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Diagnosis and treatment of urological tumors, relying on auxiliary data such as

medical imaging, while incorporating individual patient characteristics into

treatment selection, has long been a key challenge in clinical medicine.

Traditionally, clinicians used extensive experience for decision-making, but

recent artificial intelligence (AI) advancements offer new solutions. Machine

learning (ML) and deep learning (DL), notably convolutional neural networks

(CNNs) in medical image recognition, enable precise tumor diagnosis and

treatment. These technologies analyze complex medical image patterns,

improving accuracy and efficiency. AI systems, by learning from vast datasets,

reveal hidden features, offering reliable diagnostics and personalized treatment

plans. Early detection is crucial for tumors like renal cell carcinoma (RCC),

bladder cancer (BC), and Prostate Cancer (PCa). AI, coupled with data analysis,

improves early detection and reduces misdiagnosis rates, enhancing treatment

precision. AI’s application in urological tumors is a research focus, promising a

vital role in urological surgery with improved patient outcomes. This paper

examines ML, DL in urological tumors, and AI’s role in clinical decisions,

providing insights for future AI applications in urological surgery.
KEYWORDS
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1 Introduction

AI refers to the capability of simulating human intelligence through computer

technology (1, 2). It involves empowering computer systems to execute tasks akin to

human intelligence, including language comprehension, learning, logical reasoning,

problem-solving, and perception. It has reshaped and innovated medical systems by

drawing on principles from fields such as mathematics, logic, computing, and biology.

This innovation has not only enhanced the ability of physicians to perform medical tasks

but also helped medical technologists overcome previously laborious challenges. With the
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progress of ML and DL, AI systems have the capacity to analyze

extensive medical data, encompassing patient records and imaging

scans, offering valuable insights for diagnosis, treatment planning,

and patient care (3). Moreover, AI-powered medical tools and

systems, such as decision support and diagnostic algorithms

systems, assist healthcare professionals in making accurate and

timely clinical decisions (4). This collaboration not only streamlines

processes but also improves patient outcomes, holding tremendous

potential to change the landscape of medical practice, research, and

education, ushering in an era of precision medicine and data-driven

medical innovation.

ML is a vital facet of AI, involving the creation and

implementation of adaptive algorithms that are pivotal in data

analysis and pattern recognition (5). Through research and

development, endeavors have been made to enable computers to

learn from experience and construct mathematical models capable

of solving problems. These models can encapsulate acquired

domain knowledge and make accurate predictions on new data.

The application domains of ML are extensive, covering areas such

as data analysis, imaging technologies, healthcare, and diagnostics

(6). Through ML, personalized healthcare can be achieved, enabling

accurate prediction and diagnosis of diseases such as RCC, BC, and

PCa (7). The development of these technologies has brought

significant advancements to the field of healthcare, providing

more effective solutions for human health. In summary, the

development of ML presents vast prospects for the AI field,

showcasing immense potential across various domains.

The rapid development of DL continues to drive the

advancement of AI. One of the key characteristics of DL is its

emphasis on feature learning, enabling computers to automatically

learn useful features and representations from raw data, thereby

enabling them to discover complex patterns within vast datasets (8).

Unlike traditional ML approaches, DL integrates feature extraction

and task completion into a unified framework, allowing both

aspects to improve simultaneously during continuous training (9).

In the field of medical imaging, DL is primarily implemented

through CNNs, a powerful algorithm particularly suited for image

learning and other structured data tasks (10, 11). Leveraging DL

techniques, medical images can be rapidly and accurately analyzed

and interpreted, providing clinicians with powerful tools to aid in

more precise disease diagnosis, treatment planning, and treatment

monitoring (3). The development of this technology not only

enhances the efficiency of healthcare delivery but also improves

the diagnostic experience and treatment outcomes for patients.

The extensive use of ML and DL techniques within artificial

intelligence, notably the advancements made by CNNs in

recognizing medical images, has facilitated more accurate and

personalized diagnosis and treatment of genitourinary tumors.

