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Long non-coding RNAs in
ferroptosis, pyroptosis and
necroptosis: from functions to
clinical implications in
cancer therapy
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Hubei, China
As global population ageing accelerates, cancer emerges as a predominant

cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in

cancer cell growth and death, given their involvement in regulating

downstream gene expression levels and numerous cellular processes. Cell

death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis,

pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion

and metastasis. Understanding the interplay between lncRNAs and the diverse

forms of cell death in cancer is imperative. Modulating lncRNA expression can

regulate cancer onset and progression, offering promising therapeutic avenues.

This review discusses the mechanisms by which lncRNAs modulate non-

apoptotic RCDs in cancer, highlighting their potential as biomarkers for various

cancer types. Elucidating the role of lncRNAs in cell death pathways provides

valuable insights for personalised cancer interventions.
KEYWORDS
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1 Introduction

Cell death can be classified into two groups based on its rate and susceptibility to

influence by drugs or genes: accidental cell death and regulated cell death (RCD) (1, 2).

Accidental cell death arises from biological processes, whereas RCD is orchestrated by

signalling pathways and underlying mechanisms, maintaining homeostasis and influencing

the development of various diseases. RCD encompasses apoptotic and non-apoptotic

subsets, each with unique signalling induction and molecular regulatory characteristics, as

well as implications for disease (3). Currently, non-apoptotic RCDs, including ferroptosis,
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pyroptosis and necroptosis, plays pivotal roles in cancer progression

(4). Ferroptosis, an iron-dependent type of cell death, is

characterised by necrotic changes in cells such as cell swelling and

plasma membrane rupture, stemming from lipid hydroperoxide

accumulation (5). Ferroptosis is widely acknowledged as a critical

process influencing the development and advancement of various

cancers (6). Pyroptosis, an inflammatory form of cell death, involves

cell swelling, lysis, release of pro-inflammatory mediators, ATP

production and expression of high mobility group box 1, among

other features (7). Necroptosis, another form of cell death, shares

morphological similarities with necrosis, such as translucent

cytoplasm and organelle swelling, which can be triggered by

various mechanisms (8). Cancer is a complex disease that

involves the dysregulation of cell death. In cancer initiation and

progression, cell death is regulated by various molecules, including

long non-coding RNAs (lncRNAs).

LncRNAs, ranging from 200 to 10,000 nucleotides, lack a full

open reading frame (ORF) and seldom produce small functional

peptides. They are typically found in the nucleus or cytoplasm (9).

LncRNAs participate in essential physiological processes such as

cell cycle, tissue differentiation, metabolism and immunity (10–12).

Their abnormal expression or dysfunction is frequently associated

with various human diseases, including cancer (13). Previous

studies have demonstrated that lncRNAs possess tissue-specific,

cell-type-specific and cell developmental stage-specific properties

(14–17). Moreover, the dysregulation of lncRNAs has been

demonstrated to be associated with various cancer-related

phenotypes, including malignancy proliferation, epithelial-

mesenchymal transition (EMT), invasion and metastasis.

Furthermore, lncRNAs modulate cancer progression through

influencing various non-apoptotic RCDs signalling pathways.

Recent scholarly reviews have highlighted that abnormally

expressed ncRNAs exert a essential role on RCDs in the

progression of multiple diseases (18–20). Although the integrated

roles and mechanisms of lncRNAs in non-apoptotic RCDs remain

understudied, an increasing number of studies have demonstrated

that lncRNAs can mediate intracellular signalling pathways,

subsequently influencing physiological and pathological processes

such as cancer progression (21). Herein, this comprehensive review

elucidates the diverse functions and underlying molecular

mechanisms of lncRNAs in modulating non-apoptotic RCDs

processes during the initiation and progression of various cancers.

