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Objective: Lung cancer, the most prevalent malignancy, is typically diagnosed at

an advanced stage. Smoking is a pivotal risk factor for NSCLC, yet the impact of

various smoking statuses on NSCLC remains unclear. Thus, this study aims to

explore whether different smoking statuses can causally influence NSCLC

through effects on predictive targets, offering a novel perspective for

NSCLC treatment.

Methods: Employing dual-sample MR, MVMR, and TSMR approaches, we

assessed the causal relationships between 13 distinct smoking statuses and

NSCLC, using predicted potential therapeutic targets as mediators to further

elucidate the causal interplay among them.

Results: Among the 13 smoking statuses, current tobacco smoking, exposure to

tobacco smoke outside the home, past tobacco smoking, and never smoked

demonstrated causal relationships with NSCLC. MVMR analysis reveals that

Current tobacco smoking is an independent risk factor for NSCLC. Utilizing

NCAPD2, IL11RA, and MLC1 as mediators, IL11RA (22.2%) was found to potentially

mediate the relationship between past tobacco smoking and NSCLC.

Conclusion: This study, integrating bioinformatics and MR analysis, identified

three potential predictive targets as mediators to investigate the causal

relationships between different smoking statuses and NSCLC through potential

therapeutic targets, providing new insights for the treatment and prevention

of NSCLC.
KEYWORDS

different smoking statuses, NSCLC, Mendelian randomization, bioinformatics,
mediation analysis
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1 Introduction

Lung cancer stands as one of the principal causes of mortality

among all diseases globally (1), with both its incidence and

mortality rates on the rise (2). In 2022, lung cancer accounted

for one-eighth of all global cancer cases, making it the leading

cause of cancer-related deaths worldwide. It ranks first in

incidence and mortality among men and second among women

(3), with non-small cell lung cancer (NSCLC) comprising 80%-

85% of all lung cancer cases (4). The primary risk factors for lung

cancer include smoking, occupational exposure, air pollution, and

genetic susceptibility, each of which can either individually or

synergistically elevate the risk of developing lung cancer (5).

Recent extensive research has focused on the genetic factors of

lung adenocarcinoma, such as comparisons between the lung

cancer genes of East Asian and European populations (6),

potential therapeutic targets for lung cancer (7, 8), potential

susceptibility to lung cancer in Asian populations (9), and the

determination of lung cancer susceptibility genes in European,

East Asian, and African populations (10). Additionally, rare

molecular subtypes of lung cancer have been explored (11).

Consequently, further research is imperative to elucidate

the underlying mechanisms of lung cancer, enhance our

understanding of the disease, and improve early diagnosis and

prevention strategies.

The survival rate for advanced lung cancer remains low (12),

and there is a definitive causal relationship between the

immunological alterations caused by smoking and lung cancer

(13). Over 50% of lung cancer cases occur in individuals who

have previously smoked (14), with 40% occurring more than 15

years after cessation of smoking (15). With the widespread adoption

of health education, an increasing number of lung cancer cases are

unrelated to smoking (16). Smoking can increase the risk and

mortality rate of lung cancer, establishing a clear causal link (17).

However, the specific causal relationships between different

smoking statuses and lung cancer remain unclear. Therefore, it is

crucial to further explore how various smoking statuses influence

lung cancer, which could provide new perspectives for personalized

treatment strategies.

Mendelian randomization (MR) allows for the assessment of

causal relationships between exposure factors and outcomes from

a genetic perspective (18). Single eQTLs may present a risk of

biased results and false positives (19), whereas summary data-

based Mendelian Randomization (SMR) can explore the

pleiotropy between gene expression levels and complex traits

(20, 21). Consequently, this study predicts potential etiological

and therapeutic targets for NSCLC from a bioinformatics

perspective combined with MR analysis. It confirms these

potential therapeutic targets through differential analysis in a

validation cohort and SMR analysis. By using these potential

therapeutic targets as mediators, the study explores whether

different smoking statuses can influence NSCLC through the

mediation of these targets. Thus, we aim to elucidate the causal

relationships between different smoking statuses, potential
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predictive targets, and NSCLC through MR analysis, thereby