These technologies can handle the complex structures and

patterns present in medical images, thereby improving diagnostic

accuracy and efficiency. By learning and analyzing large datasets, AI

systems can uncover hidden features and patterns within images

(12), providing clinicians with more reliable diagnostic

recommendations and personalized treatment plans. Early

diagnosis and treatment are crucial, especially for genitourinary

tumors such as RCC, BC, and PCa. Through the utilization of ML
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the early detection rate of these tumors can be improved, reducing

misdiagnosis rates and offering patients more precise treatment

options (13). As a result, the utilization of artificial intelligence for

diagnosing and treating genitourinary tumors has become a focal

area of research in medicine. With ongoing research and

technological advancements, it is anticipated that artificial

intelligence will increasingly influence urology, enhancing medical

services and treatment outcomes for patients.
2 The application of AI in RCC

RCC ranks seventh among cancers affecting men and ninth

among those affecting women worldwide. The annual global

incidence is estimated at about 209,000 new cases, leading to

approximately 102,000 deaths annually. Furthermore, global

incidence and mortality rates are rising by approximately 2-3%

per decade (14). Addressing this challenge, recent years have seen

the emergence of AI techniques in RCC research. AI can analyze

extensive imaging and clinical datasets to reveal patterns and

correlations, offering comprehensive support and insights for

RCC diagnosis, treatment planning, and adjunctive therapy (15).

The application of this emerging technology offers hope for

improving the survival rates and treatment outcomes of RCC

patients, while also providing new directions and opportunities

for future research and clinical practice.
2.1 The application of AI in the diagnosis
of RCC

Advanced AI algorithms can precisely categorize renal masses

as malignant or benign, significantly aiding in disease diagnosis and

treatment decisions. Xi et al. investigated 1,162 cases of renal lesions

from multiple centers, identifying 655 cases as malignant lesions

and 507 cases as benign lesions. Compared with the baseline zero

rule algorithm, expert averages, and radiological models, the

integrated DL model demonstrated superior test accuracy,

sensitivity, and specificity (16). Kunapuli et al. (15) proposed

RFGB as a promising clinical decision support tool for the

diagnosis of renal masses. Unlike other studies, the patient

population in this research better mirrors that of real-world

clinical practice, enhancing the relevance of clinical decision

support through the use of multiphase contrast-enhanced CT

images and diverse ML algorithms to develop effective and

interpretable models. Oberai and colleagues devised a CNN

classifier using multiphase CECT images to diagnose solid-

enhancing malignant renal masses, achieving an accuracy of 78%,

a sensitivity of 70%, and an area under the curve (AUC) of 0.82 (17).

Accurate differentiation among RCC subtypes is vital,

particularly the three main types (clear cell, papillary, and

chromophobe), which collectively constitute more than 90% of

RCC cases. Uhm et al. (18) proposed an end-to-end DL model to

differentiate between five major histological subtypes of renal

tumors, including both benign and malignant types (oncocytoma,
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acute myeloid leukemia, clear cell RCCs, papillary RCCs, and

chromophobe RCCs), using multiphase CT imaging. The study

utilized CT data from 308 patients who had undergone

nephrectomy for renal tumors to train and validate the model.

The model demonstrated superior performance compared to

radiologists across most subtypes, achieving an AUC of 0.889.

Kocak et al (19). utilized machine learning to analyze imaging

data of RCC with the aim of developing and validating a

quantitative computed tomography textural analysis (qCT-TA)

model. The study included internal validation data from 68 RCC

patients and external validation data from 26 cases sourced from the

TCGA public database. They extracted 275 textural features from

non-enhanced and corticomedullary phase CT images.

Reproducibility analysis involved three radiologists, and feature

selection utilized classifier-based wrapper methods. The model

underwent optimization through nested cross-validation,

combining artificial neural networks (ANNs), support vector

machines (SVMs), and other algori thms to improve

generalizability. The research addressed two classification tasks:

papillary RCC from chromophobe RCC, and distinguishing non-

clear cell RCC from clear cell RCC. The main performance metric

evaluated was the Matthews correlation coefficient (MCC). The

ML-based qCT-TA showed effective differentiation between non-

clear cell RCC and clear cell RCC, achieving external validation

accuracies of 84.6% for accuracy, 69.2% for sensitivity, and 100% for

specificity. In another investigation, Kocak et al. (20) studied 45

patients diagnosed with clear cell RCCs, categorized into 29 cases

without PBRM1 mutation and 16 cases with PBRM1 mutation.

