CellTiter-Glo Luminescent Cell Viability Assay. Error bars represent the mean ± SD of three technical
replicates. (F–J) 6-TG dose-response curves for leukemia cells (NALM-6, F; REH, G; SEM, H; Jurkat, I; CEM, J) pre-incubated in HPLM for 48 hours
prior to the addition of 6-TG +/- hypoxanthine 10 mM. After an additional 48 hours of drug treatment, leukemia cell viability was assessed using the
CellTiter-Glo Luminescent Cell Viability Assay. Error bars represent the mean ± SD of three technical replicates.
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impact ALL biology and treatment outcomes. In the bone marrow,

hypoxanthine levels are up to 10-fold higher than in venous blood,

while in cerebral spinal fluid hypoxanthine levels are elevated by 2-

8-fold compared to venous blood (17). Notably, both the bone

marrow and the central nervous system are frequent sites of

leukemia relapse as well as relatively hypoxic environments,

which has been associated with hypoxanthine elevations.

Similarly, obesity and adipose tissue have also been associated

with elevated hypoxanthine levels (26–28), suggesting that
Frontiers in Oncology 08
hypoxanthine may also contribute to other well described

mechanisms by which obesity enables leukemia chemoresistance

(29). In pediatric/AYA ALL patients, obesity at diagnosis is

associated with higher minimal residual disease (MRD) at the end

of induction and lower disease-free survival (30, 31). Body mass

index (BMI) also tends to rise significantly during ALL treatment

(32, 33). Extreme obesity during maintenance therapy, when 6-MP

is taken daily, was associated with a greater relapse risk and lower

levels of erythrocyte thioguanine nucleotides, even after adjusting
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FIGURE 6

Hypoxanthine concentrations required to rescue thiopurine toxicity. Hypoxanthine dose-response curves for leukemia cells (NALM-6, A, F; REH, B,
G; SEM, C, H; Jurkat, D, I; CEM, E, J) in the presence of 6-MP 4.7 mM (A–E) or 6-TG 4.7 mM (F–J). Leukemia cell viability was assessed after 48 hours
of drug treatment using the CellTiter-Glo Luminescent Cell Viability Assay. Error bars represent the mean ± SD of three technical replicates. EC50
values with confidence intervals were calculated from the dose-response curves and are shown for each cell line.
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for adherence to oral chemotherapy and other potential

confounding factors (34). However, it is worth noting that in this

study these lower erythrocyte thioguanine levels did not explain the

greater hazard of relapse. Although the mechanisms underlying

ALL therapy resistance in the bone marrow, central nervous system,

and obesity are complex and involve multiple factors, the evidence

provided here indicates that hypoxanthine within various leukemia

microenvironments could potentially influence both the

effectiveness and resistance to thiopurine treatment in ALL therapy.

Accordingly, addressing these physiological processes that

increase hypoxanthine, such as obesity or hypoxia secondary to

obstructive sleep apnea (26, 27, 35), could potentially increase the

efficacy of thiopurines in ALL therapy. Pharmacological or enzymatic

approaches could also be used to target hypoxanthine levels, but this

may be challenging due to the complexity of the purine synthesis,

salvage and metabolic pathways. For example, while xanthine oxidase

inhibitors, such as allopurinol, increase hypoxanthine levels, there is an

abundance of clinical data demonstrating that allopurinol increases,

rather than decreases, the potency of 6-MP by skewing its metabolism

(36). Finally, this work also demonstrates the utility of physiologic

media in identifying and characterizing mechanisms by which the

microenvironment can enable drug resistance.
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