Moreover, we also highlights the potential of these lncRNAs in

cancer diagnosis and therapeutics, which have great significance for

translational medicine and clinical practice.
2 LncRNAs in cancers

LncRNAs are transcribed molecules longer than 200

nucleotides, which can be located in either the same or opposite

direction to protein-coding genes, or within regions between genes

(22). They play crucial roles in gene regulation, including the

modulation of gene activation and silencing. LncRNAs perform

diverse functions, including transcriptional regulation in cis or
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trans, regulation of gene expression and modulation of proteins

or RNA molecules (23). Their mechanisms of action include

chromosome looping, chromatin modification, transcription

inhibitor/activator, miRNA sponging, protein interaction and

translation modulation (Figure 1). While the majority of lncRNAs

are localised in the nucleus, some also function in the cytoplasm

(24). LncRNAs are transcribed by RNA polymerase II, and some of

these transcripts are often polyadenylated or 7-methylguanosine

capped and spliced (25–27). Typically, lncRNA functions are

divided into cis and trans, including the target is near the

genomic location of the lncRNA or is located on other

chromosomal loci (28, 29). Within the nucleus, lncRNAs mainly

regulate gene expression through interactions with transcription

factors (TFs), resulting in various epigenetic chromatin

modifications or DNA architecture alterations (chromosome

looping) (30). In the cytoplasm, lncRNAs predominantly govern

gene expression post-transcriptionally, coordinating various RNA

or protein modifications to influence their activation and stability

(31–33). Moreover, they can impact the stability and translation of

mRNA, as well as mRNA decay, through the formation of regions

with complementary sequences to mRNA (34, 35). Additionally,

lncRNAs function as ‘sponges’ or ‘decoys’, competing with other

genes for miRNA binding and consequently diminishing the

regulatory impact of miRNAs on targeted mRNAs (36).

Moreover, recent studies suggest that the translation of lncRNAs

is initiated by ORFs, with certain lncRNAs carrying out their

functions through their coding peptides (37). Furthermore, the

dysregulation of lncRNAs plays multifaceted roles in diseases,

including cancer.

Cancer is a complex disease characterised by genetic mutations,

epigenetic alterations, chromosomal translocations, deletions and

amplification (38, 39). In addition to mutations or abnormal

expression in protein-coding genes, mutations and dysregulation

of non-coding RNAs, specifically lncRNAs, are increasingly

recognised for their pivotal roles in cancer (40). LncRNAs drive

the acquisition of hallmark cancer characteristics, including

proliferation, survival, metabolism modulation and interactions

with the tumour microenvironment (TME). Recent studies have

demonstrated the roles of various lncRNAs in the TME, which is a

complex ecosystem involving diverse immune cells, cancer-

associated fibroblasts (CAFs), endothelial cells, and the

extracellular matrix (ECM), among others (41–44). It have

illustrated that the roles of lncRNAs within the TME which is

involved in diverse molecular mechanisms including interaction

with DNAs, RNAs and proteins. Early indications of lncRNA

involvement in cancer came from their transcriptional regulation

by prominent oncogenic or tumour-suppressive TFs such as p53,

MYC and various signalling pathways, shaping oncogenic or

tumour-suppressive responses (45). Previous research has

highlighted lncRNA’s participation in multiple signalling

pathways, such as Wnt/b-catenin, TGF-b/Smad, STAT3 and

VEGFA/VEGFR2, consequently influencing tumour invasion and

metastasis, tumour angiogenesis (46–49). While the precise

mechanisms through which lncRNAs participate in tumour

pathogenesis remain elusive, mounting evidence suggests their
frontiersin.org

https://doi.org/10.3389/fonc.2024.1437698
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1437698
key regulatory role in ferroptosis, pyroptosis and necroptosis (50,