offering new therapeutic perspectives for NSCLC.
2 Methods

2.1 Study design

This study initially employs two-sample MR analysis, using 13

different smoking statuses as exposures. These include Current

tobacco smoking, Past tobacco smoking, Ever smoked, Exposure

to tobacco smoke outside the home, and Never smoked, as the

primary exposures. NSCLC serves as the outcome factor. The

research aims to explore the causal relationships and underlying

mechanisms between various smoking statuses and NSCLC. After

adjusting for the confounding factor of BMI, Multivariable

Mendelian Randomization (MVMR) analysis is conducted to

ascertain which smoking status independently contributes to the

risk of NSCLC. To ensure the credibility of the results, the findings

of the MR analysis are validated through the Bayesian Weighted

Mendelian Randomization (BWMR) method, confirming the

accuracy of the causal relationships established.

Concurrently, we downloaded datasets related to “non-small

cell lung cancer” from the GEO database (https://www.ncbi.nlm.

nih.gov/geo/) to identify differentially expressed genes associated

with NSCLC. Utilizing gene eQTLs as exposure data (https://

www.eqtlgen.org/) and NSCLC as outcome data, we conducted

MR analyses to identify genes causally linked to NSCLC. By

intersecting these genes, we identified co-expressed genes, which

were then subjected to enrichment analysis, immune cell infiltration

studies, GSEA enrichment analysis, and validation group

differential analysis. Additionally, SMR analysis was performed on

gene eQTLs and NSCLC to verify the causal relationship of the

intersected co-expressed genes.

Ultimately, we employ identified potential therapeutic targets

for NSCLC as mediators, utilizing two-step MR analysis to further

elucidate whether the predicted potential therapeutic targets play

a significant mediating role in the causal relationship between

various smoking statuses and NSCLC (Figure 1).
2.2 Data sources

The genetic information for the 13 smoking statuses and BMI

is sourced from the GWAS database (https://gwas.mrcieu.ac.uk/),

pertaining to a European population. The datasets for differentially

expressed genes in the transcriptome are identified by the numbers

GSE21933, GSE23066, GSE27262, and GSE118370, while the

validation group is denoted by GSE74706. Data on NSCLC are

derived from the FinnGen database (https://www.finngen.fi/en)

(22), with the specific identifier finngen_R10_C3_LUNG_

NONSMALL_EXALLC, also originating from a European cohort.

The gene eQTLs data are obtained from peripheral blood of 31,864

European individuals (23, 24) (Table 1).
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2.3 Selection of instrumental variables and
mendelian randomization analysis

The selection of instrumental variables must satisfy several

assumptions (25): the instrumental variables must be closely

associated with different smoking statuses, independent of

confounding factors in the exposure-outcome relationship, and

must influence NSCLC solely through different smoking statuses

(26). To ensure their relevance (27), we conduct association

analyses for 13 distinct smoking statuses using a threshold of

P<5×10−6, and for plasma protein eQTLs, a threshold of

P<5×10−8 is applied. Concurrently, SNPs exhibiting linkage

disequilibrium are eliminated using criteria of R2<0.001 and a

distance of 10,000 Kb (28), followed by the calculation of the F-

statistic for the selected SNPs to exclude weak instrumental

variables, considering an F-value greater than 10 as indicative of

the absence of weak instrumental variables (29, 30).

We employed five methods to assess the causal relationship

between the variables: Inverse Variance Weighted (IVW), MR-

Egger, Weighted Median, Simple Mode, and Weighted Mode

methods, with IVW serving as the primary method (26, 31).

A P-value less than 0.05 indicates a causal relationship (32), while

the other four methods serve as supplementary approaches (33).

Additionally, we utilized the BWMR method to further verify the

reliability of the causal relationship. To evaluate the robustness of

the causal relationship, a “leave-one-out” sensitivity analysis was
TABLE 1 Sources of data.