Texture features were extracted from contrast-enhanced CT images

during the corticomedullary phase using an open-source software

package. Among the 828 texture features initially extracted, 759

demonstrated excellent reproducibility. Using 10 selected features,

the ANNs algorithm accurately classified 88.2% of clear cell RCC

cases based on PBRM1 mutation status. Similarly, the RF algorithm

achieved a classification accuracy of 95.0% with five selected

features. These results suggest that ML-based high-dimensional

qCT-TA shows promise as a viable method to predict PBRM1

mutation status in clear cell RCC patients (20). Wen et al. explored

both the staging and grading of clear cell RCCs in their study. They

analyzed clinical and pathological data from 878 patients diagnosed

with renal clear cell carcinoma, employing DL algorithms to predict

both pathological staging and grading based on preoperative clinical

variables. For tumor staging, the BiLSTM, CNN-BiLSTM, and

CNN-BiGRU models achieved respective AUC values of 0.933,

0.947, and 0.948. In terms of tumor grading, the corresponding

AUC values were 0.754, 0.720, and 0.770 (21). Ding et al. extracted

texture features from CT images of the largest renal mass area

during both the corticomedullary and nephrographic phases. They

computed a texture score for each patient and developed a model

based on these scores (22). In an independent validation cohort of

92 ccRCC cases, the predictive model’s performance was evaluated

and compared. The texture score-based model exhibited superior

discriminative capability for distinguishing between high-grade and

low-grade ccRCC, irrespective of the inclusion of non-texture

features (P < 0.05). This study suggests that a texture score-based
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grade and low-grade ccRCC.
2.2 The application of AI in the treatment
of RCC

Alexander Kutikov introduced the R.E.N.A.L. nephrometry

score to standardize reporting on renal tumor characteristics,

essential for treatment decisions and meaningful comparisons.

This scoring system assesses five key anatomical features of renal

masses using computed tomography or magnetic resonance

imaging. Four components are scored on a scale of 1 to 3, while

the fifth identifies the mass’s anterior or posterior position relative

to the kidney’s coronal plane. This systematic approach offers

clinicians a valuable tool for comprehensive characterization of

renal tumors in clinical practice (23). In postoperative care, the

recording of intraoperative parameters and events is crucial. This

data can aid medical teams in predicting the risk of postoperative

complications. For instance, unstable events during surgery,

changes in patient vital signs, and the duration of surgery may all

serve as important indicators of postoperative complications.

Mathieu et al (24). retrospectively analyzed data from 240

patients undergoing robot-assisted laparoscopic partial

nephrectomy (RALPN). After analyzing patient age, body mass

index, anticoagulant therapy, tumor size, and surgical duration,

researchers identified a correlation between RALPN and a 30%

likelihood of postoperative complications. Regarding RALPN,

artificial intelligence plays a crucial role in evaluating how factors

like surgeon experience, blood loss, and extent of system resection

influence the occurrence of complications. Zhao et al. (25)

conducted a study aimed at developing an accurate prediction

model for the duration of robot-assisted surgery (RAS) using ML

techniques. This model takes specific preoperative patient

parameters and surgery-related factors (including tumor location

and patient comorbidities) as input data. Compared to the baseline

model, all ML models reduced the mean root mean square error

(RMSE). Notably, the enhanced regression tree exhibited the lowest

average RMSE, significantly outperforming the baseline model, with

the accuracy of planned cases increasing from 35% to over 50%.

This study emphasizes the potential of various ML methods to

improve the accuracy of predicting the duration of RAS cases.

Developing a model to predict the survival rate, recurrence risk,

or other outcomes of kidney cancer patients can assist clinicians in

devising more personalized treatment plans and offering more

precise patient consultations. Utilizing multi-gene expression and

biomarkers allows for the evaluation of survival rates and prognoses

in kidney cancer patients. Researchers conducted a retrospective

study examining radiomic features extracted from CT images to

investigate their correlation with the tumor microenvironment. The

study encompassed 78 patients, analyzing radiomic features from

CT scans, specifically exploring CD8 T cell infiltration and

programmed death-ligand 1 (PDL1) expression. Findings

indicated that CT radiomic features successfully differentiated

between tumors with high infiltration and those without, as well
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as between tumors positive and negative for PDL1 expression (26).