51). Consequently, dysregulation of specific lncRNAs may exhibit

anti-tumour or pro-carcinogenic functions, impacting various

forms of cancer cell death.
3 Ferroptosis, pyroptosis
and necroptosis

Research has unveiled significant crosstalk among initiators,

executors and implementers of ferroptosis, pyroptosis and

necroptosis (52). These three forms of non-apoptotic RCDs are

extensively studied, each characterised by distinct molecular traits

(53). This section offers a concise overview of the mechanisms and

roles of these key forms of non-apoptotic RCDs (Figure 2).
3.1 Ferroptosis

Ferroptosis is a unique iron-dependent and oxidative form of cell

death (6). Compared to other types of cell death, ferroptosis exhibits
Frontiers in Oncology 03
marked variations in genetic, biochemical, morphological and

metabolic traits (1, 54). Notably, ferroptosis can rapidly propagate

within cell populations in a wave-like fashion. Morphologically, cells

undergoing ferroptosis display mitochondrial abnormalities including

swelling, altered density and rupture of the outer membrane.

Uncontrolled lipid peroxidation, driven by iron and Fenton-like

reactions, disrupts lipid membranes, a hallmark of ferroptosis.

Ultimately, the pathways related to iron, glutathione (GSH) and

lipid metabolism intersect to regulate ferroptosis execution (55).

Several cellular processes regulate ferroptosis (Figure 2A).

Ferroptosis is triggered by the excessive oxidative damage

(peroxidation) of lipids in the cell membranes, dependent on

iron, reactive oxygen species (ROS) and phospholipids containing

polyunsaturated fatty acids (PUFAs) (56–58). Intracellular PUFAs

are enzymatically converted into PUFA-phospholipid-peroxides

(PUFA-PL-OOH), leading to lipid peroxide buildup within

cellular membranes (59, 60). Iron-mediated lipid peroxidation is

regulated by four antioxidant pathways linked to ferroptosis:

System Xc–GPX4, FSP1-CoQ10, DHODH/CoQH2 and GCH1-

BH4. The antiporter System Xc-, encompassing SLC7A11 and

SLC3A2, facilitates cystine absorption, essential for GSH
FIGURE 1

The biogenesis and function of long non-coding RNAs (lncRNAs). LncRNAs are transcribed by RNA polymerase II, localising in the nucleus or cytoplasm.
In the nucleus, lncRNAs play various roles, such as the regulation of gene expression in cis or trans, splicing regulation and the formation of subnuclear
domains. Certain lncRNAs, which possess 3’ cleavage and polyadenylation features resembling the consensus sequence of mRNAs, can be transported
to the cytoplasm. In the cytoplasm, these lncRNAs serve various functions, such as acting as sponges for miRNAs, interacting with signalling proteins,
modulating the translation of specific mRNAs and even encoding peptides. TF, transcription factor; lncRNA, long non-coding RNA.
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production (61–65). Notably, erastin, a common ferroptosis

inducer, can suppress the expression of SLC7A11, leading to the

dysfunction of System Xc-. This leads to inhibited cystine uptake,

reduced GSH production and ultimately ferroptosis activation (66).

Excessive iron, stored as ferritin is released upon cellular

stimulation and undergoes degradation, resulting in Fe3+ release

in large quantities. This Fe3+ is then converted to Fe2+ by the

transferrin receptor-1 (TFR1) and ultimately discharged into the

cytoplasmic iron pool. Consequently, ROS levels increase, leading

to detrimental effects (67–69). GPX4 assumes a crucial role in

safeguarding against ferroptosis by reducing ROS cellular levels and

proficiently mending lipid oxidation-induced cellular damage.

Nevertheless, GPX4 inactivation due to GSH depletion and direct

inhibition via RSL3 or FIN56 comprises the antioxidant capacity

and subsequent lipid ROS overproduction, consequently triggering

ferroptosis through uncontrolled lipid peroxidation (70–72).