Name ID Sample
Size

SNP

Current tobacco smoking ukb-b-223 462,434 9,851,867

Past tobacco smoking ukb-b-2134 424,960 9,851,867

Exposure to tobacco smoke
outside home

ukb-b-6244 391,502
9,851,867

Never smoked ukb-d-22506_114 91,353 13,567,196

Smoking/smokers
in household

ukb-b-960 425,516 9,851,867

Exposure to tobacco smoke
at home

ukb-b-4462 417,693 9,851,867

Ever vs never smoked ieu-a-962 74,035 2,455,847

Ever tried to stop smoking ukb-b-13936 35,910 9,851,867

Tobacco
smoking: Occasionally

ukb-d-22506_112 91,353 9,821,991

Tobacco smoking: Ex-smoker ukb-a-260 83,133 10,894,596

Smokes on most or all days ukb-d-22506_111 91,353 10,552,527

Light smokers, at least 100
smokes in lifetime

ukb-b-8133 123,894 9,851,867

Ever smoked ukb-b-20261 461,066 9,851,867

BMI ukb-b-2303 454,884 9,851,867
FIGURE 1

Research approach.
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conducted (34). Additionally, Cochran’s Q test and the MR-Egger

intercept test were utilized to examine pleiotropy and heterogeneity

(35, 36), with a P-value greater than 0.05 indicating the absence of

both pleiotropy and heterogeneity.
2.4 Acquisition of differentially expressed
genes and enrichment analysis

We utilized the R programming language to process data from

GSE21933, GSE23066, GSE27262, and GSE118370, performing

individual data corrections and merging. Using a threshold of P<0.05

and LogFC > 0.585, we filtered differentially expressed genes (DEGs)

with the “limma” package, while employing “sva” and PCA to mitigate

batch effects. Genes demonstrating a causal relationship between gene

eQTLsandNSCLCwereextractedand intersectedwithDEGs to identify

co-expressed genes. These intersected genes were then subject to

individual MR analyses, along with sensitivity, pleiotropy, and

heterogeneity tests, to assess the reliability of the results.

Simultaneously, we conducted GO and KEGG enrichment

analyses on the intersected genes using R, aiming to elucidate

potential functional pathways and pathogenic mechanisms related to

NSCLC. Additionally, GSEA enrichment analysis was employed to

explore related functions within the gene expression profiles. We

utilized CIBERSORT to analyze the infiltration levels of 22 types of

immune cells in NSCLC (37), examining the differential expression of

immune cells between two groups. Through Lasso regression, relevant

immune cells associated with NSCLC were identified. By intersecting

these, core immune cells were determined, further investigating the

correlation between intersected genes and immune cells in NSCLC, as

well as the regulatory effects of intersected genes on immune cells.
2.5 Analysis of differences in the validation
group and SMR analysis

We validated the differential expression of intersected genes

between the control group and the NSCLC group using data from

GSE74706, comparing these findings with the results from MR

analysis. Concurrently, we conducted SMR analysis using gene

eQTLs data and NSCLC to further ascertain the causal relationship

between the intersected genes and NSCLC (20). The SMR software

(version 1.3.1)was employed for SMRanalysis andHEIDI testing (21),

utilizing the default settings of SMR (38). Linkage disequilibrium

estimation was based on the European 1000 Genomes as a reference

(39). An SMR P-value <0.05 and a HEIDI P-value >0.05 indicate a

causal relationship between the exposure and the outcome.
2.6 Mediation analysis

Utilizing the TSMR method, we initially calculated the total

effect (b0) of different smoking statuses on NSCLC, the effect (b1) of
different smoking statuses on potential therapeutic targets, and the

effect (b2) of potential therapeutic targets on NSCLC. The

mediating effect was computed as b1*b2, and the direct effect was
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determined by subtracting the mediating effect from the total effect.

The mediation proportion was calculated as (b1×b2)/b0 (40), further
elucidating whether the predicted potential therapeutic targets play

a significant mediating role in the causal relationship between

different smoking statuses and NSCLC. All analyses were

conducted using R (version 4.3.3).
3 Results

3.1 The causal relationship between 13
different smoking states and NSCLC

We conducted an association analysis on 13 different smoking

statuses, removing linkage disequilibrium and weak instrumental

variables, and identified 917 SNPs across these smoking statuses,

with the smallest F-statistic being 20.86 and the largest 204.69.