This may hold potential for predicting prognosis and treatment

response. Li et al. (27) developed a risk scoring model based on 15

genes using gene expression analysis, machine learning (random

forest variable selection), and Cox regression. They validated the

model using data from TCGA and E-MTAB-1980 datasets. Their

findings revealed that patients classified into the high-risk group

exhibited markedly lower overall survival (OS) rates compared to

those in the low-risk group. Interestingly, the risk score was

independent of age and gender but showed significant

correlations with hemoglobin levels, primary tumor size, and

grade. Importantly, the prognostic value of the risk score

remained consistent regardless of whether patients underwent

radiotherapy. Buchner et al. (28) assembled data from 175 RCC

patients commencing systemic therapy at a single-center database.

Factors including age, gender, body mass index, type of systemic

therapy, and number of metastatic lesions were inputted into an

ANNs, with a logistic regression model constructed using the same

variables. Results demonstrated that the ANNs achieved an overall

accuracy of 95%, markedly surpassing the logistic regression model.

The study underscores the efficacy of predictive models developed

using artificial intelligence techniques, highlighting their potential

to offer more diverse and personalized treatment strategies for

patients with renal cancer.
3 The application of AI in BC

BC ranks sixth among cancers diagnosed in the United States,

with males ranking it fourth (29). Worldwide, it is the ninth most

prevalent malignancy, with around 430,000 new cases reported each

year (30). Non-muscle-invasive bladder cancer (NMIBC) represents

about 75% of initial diagnoses (31) and demonstrates frequent

recurrence and progression in intermediate to high-risk cases. Due

to its propensity for recurrence, patients often necessitate regular

surveillance and intervention. The objective of this therapeutic

approach is to promptly detect and manage any potential

recurrence or progression, thereby improving patient survival

rates and quality of life.
3.1 The application of AI in the diagnosis
of BC

Originally, diagnostic cystoscopy was one of the most

commonly used methods for detecting BC, especially when

evaluating hematuria (32). In recent years, DL has demonstrated

promising potential in the diagnosis of BC. Researchers have

achieved a series of positive results by utilizing DL algorithms to

analyze various medical data, including cystoscopy examinations,

urine cytology, and imaging. Shkolyar et al. (33) created CystoNet,

an image analysis platform utilizing CNNs, and evaluated videos

from 54 patients undergoing transurethral resection of bladder

tumor (TURBT) or clinical flexible cystoscopy. The CystoNet

algorithm successfully detected bladder cancer in the validation

dataset, achieving per-frame sensitivity and specificity of 90.9% and
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research, Ikeda et al. (34) developed and rigorously tested a pre-

trained CNNs model trained on ImageNet. They evaluated a total of

335 normal images and 87 tumor images, achieving 78 true

positives and 315 true negatives. The model also generated 20

false positives and 9 false negatives. According to ROC curve

analysis, the model exhibited an AUC of 0.98, with a maximum

Youden index of 0.837. The sensitivity of the model was determined

to be 89.7%, and its specificity was 94.0%. Zhang et al. (35)

conducted a study where radiomic features were extracted from

regions of interest (ROIs) containing bladder cancer (BC) tissue in

diffusion-weighted imaging (DWI) and corresponding apparent

diffusion coefficient (ADC) maps obtained from 3.0 Tesla

magnetic resonance imaging (MRI). Their approach involved

histogram and gray-level co-occurrence matrix (GLCM) analyses,

resulting in 102 features extracted per ROI. Initially identifying 47

candidate features, they narrowed it down to a subset of 22 optimal

features. Using a SVM classifier with this subset, they achieved

superior performance in BC grading, with an area under the curve

(AUC) of 0.861, accuracy of 82.9%, sensitivity of 78.4%, and

specificity of 87.1%. In one study, Lorencin (36) and his

colleagues employed a combination of multilayer perceptron

(MLP) and DL CNNs for the detection of urinary BC. A dataset

comprising 1997 images of BC and 986 images of non-cancerous

tissue was utilized for training and testing purposes. Results

demonstrated that utilizing images preprocessed with Laplacian

edge detector achieved an AUC value as high as 0.99 when

employing MLP for training and testing. Furthermore,

comparison of different image sizes revealed optimal performance

with 50×50 and 100×100 images.
3.2 The application of AI in the treatment
of BC

In urology, CT scans, MRI, and ultrasound are essential

imaging modalities, crucial for diagnosing and treating BC. Each

technique serves distinct roles: CT scans offer detailed three-

dimensional images with high resolution, MRI excels in

visualizing soft tissues, and ultrasound provides a convenient,

non-invasive method for examinations. These tools play critical

roles from initial diagnosis and staging to monitoring treatment

responses and disease progression in BC (37). However, despite

significant advances in these technologies, there are still limitations

such as operator dependence and subjectivity in data interpretation.