Ferroptosis can be initiated by disrupting the System Xc- cystine/

glutamate antiporter or GPX4, resulting in impaired redox balance

within the GSH system. Additionally, ferroptosis suppressor protein
Frontiers in Oncology 04
1 (FSP1) serves as another inhibitor of ferroptosis (73, 74). The

FSP1-CoQ10-NAD(P)H pathway operates independently of GPX4

and GSH to suppress phospholipid peroxidation and ferroptosis

(61). In the DHODH/CoQH2 pathway, DHODH functions

concomitantly with mitochondrial GPX4 (yet not aligned with

cytosolic GPX4 or FSP1) in hindering ferroptosis within the inner

mitochondrial membrane. This inhibition is achieved through the

reduction of ubiquinone to ubiquinol, which serves as a radical-

trapping antioxidant possessing anti-ferroptosis properties (63). In

another ferroptosis pathway, GTP cyclohydrolase-1 (GCH1) serves

as the primary enzyme regulating the production of BH4.

Furthermore, by genetically or pharmacologically inhibiting

GCH1, levels of BH4 can be depleted, thereby facilitating erastin-

induced cell death, enhancing lipid peroxidation and promoting

ferrous iron accumulation, ultimately resulting in ferroptosis (75).

A recent research found that 7-DHC attenuates ferroptosis by

diverting the peroxidation pathway from phospholipids and

protects cells from phospholipid peroxidation at the cell

membrane and mitochondria. However, high levels of 7-DHC
FIGURE 2

The molecular mechanisms of ferroptosis, pyroptosis and necroptosis. (A) Mechanisms of ferroptosis. The synthesis of PUFA, production of
intracellular ROS, upregulation of iron levels and inhibition of the GPX4-dependent defence system collectively promote ferroptosis in tumour cells.
(B) Mechanisms of pyroptosis. Upon encountering PAMPs or DAMPs, activated CASP1 or CASP11 triggers the cleavage and generation of GSDMD-N.
This process plays a central role in driving pyroptosis through the activation of both canonical and non-canonical inflammasomes. The induction of
pyroptosis is further modulated by signalling pathways involving ROS as well as calcium and potassium efflux. Inhibition of pyroptosis is mediated by
GPX4, which counteracts ROS-mediated pyroptosis. Notably, the gasdermin-N pore-forming domains and the gasdermin-C repressor domains are
distinctly separated. The gasdermin-N pore-forming domains subsequently undergo oligomerisation to form pores within the cell membrane,
resulting in the disruption of membrane integrity and the initiation of cell pyroptosis. (C) Mechanisms of necroptosis. Activation of the death receptor
results in the activation of RIPK1 and recruitment of intracellular RIPK3 to form a complex called the necrosome. Subsequently, RIPK3 is activated.
Activated RIPK3 then phosphorylates MLKL, which is co-trafficked with tight junction proteins to the cell periphery, where it binds to the plasma
membrane. The binding of MLKL at the plasma membrane triggers cell necroptosis. TFR, transferrin receptor; ROS, reactive oxygen species; PUFA,
polyunsaturated fatty acid; GSDMD, gasdermin D; LPS, lipopolysaccharide; TLR, toll-like receptor; DAMPs, damage-associated molecular patterns;
PAMPs, pathogen-associated molecular patterns; RIPK, receptor-interacting serine-threonine kinase; MLKL, mixed lineage kinase domain-like.
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also lead to more aggressive cancer manifestations and promote

cancer metastasis (76, 77). Notably, ferroptosis governs the growth

and proliferation of various tumour cell types, including

lymphocytoma, pancreatic ductal cell carcinoma, renal cell

carcinoma and hepatocellular carcinoma (HCC) (78–81).
3.2 Pyroptosis

Pyroptosis, a programmed inflammatory cell death mechanism,

involves the cleavage and activation of gasdermin, resulting in

compromised cell membrane integrity and the activation of

inflammasome sensors, releasing cellular proteins as danger

signals (82, 83). Despite certain similarities with apoptosis, such

as DNA damage and chromatin state changes, pyroptosis exhibits

distinct morphological traits (82, 84). Cells undergoing pyroptosis

exhibit swelling and bubble-shaped protrusions on the cellular

membrane before eventual rupture, contrasting with the regulated

and non-inflammatory nature of apoptosis (85). Notably,

pyroptosis elicits inflammation in response to various extrinsic

and intrinsic stimuli, including microbial pathogens, toxins and

chemotherapeutic agents (86). Compared to the abrupt rupture

seen in necrosis, pyroptosis results in cytoplasmic flattening due to

the leakage of the plasma membrane (7).