Univariate MR analysis supported a causal relationship between

NSCLC and various smoking statuses, including Current tobacco

smoking, Exposure to tobacco smoke outside the home, Past

tobacco smoking, and Never smoked. IVW analysis results

indicated a positive correlation between NSCLC and Current

tobacco smoking (OR=5.218, 95% CI 2.95-9.373; P=0.000) and

Exposure to tobacco smoke outside the home (OR=2.467, 95% CI

1.166-5.220; P=0.018). Conversely, a negative correlation was found

with Past tobacco smoking (OR=0.722, 95% CI 0.607-0.860;

P=0.000) and Never smoked (OR=0.588, 95% CI 0.348-0.995;

P=0.048). Simultaneously, we employed the BWMR method to

validate and further ensure the reliability of the causal relationship.

Additionally, reverse MR analysis, using NSCLC as the exposure

and the four different smoking statuses as outcomes, revealed no

reverse causal relationships (P>0.05).

According to the results of the univariate MR analysis, current

tobacco smoking, exposure to tobacco smoke outside the home, past

tobacco smoking, and never having smoked all exhibit causal

relationships with NSCLC. By adjusting for the confounding factor

of BMI and conducting MVMR analysis, we found that the causal

relationship between current tobacco smoking (OR=6.487, 95% CI

2.670-15.765; P=0.000) and NSCLC persists, affirming that current

tobacco smoking is an independent risk factor forNSCLC. In contrast,

past tobacco smoking, exposure to tobacco smoke outside the home,

and never having smoked are not independent risk factors for NSCLC.

To evaluate the robustness of our analysis results, we employed

Cochran’s Q test, the MR-Egger intercept test, and MR-PRESSO to

assess pleiotropy and heterogeneity. No evidence of pleiotropy or

heterogeneity was detected (P>0.05). Furthermore, a leave-one-out

sensitivity analysis indicated that the exclusion of any single SNPwould

not significantly affect the estimates of causal relationships, suggesting

that the MR analysis results are robust (Tables 2, 3, Figure 2).
3.2 Acquisition of DEGs in NSCLC and MR
analysis of gene eQTLs and NSCLC

We retrieved transcriptomic data from the GEO database,

specifically datasets GSE21933, GSE23066, GSE27262, and
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GSE118370, which included samples from 57 normal lung tissues

and 57 NSCLC lung tissues. Each dataset was corrected and merged

to eliminate batch effects, resulting in the identification of 740

differential genes, comprising 343 upregulated and 397

downregulated genes. Concurrently, we conducted an association

analysis on gene eQTLs, removing linkage disequilibrium and weak

instrumental variables, and identified 19,739 SNPs associated with

gene eQTLs, with the smallest F-statistic being 29.71 and the largest

14,522.86. MR analysis revealed causal relationships between 163

gene eQTLs and NSCLC, with 81 showing a negative correlation

and 82 a positive correlation.

In our MR analysis, we identified 163 genes with causal

relationships and intersected these with the 740 genes identified as

DEGs, revealing co-expressed genes related to NSCLC. Among these,

five upregulated genes were identified: CA4 (OR=1.337, 95% CI

1.005-1.779; P=0.046), ZFP28 (OR=1.355, 95% CI 1.042-1.759;

P=0.023), NCAPD2 (OR=1.195, 95% CI 1.005-1.422; P=0.044),

FBN2 (OR=1.225, 95% CI 1.037-1.447; P=0.017), and PI16

(OR=1.337, 95% CI 1.052-1.699; P=0.018). Additionally, three

downregulated genes were identified: IL11RA (OR=0.781, 95% CI

0.650-0.937; P=0.007), RFC5 (OR=0.641, 95% CI 0.422-0.974;

P=0.037), and MLC1 (OR=0.632, 95% CI 0.414-0.966; P=0.034).