In this context, the introduction of AI technologies has brought new

possibilities to imaging techniques. By training algorithms to

analyze extensive imaging datasets, AI can swiftly and accurately

detect potential lesions, aiding physicians in making precise

diagnoses and treatment plans (38, 39). Cha et al. developed a

computerized decision support system (CDSS-T) using CT imaging

to evaluate treatment response in muscle-invasive BC. They applied

CDSS-T to analyze 123 patients with 157 lesions of muscle-invasive

BC. This system integrates deep learning CNNs and radiomic

features to distinguish between lesions showing complete

response to neoadjuvant therapy and those that do not. Analysis
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of pre- and post-chemotherapy CT scans indicated that CDSS-T

achieved an average AUC of 0.80 for assessing pathological T0

disease, compared to 0.74 for physicians without CDSS-T and 0.77

for those using CDSS-T. These results suggest that CDSS-T

enhances physicians’ ability to identify complete responses to

neoadjuvant chemotherapy in muscle-invasive BC (40).

Segmenting the bladder wall from MRI images is crucial for early

detection and supportive diagnosis of bladder tumors. Li et al. (41)

introduced an automated segmentation technique utilizing DL and

anatomical constraints. Initially, they employed an autoencoder to

extract concise feature representations of the bladder wall fromMRI

and labeled images, effectively capturing anatomical and semantic

details. Subsequently, these constraints were integrated into an

enhanced residual network to enhance segmentation accuracy.

Experimental findings from 1092 MRI images illustrated that

their method outperformed existing approaches, achieving a Dice

similarity coefficient (DSC) of 85.48% (41).

Artificial intelligence has also played a crucial role in

personalized treatment. By analyzing extensive clinical data and

patient case histories, ML models can predict treatment responses

and survival rates, thereby supporting clinicians in devising more

precise treatment plans. Buchner et al. (42) conducted a study to

assess the use of ANNs in stratifying the risk of BC patients

undergoing radical cystectomy (RC) based on readily available

procedural parameters. They utilized data from 2111 patients to

train ANNs to predict tumor recurrence, cancer-specific mortality

(CSM), and all-cause mortality (ACD). The study revealed that the

optimal ANNs achieved accuracies of 74%, 76%, and 69% for

predicting tumor recurrence, CSM, and ACD, respectively.

Notably, lymph node status emerged as a crucial factor in the

decision-making process of the networks. Compared to Cox

proportional hazards regression models, ANNs demonstrated

superior predictive accuracies for recurrence, CSM, and ACD,

showing improvements of 1.6% (p = 0.247), 4.7% (p < 0.001),

and 3.5% (p = 0.007), respectively. In 2021, Bhambhvani et al. (43)

conducted a study using a dataset comprising 161,227 patients,

employing an artificial ANNs model trained and validated on an 80/

20 split of the dataset. They also developed a multivariable Cox

Proportional Hazards (CPH) model that incorporated variables

such as age, gender, race, grade, SEER stage, tumor size, lymph

node involvement, extent of spread, and surgical intervention for

predictive purposes. The study focused on evaluating 5-year

Disease-Specific Survival (DSS) and 5-year OS as primary

endpoints. Results indicated that the ANNs models achieved

AUCs of 0.81 for OS and 0.80 for DSS, whereas the CPH models

yielded AUCs of 0.70 for OS and 0.81 for DSS (43). Notably, the

ANNs model demonstrated superior accuracy in predicting OS,

highlighting the potential of machine learning algorithms to

advance prognostic capabilities in bladder cancer. Despite the

demonstrated reliability of AI models based on image analysis for

predicting the prognosis of BCa, several challenges still need to be

addressed. One major challenge is the issue of parameter

standardization. Different studies may use varying parameters,

leading to inconsistency in results and making it difficult to

compare and apply the models. Another hurdle involves the

collection and annotation of data. Effective training and
Frontiers in Oncology 05
validation of AI models necessitate substantial quantities of high-

quality data. Nevertheless, existing datasets are often constrained,

particularly concerning comprehensive long-term follow-up and

detailed clinical information. Additionally, data annotation requires

the involvement of skilled medical professionals, demanding

significant time and resources. Despite these challenges, once

resolved, AI models will be able to provide powerful tools for

predicting the prognosis of BCa patients preoperatively,

intraoperatively, and postoperatively.
4 The application of AI in PCa

PCa is a common and deadly malignant tumor worldwide.

