The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Oncol.
Sec. Radiation Oncology
Volume 14 - 2024 |
doi: 10.3389/fonc.2024.1438861
DEVELOPING A NOVEL DOSIOMICS MODEL TO PREDICT TREATMENT FAILURES FOLLOWING LUNG STEREOTACTIC BODY RADIATION THERAPY
Provisionally accepted- 1 University of Nebraska Medical Center, Omaha, United States
- 2 Novant Health, Winston-Salem, North Carolina, United States
The purpose of this study was to investigate the dosiomics features of the interplay between CT density and dose distribution in lung SBRT plans, and to develop a model to predict treatment failure following lung SBRT treatment.Methods: A retrospective study was conducted involving 179 lung cancer patients treated with SBRT at the University of Nebraska Medical Center (UNMC) between October 2007 and June 2022. Features from the CT image, Biological Effective Dose (BED) and five interaction matrices between CT and BED were extracted using radiomics mathematics. Our in-house feature selection pipeline was utilized to evaluate and rank features based on their importance and redundancy, with only the selected non-redundant features being used for predictive modeling. We randomly selected 151 cases and 28 cases as training and test datasets. Four different models were trained utilizing the Balanced Random Forest framework on the same training dataset to differentiate between failure and non-failure cases. These four models utilized the same number of selected features extracted from CT-only, BED-only, a combination of CT and BED, and a composite of CT and BED including their interaction matrices, respectively.The cohort included 125 non-failure cases and 54 failure cases, with a median followup time of 34.4 months. We selected the top 17 important and non-redundant features (with the Pearsons's coefficient < 0.5) in each model. When evaluated on the same independent test set, the four models-CT features-only, BED features-only, a combination of CT and BED features, and a composite model including features from CT and BED that includes their interaction matrices-achieved AUC values of 0.56, 0.75, 0.73, and 0.82, respectively, with corresponding accuracies of 0.61, 0.79, 0.71, and 0.79. The composite model demonstrated the highest AUC and accuracy, indicating that incorporating interactions between CT and BED reveals more predictive capabilities in distinguishing between failure and non-failure cases.The dosiomics model integrating the interaction between CT and Dose can effectively predict treatment failure following lung SBRT treatment and may serve as a useful tool to proactively evaluate and select lung SBRT treatment plans to reduce treatment failure in the future.
Keywords: Radiomics, dosiomics, Lung SBRT, modeling, CT-Dose Interaction
Received: 26 May 2024; Accepted: 07 Nov 2024.
Copyright: © 2024 Bhandari, Johnson, Oh, Huynh, Lei, Wisnoskie, Zhou, Baine, Lin, Zhang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Chi Zhang, University of Nebraska Medical Center, Omaha, United States
Shuo Wang, University of Nebraska Medical Center, Omaha, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.