Simultaneously, we employed the BWMR method to validate and

further ensure the reliability of the causal relationships identified. To

assess the robustness of our analytical results, we employed Cochran’s

Q test and the MR-Egger intercept test to examine pleiotropy and

heterogeneity, detecting neither (P > 0.05). The leave-one-out

analysis indicated that the exclusion of any single SNP would not

significantly affect the estimates of causal association, suggesting that

the MR analysis is robust (Table 4, Figure 3).
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3.3 Enrichment analysis and immune
infiltration of co-expressed genes

We visualized the co-expressed genes to elucidate their

distribution in staining. Subsequently, we conducted GO and

KEGG enrichment analyses on these genes to explore their

potential roles. The GO enrichment analysis revealed that the co-

expressed genes predominantly affect biological functions such as

cytokine receptor activity and hormone activity, through processes

occurring at the extracellular side of the plasma membrane,

microfibrils, plasma membrane rafts, caveolae, and involving

caveolin-mediated endocytosis, extracellular regulation of signal

transduction, and regulation of response to osmotic stress. The

KEGG enrichment analysis focused on nucleotide excision repair,

mismatch repair, DNA replication, and base excision repair.

Additionally, single-gene GSEA analysis was performed on the

co-expressed genes to investigate the biological functions or

pathway activity levels in the high expression group. For instance,

IL11RA is associated with a defense response to other organisms,

innate immune response, and vesicle membrane in low expression,

and with regulation of cell differentiation and metanephros

development in high expression. MLC1, in high expression, is

associated with circulatory system processes, multicellular

organism processes, and sodium ion transport, while in low

expression, it is linked to chromosome organization and

chromosomal regions.

We utilized the CIBERSORT algorithm to infer the

characteristics of immune cells and explore the correlation

between NSCLC co-expressed genes and immune cells. Compared

to the control group, differences were observed in 13 types of
TABLE 3 The MVMR Analysis of Four Smoking States and NSCLC.

Exposure Outcome Beta Se P OR 95%CI

ukb-b-2134

NSCLC

-0.127 0.198 0.522 0.880 0.596-1.300

ukb-d-22506_114 0.279 0.397 0.481 1.322 0.607-2.881

ukb-b-6244 -0.133 0.518 0.797 0.875 0.316-2.420

ukb-b-223 1.869 0.452 0.000 6.487 2.670-15.765

BMI 0.075 0.072 0.299 1.078 0.935-1.244
TABLE 2 MR and sensitivity analysis of different smoking statuses and NSCLC.

Exposure Method snp Beta Se P BWMR

Pleiotropy Test Heterogeneity Test

MR-
PRESSO

MR-Egger
intercept

IVW Q
MR-

Egger Q

ukb-b-2134 IVW 241 -0.325 0.088 0.000 0.000 0.194 0.002 (P=0.676) 258.931 (P=0.191) 258.742 (P=0.181)

ukb-d-22506_114 IVW 38 -0.530 0.268 0.048 0.049 0.615 0.004 (P=0.728) 34.457 (P=0.588) 34.334 (P=0.547)

ukb-b-6244 IVW 67 0.902 0.382 0.018 0.018 0.536 0.005 (P=0.566) 60.090 (P=0.681) 59.758 (P=0.660)

ukb-b-223 IVW 138 1.652 0.298 0.000 0.000 0.345 -0.009 (P=0.217) 143.147 (P=0.342) 141.551 (P=0.354)
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immune cells (P < 0.05). In NSCLC samples, the proportions of

Plasma cells, T cells CD8, T cells CD4 naive, T cells regulatory

(Tregs), Macrophages M0, Macrophages M1, Dendritic cells

resting, and Neutrophils were elevated, whereas the proportions

of T cells follicular helper, Dendritic cells activated, Monocytes,
Frontiers in Oncology 06
Mast cells resting, and Eosinophils were reduced. Through Lasso

regression, 12 types of immune cells were selected, including Plasma

cells, T cells CD8, T cells CD4 naive, T cells CD4 memory activated,

T cells follicular helper, and Eosinophils. An intersection of these

identified nine core immune cells: Plasma cells, T cells CD8, T cells
TABLE 4 MR and sensitivity analysis of co-expressed genes with NSCLC.