Previously, researchers speculated that pyroptosis arises as a

response to bacterial infection, which was primarily mediated by

caspase-1 in monocytes. However, recently, caspase-11/4/5 has

been demonstrated to play a role in sensing intracellular

lipopolysaccharide (LPS) and expanding the range of pyroptosis

mediators. This finding indicates that pyroptosis is not specific to a

particular cell type (87). Recent research has revealed that

gasdermin D (GSDMD), a substrate for caspase-1 and caspase-11/

4/5, acts as the executioner of pyroptosis by forming membrane

pores (83, 85). During pyroptosis, the pore-forming domains of

gasdermin-N are separated from the repressor domains of

gasdermin-C. The gasdermin-N domains subsequently

oligomerise and create pores in the cell membrane, resulting in

compromised membrane integrity and the induction of cell

pyroptosis (7, 88).

Pyroptotic cells are orchestrated through two primary

molecular pathways: the classical Caspase-1-dependent route and

the non-Caspase-1-dependent pathway. Caspase 1 governs the

canonical pyroptosis pathway, while caspases 4, 5 and 11 mediate

the non-canonical pyroptosis pathway (Figure 2B). In the canonical

pathway, various stimuli such as viruses, bacteria, toxins, ATP or

ROS, which are known as pathogen-associated molecular patterns

(PAMPs) or damage-associated molecular patterns (DAMPs),

trigger the activation of specific inflammasome sensors, including

NOD-like receptor family pyrin domain-containing 1B (NLRP1b),

NOD-like receptor family pyrin domain-containing 3 (NLRP3),

NOD-like receptor family CARD domain-containing protein 4

(NLRC4), AIM2 and pyrin (89–91). Upon activation, the sensors

of the inflammasome engage in direct or indirect interactions that

activate caspase-1. Subsequently, caspase-1 cleaves the N-terminal

end of GSDMD, thereby forming pores on the cell membrane (87).

This process ultimately culminates in the release of cytoplasmic
Frontiers in Oncology 05
contents and the onset of cellular pyroptosis. Furthermore, caspase-

1 catalyses the dissociation of pro-IL-1b and pro-IL-18, resulting in

mature IL-1b and IL-18 (92). In the non-canonical pathway, the

LPS derived from Gram-negative bacteria interacts with

either CASP11 or CASP4/5, leading to the activation of the

inflammasome (93). Subsequently, the inflammasome activation

induces the cleavage and generation of the N-terminal fragment of

GSDMD (GSDMD-N), which facilitates pyroptotic cell death by

forming pores on the plasma membrane through its pore-forming

activity (94–97). Pyroptosis is considered pro-inflammatory due to

its ability to release DAMPs from expired cells and promote the

maturation and secretion of interleukin-1 family members, such as

IL-1b and IL-18, through inflammasome activation (98). A novel

discovery has shown that GSDMD activation during pyroptosis

could be spatiotemporally modulated by a palmitoylation-

depalmitoylation relay model (99). Some studies have

demonstrated that caspase-3 can modulate and activate GSDME,

leading to pyroptosis (86). Recent research has found that USP48

can facilitate pyroptosis by stabilising GSDME and sensitising

cancer cells to pyroptosis (100). Current studies have uncovered

that pyroptosis is linked with the proliferation and migration of

multiple cancers, including colon cancer, osteosarcoma, head and

neck squamous cell carcinoma and breast cancer (101–104).
3.3 Necroptosis

Necroptosis is another type of immunogenic cell death (ICD),

which is a caspase-independent RCD process triggered by infection.