There are approximately 1.2 million new cases annually (44), with

high incidence and relatively high mortality rates. Diagnosis of this

cancer typically relies on transrectal prostate biopsy, which,

although providing accurate pathological diagnosis, carries

potential complications such as bleeding, infection, and urinary

retention. These risks may contribute to overdiagnosis and

overtreatment, particularly in low-risk patients. To mitigate these

concerns, clinicians must conduct comprehensive prognostic

assessments utilizing the latest diagnostic techniques and tools to

accurately determine tumor staging and risk stratification. Such

assessments facilitate the development of personalized treatment

plans, ensuring patients receive optimal therapy while minimizing

unnecessary interventions and potential complications. Current

research endeavors are focused on identifying more effective and

precise diagnostic modalities to enhance treatment efficacy and

patient survival outcomes in PCa management.
4.1 The application of AI in the diagnosis
of PCa

Ishioka et al. (45) reviewed data from 335 patients with

prostate-specific antigen levels <20 ng/mL who underwent MRI

and extended systematic prostate biopsy. They developed a

computer-aided diagnosis (CAD) algorithm using deep CNNs,

trained on MR images labeled “cancer” or “non-cancer” based on

biopsy results. The CAD algorithm, achieving high diagnostic

accuracy in two evaluation datasets, was then applied to a

previously unassessed independent dataset. ROC curve analysis

demonstrated the CNNs-based CAD system’s capability to

automate prostate cancer detection through MRI with over 90%

accuracy, sensitivity, and specificity. This technology shows

potential for enhancing standardization and consistency in

clinical practice (45).

The Gleason scoring system (46), developed in the 1960s to

1970s, is essential for predicting tumor behavior and categorizing

tumors into low, intermediate, and high-risk groups. However,

despite its critical role in prognosis and patient management, the

scoring conducted by pathologists is subjective and prone to

variability both between different observers and within the same

observer. Studies have shown a discordance in Gleason scores

ranging from 30% to 53% (47). Bulten et al (48). developed a DL
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system for grading prostate biopsies based on the Gleason scoring

system. Utilizing 5759 biopsy samples from 1243 patients, they

found a high concordance between the system and the reference

standard, with a strong performance at the clinical decision

threshold. Results from observer experiments indicated that the

DL system outperformed the group (median kappa 0.819) with a

score of kappa 0.854, and demonstrated superior performance

among 15 pathologist observers. This study provides evidence

that the automated DL system may have a positive impact on

PCa diagnosis in the context of Gleason grading (49). Karimi et al.

devised a DL classification method and employed data

augmentation strategies to enhance the grading accuracy of PCa

in histopathology images, even with limited data. Their technique

involves integrating predictions from three distinct CNNs, each

trained on patches of different sizes. Their approach yielded

promising outcomes, achieving a 92% accuracy in distinguishing

cancerous from benign patches and 90% accuracy in distinguishing

low-grade (Gleason grade 3) from high-grade (Gleason grades 4

and 5) patches (48).
4.2 The application of AI in the treatment
of PCa

Patients diagnosed with PCa often experience confusion

regarding the treatment options available to them. Establishing a

system to assist patients in understanding various therapies can

alleviate anxiety and enhance satisfaction. Auffenberg et al. (50)

created a predictive model employing the random forest machine

learning technique, validated with 7543 men diagnosed with PCa.