Exposure Method snp Beta Se P BWMR
Pleiotropy Test Heterogeneity Test

MR-
Egger intercept

IVW Q MR-Egger Q

CA4 IVW 8 0.290 0.145 0.046 0.047 -0.044 (P=0.361) 6.857 (P=0.443) 5.883 (P=0.436)

ZFP28 IVW 3 0.303 0.133 0.023 0.023 0.019 (P=0.860) 0.494 (P=0.780) 0.445 (P=0.504)

NCAPD2 IVW 4 0.178 0.088 0.044 0.044 -0.034 (P=0.656) 0.647 (P=0.885) 0.380 (P=0.826)

FBN2 IVW 8 0.202 0.085 0.017 0.014 0.0001 (P=0.997) 7.404 (P=0.388) 7.404 (P=0.285)

PI16 IVW 6 0.290 0.122 0.018 0.018 -0.037 (P=0.619) 4.209 (P=0.519) 3.919 (P=0.416)

IL11RA IVW 7 -0.247 0.093 0.007 0.010 -0.138 (P=0.439) 4.801 (P=0.569) 4.096 (P=0.535)

RFC5 IVW 3 -0.444 0.213 0.037 0.038 -0.104 (P=0.544) 0.900 (P=0.637) 0.144 (P=0.703)

MLC1 IVW 4 -0.458 0.216 0.034 0.034 0.013 (P=0.875) 1.311 (P=0.726) 1.280 (P=0.527)
FIGURE 2

Forest plot of MR analysis for different smoking statuses and NSCLC (A); MR scatter plot for different smoking statuses and NSCLC (B); Results of the
leave-one-out sensitivity analysis for different smoking statuses and NSCLC (C).
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CD4 naive, and Eosinophils, among others, further suggesting a

significant correlation with NSCLC. Exploring the correlation

between co-expressed genes and immune cells, it was found that

ZFP28 and B cells naive were negatively correlated, as were ZFP28

and Macrophages M2; NCAPD2 was negatively correlated with

Dendritic cells resting andMast cells activated; FBN2 was negatively

correlated with T cells CD4 memory activated and Monocytes; PI16

was positively correlated with Dendritic cells activated, MLC1 with

T cells CD4 naive; IL11RA was positively correlated with T cells

CD8 and negatively with Macrophages M0; CA4 and RFC5 showed

no correlation with immune cells (Figure 4).
3.4 Differential analysis in the validation
cohort and SMR analysis

We further validated the co-expressed genes using data from the

validation cohort GSE74706, which included 18 samples of normal

lung tissue and 18 samples of NSCLC lung tissue. We observed that

CA4, PI16, IL11RA, and MLC1 were highly expressed in the control
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group, while NCAPD2 and RFC5 were expressed at lower levels

(P < 0.001). Compared to our MR analysis, the findings for IL11RA,

NCAPD2, and MLC1 were consistent with the MR results, further

affirming the potential of these three genes in regulating NSCLC.

We employed SMR to further ascertain the causal relationships

between gene eQTLs and NSCLC, revealing that 552 genes have a

causal association with NSCLC, with 287 showing a negative

correlation and 265 a positive correlation. Among the eight co-

expressed genes related to NSCLC, IL11RA, NCAPD2, and MLC1

passed both the SMR analysis and HEIDI tests (PSMR < 0.05 and

PHEIDI > 0.05), further substantiating the potential of IL11RA,

NCAPD2, and MLC1 as prospective therapeutic targets for

NSCLC (Table 5, Figure 5).
3.5 Mediation analysis

We conducted a mediation analysis focusing on NCAPD2,

IL11RA, and MLC1 as potential therapeutic targets for NSCLC,

to further explore whether these targets mediate the impact of
FIGURE 3

DEGs of NSCLC (A); Intersection of co-expressed genes (B); MR forest plot of co-expressed genes (C); MR scatter plot of co-expressed genes (D);
Results of the leave-one-out sensitivity analysis of co-expressed genes (E).
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various smoking statuses on NSCLC. Our aim was to elucidate the

proportion of the causal effects of four distinct smoking statuses on

NSCLC mediated by these three predicted potential targets. We

discovered that only IL11RA mediated the impact of past tobacco

smoking on NSCLC, with a mediation effect of -0.253, a direct effect

of -0.072, and a mediation proportion of 22.2% (Figure 6).
4 Discussion

In our study, univariate MR analysis revealed causal

relationships between current tobacco smoking, exposure to

tobacco smoke outside the home, past tobacco smoking, never

smoked, and NSCLC. After adjusting for BMI, further MVMR

analysis identified current tobacco smoking as an independent risk

factor for NSCLC. Utilizing bioinformatics, MR analysis, and SMR

analysis, we identified three potential therapeutic targets for NSCLC

(NCAPD2, IL11RA, and MLC1). Further investigation using these

three potential targets as mediators revealed that IL11RA might

partially mediate the causal relationship between past tobacco

smoking and NSCLC. Our findings offer a novel perspective for

the treatment of NSCLC.
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Smoking is the principal cause of lung cancer (41), with an

increased mortality rate associated with smoking (42). Smoking

drives the aggregation of pro-inflammatory macrophages (43),

induces the expression of CCNA (44), accumulates M2-TAMs (45),

andcauses oxidativedamage (46), therebypromoting thedevelopment

of NSCLC from multiple angles. This aligns with our research, which

genetically demonstrates that the longer the duration of current

tobacco smoking, the higher the risk of NSCLC. Compared to active

smoking, the mechanisms of passive smoking remain unclear (47);

however, systematic reviews have found that exposure to secondhand

smoke at home significantly increases the risk of lung cancer (48).

Secondhand smoke affects lung function and the production of

inflammatory cytokines (49), inducing inflammation and impairing

immunity (50).Ourgenetic research confirms that exposure to tobacco

smoke outside the home increases the risk of NSCLC, suggesting that

encouraging family members to quit smoking and avoid secondhand

smoke is one of the measures to reduce the risk of NSCLC. Numerous

studies have found that quitting smoking earlier and for longer

durations can reduce the mortality rate of NSCLC (51), and quitting

smoking,whether before or after diagnosis, is beneficial for the survival

of NSCLC patients (52, 53), enhancing overall survival (54). However,

there is no significant difference in survival between smokers and non-
FIGURE 4

Circos plot and enrichment analysis of co-expressed genes (A); GAEA enrichment analysis for NCAPD2, IL11RA, and MLC1 (B); Immune infiltration
analysis (C); Correlation between genes and immune cells (D); Screening of core immune cells (E).
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smokers with NSCLC (55). Our MR analysis found a negative

correlation between past tobacco smoking and NSCLC, consistent

withmost observational studies and systematic reviews. The incidence

of NSCLC in never-smokers is increasing (56), with variations due to

geography, environment, gender, and ethnicity (57). Our study

indicates a causal relationship between never smoking and NSCLC,

further emphasizing the genetic susceptibility to NSCLC.

Through bioinformatics andMR analysis, we have predicted eight

genes potentially relevant for the prevention and treatment of NSCLC,

with five showing positive correlations (CA4, ZFP28, NCAPD2,

FBN2, and PI16) and three exhibiting negative correlations

(IL11RA, RFC5, and MLC1). Cytokine receptor activity can

augment the chemotherapeutic immune response in NSCLC (58),

playing a synergistic role in combating tumors (59). There is a notable
Frontiers in Oncology 09
association between hormone activity and NSCLC (60); women

receiving estrogen therapy have a lower mortality rate from lung

cancer compared tomen (61), and estrogen can influence the immune

suppression response in NSCLC (62), inhibiting the growth of lung

cancer cells through hormone activity (63). Nucleotide excision repair

can fix mutated DNA bases, serving as a marker for early lung cancer

cells (64). We conducted an immune infiltration analysis, identifying

nine core immune cells in NSCLC through differential immune cells

and Lasso regression, and explored the co-expression of genes and

their correlation with immune cells. Plasma cells, which produce

specific antibodies to initiate an immune response, are prognostically

relevant to NSCLC (65) and contribute significantly to the efficacy of

PD-1 blockade in NSCLC treatment (66). Enhancing the immune

infiltration of T cells CD8 can improve the therapeutic efficacy against
FIGURE 5