The personalized predictions for patients in the validation group

exhibited high accuracy (AUC 0.81). This model aims to help newly

diagnosed men with prostate cancer explore anticipated treatment

strategies for comparable cases, potentially reducing pre-treatment

concerns. Abdollah et al (51). collected MRI scans from 33 patients

diagnosed with Pca according to established standards. Changes in

ADC values were employed to evaluate the response to intensity-

modulated radiation therapy (IMRT), dividing patients into

responsive and non-responsive groups. The study identified 15

patients (45% of the total) categorized as responsive. Importantly,

significant differences in two T2-weighted and fifteen ADC

radiomic features were observed between the responsive and non-

responsive groups, underscoring their predictive value for treatment

response. Ultimately, the study discovered a multitude of features

within pre-treatment MRI images that hold potential for predicting

early treatment outcomes, offering valuable insights for

personalized treatment strategies. In 2021, researchers at Google

Health led by Wulczyn et al. (52) devised a deep learning model to

assess the risk of prostate cancer-specific mortality. They tested the

model’s efficacy in stratifying patient risk using a retrospective

cohort comprising 2807 cases of prostatectomy from a European

center. The AI’s C-index was 0.82, demonstrating the efficacy of the

artificial intelligence system in accurately assessing the risk of PCa-

specific mortality. Their research showcased the potential of AI in

enhancing clinical decision-making and patient care in this critical

area of oncology. Hung et al. (53) developed a DL model to forecast
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urinary incontinence recovery following radical prostatectomy

(RARP), aimed at assessing the postoperative outlook for PCa

patients. Through statistical analyses including Kruskal-Wallis,

chi-square, and Fisher exact tests on historical cases, they

determined that approximately 79% of the 79 patients

experienced urinary incontinence at a median of 126 days after

surgery. The DL This study demonstrated that combining clinical

pathology data with APM was more effective in predicting

postoperative urinary incontinence than using clinical pathology

data or APM alone. Hakyung Lim (54) and colleagues developed an

AI-powered Decision Support System (DSS) to optimize treatment

sequencing for castration-resistant prostate cancer (CRPC). They

analyzed clinical and pathological data from 801 CRPC patients,

using the Cox proportional hazards regression model with Extreme

Gradient Boosting (XGB). Their study assessed how abiraterone

acetate, cabazitaxel, docetaxel, and enzalutamide influence cancer-

specific mortality (CSM) and overall mortality (OM). The findings

showed that the XGB model outperformed RSF and Cox models in

predicting CSM and OM. This online DSS tool aims to assist

clinicians and patients in making well-informed decisions

regarding CRPC treatment sequencing. Bumjin Lim (55) and

colleagues conducted an external validation study to evaluate the

SCaP survival calculator’s performance. This tool uses a long short-

term memory artificial neural network to predict survival outcomes

in prostate cancer patients based on their initial treatment.

Analyzing clinical data from 4,415 patients, the study assessed its

accuracy in predicting CRPC-free survival, cancer-specific survival

(CSS), and OS. Results showed the validation cohort exhibited

superior AUC values compared to the development cohort,

affirming the SCaP survival calculator’s robust performance in

predicting survival outcomes. This study underscores its role as a

reliable tool for guiding treatment decisions and predicting survival

outcomes in newly diagnosed PCa patients. Kyo Chul Koo (56) and

his team studied 7,267 PCa patients, employing diverse ANNs

models (MLP, MLP-N, LSTM) to forecast CRPC progression-free

survival, CSS, and OS across varied initial treatments. Their findings

indicated superior performance of ANN models over traditional

Cox models, particularly the LSTM model, which delivered

personalized survival predictions. This research highlights the

potential of LSTM ANN models to tailor survival forecasts based

on initial treatment strategies for PCa. The above study suggests

that AI has promising prospects in predicting surgery, radiotherapy,

prognosis, and other aspects of PCa.
5 Summary and outlook

In recent times, notable progress has been achieved in applying

artificial intelligence within the realm of urologic oncology. Through

techniques such as DL and ML, researchers have leveraged big data

analytics to improve the accuracy of urologic tumor diagnosis, predict

disease progression and treatment response, and provide more

precise treatment recommendations for clinical practitioners.

However, AI in urologic oncology also faces several challenges.

Initially, the quality and annotation of data are pivotal for training

models; however, obtaining high-quality medical data and accurate
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annotations remains intricate and time-intensive. Secondly, the

interpretability of AI models remains a challenge, as clinical

practitioners need to understand and trust the predictive results of

these models. Additionally, issues such as privacy and security need

to be fully considered to ensure the protection and compliance of

patient data. Looking ahead, it is hoped that with the continuous

advancement of medical technology, the application of AI in urologic

oncology, including diagnosis, treatment planning, and rehabilitation

monitoring, will be further expanded to provide more comprehensive

medical services for patients. In conclusion, despite facing challenges,

the future prospects of AI in urologic oncology remain promising.

Through ongoing research and innovation, AI is expected to provide

more personalized and accurate medical services for urologic cancer

patients, making a positive contribution to improving patient survival

rates and quality of life.
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