Differential analysis in the validation group (***P<0.001) (A); Manhattan Plots for SMR Analysis (Positive and Negative Correlations) (B); Scatter Plots
of Single Genes as Potential Therapeutic Targets for NSCLC (MLC1 and IL11RA are negatively correlated, while NCAPD2 is positively correlated) (C).
TABLE 5 SMR Analysis of Co-expressed Genes with NSCLC.

Gene TOPSNP BGWAS SEGWAS PGWAS BeQTL SEeQTL PeQTL BSMR SESMR PSMR PHEIDI

IL11RA rs2070074 -0.259 0.095 0.006 0.788 0.012 0.000 -0.329 0.120 0.006 0.430

MLC1 rs137919 0.146 0.068 0.033 -0.180 0.009 5.05E-87 -0.811 0.383 0.034 0.062

NCAPD2 rs714775 -0.1653 0.074 0.027 -0.546 0.009 0.000 0.302 0.136 0.027 0.169
fro
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NSCLC (67), promoting anti-tumor activity (68). Eosinophils can

predict the response and prognosis of NSCLC treatment (69) and may

serve as predictive biomarkers (70). Neutrophils can be linked to new

therapeutic approaches in NSCLC (71).

Further validation groups and SMR have identified three potential

targets for the prevention and treatment of NSCLC: NCAPD2,

IL11RA, and MLC1. NCAPD2, located on chromosome 12, regulates

the structure and separation of chromosomes (72) and

heterochromatin recombination (73), affecting cellular function

abnormalities and playing a role in tumor development.

Downregulation of NCAPD2 can inhibit tumor growth in vivo (74),

promote the release of pro-inflammatory factors (75), enhance cell

cycle progression and invasive capabilities (76), regulate autophagy

(77), and serve as a prognostic biomarker in various cancers (78). It is

often overexpressed in pan-cancer settings, associated with poor

outcomes (79).MLC1, located on chromosome 22, is typically

associated with the white matter of the central nervous system and is

highly expressed in vascular astrocytes (80). It determines the

proliferation and invasive state of brain cancer glioma cells (81).

MLC1 expression is negatively correlated with tumor metastasis and
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has an anti-tumor effect (82). MLC1 enhances the sensitivity of cells to

apoptosis, improving the effectiveness of NSCLC treatment

(83).IL11RA, located on chromosome 9, initiates signaling pathways

that affect cell growth, proliferation, and differentiation. IL11RA

interacts with IL11 (84) and can regulate inflammatory responses,

bone metabolism, and tumor development through the IL-11 signaling

pathway (85). IL11RA is associated with T cells CD8 and can inhibit

tumor growth (86), enhance drug resistance (87), and has potential

immunomodulatory effects (88), improving survival outcomes (89).

Research on the relationship between IL11RA, past tobacco smoking,

and NSCLC is limited. However, through MR analysis, bioinformatics,

and mediation analysis, we discovered that past tobacco smoking could

exert a mediating effect on NSCLC through the mediation of IL11RA.

This provides a fresh perspective for the treatment of NSCLC.
5 Conclusion

This study employs bioinformatics and MR analysis to identify

three potential predictive targets, using them as mediators to
FIGURE 6

Forest plot of past tobacco smoking, IL11RA, and NSCLC (A); IL11RA Mediates the Causal Relationship between Past Tobacco Smoking and NSCLC
(Red Indicates Risk Factors, Green Indicates Protective Factors) (B).
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explore the causal relationship between past tobacco smoking in

various smoking statuses and NSCLC through the potential

therapeutic target IL11RA. This approach offers a novel

perspective for the treatment and prevention of NSCLC.
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