It is characterised by the phosphorylation of pseudokinase mixed

lineage kinase domain-like (MLKL) by receptor-interacting serine-

threonine kinase 3 (RIPK3) (105–107). Morphologically,

necroptosis involves organelle swelling, plasma membrane

rupture, cytoplasm and nucleus breakdown, and the release of

intracellular components known as DAMPs, which propagate

secondary inflammation. This pro-inflammatory nature suggests

that necroptosis may have evolved as an innate immune process

that supplements apoptosis in pathogen clearance (74, 108, 109).

Under conditions of insufficient apoptosis, necroptosis is regulated

by distinct death receptors (DRs) like FAS and tumour necrosis

factor receptor 1 (TNFR1) or pattern recognition receptors (PRRs)

such as toll-like receptor 3 (TLR3), which sense detrimental cues

from the intracellular and extracellular environments to trigger

necroptosis (110–112) (Figure 2C).

In the necroptosis process, death-inducing molecules such as

FasL and TRAIL stimulate necrosome complex assembly. NF-kB
inhibition induces Complex II a (RIPK1-independent) formation,

which is composed of TRADD, FADD and caspase-8 (113).

Moreover, the induction of complex IIb, which comprises RIPK1,

FADD and caspase-8, is observed when RIPK1 ubiquitination is

inhibited or when cytotoxicity induces phosphorylation, which

indicates that the initial stages of TNF signalling are hindered.

Inhibition of caspase-8 leads to necrosome complex formation

through RIPK1 and RIPK3 homotypic interactions, involving the

RIP homotypic interaction motif and consequently activating

MLKL through phosphorylation (109). Intracellular adaptor
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molecules, such as FADD, recruit RIPK1 and subsequently RIPK3,

forming the necrosome through phosphorylation processes. The

necrosome is a protein complex comprising core components such

as RIPK1, RIPK3 and MLKL (105, 112, 114). The translocation of

MLKL to themembrane is imperative for facilitating the influxofCa2+,

anearly occurrence inTNF-inducednecroptosis (115).DuringTNFR1

stimulation, a critical component of necroptosis, known as the

necrosome, assembles. In this process, CASP8, which is typically

involved in apoptosis, is suppressed. Upon TNFa stimulation, the

intracellular tails of TNFR1 recruit various proteins that collectively

form a signalling complex called ‘Complex I’. In general, the activation

of RIPK1 kinase by TNFa, FASL (FAS ligand) and TRAIL (tumour

necrosis factor-associated apoptosis-inducing ligand) initiates the

formation of a complex known as inhibitors of apoptosis (cIAPs) at

the cell membrane. This cascade reaction ultimately triggers the

activation of NF-kB, thereby promoting cell survival (8, 116, 117).

Necroptosis plays indispensable roles in various physiological

functions, but dysregulation is associated with multiple human

diseases (118). In addition to their essential roles in physiological

processes, molecules associated with necroptosis contribute to the

development of various cancers including breast cancer, liver cancer,

PAAD and CRC (106, 118–121). Recent findings highlight the crucial

involvement of necroptosis in tumour development and metastasis,

suggesting promising prospects for leveraging necroptosis in cancer

treatment (8).
Frontiers in Oncology 06
4 LncRNAs regulate ferroptosis,
pyroptosis and necroptosis

Emerging studies uncovered that lncRNAs influenced tumour

progression by regulating non-apoptotic RCDs. In the following

sections, the role of lncRNA-regulated ferroptosis, pyroptosis and

necroptosis in different cancer types are discussed, including lung

cancer, liver cancer, gastric cancer (GC), breast cancer (BC), bladder

cancer (BLCA), colorectal cancer (CRC), endometrial cancer (EC),

ovarian cancer (OC), pancreatic adenocarcinoma (PAAD), prostatic

cancer (PCa), oral squamous cell carcinoma (OSCC) and glioma

(Figure 3, Table 1).
4.1 LncRNAs regulate ferroptosis

Ferroptosis is intricately linked to cancer progression. However,

the underlying mechanisms, particularly those involving lncRNA-

mediated ferroptosis in oncogenesis, remain insufficiently explored.

This section focuses on the lncRNAs that regulate ferroptosis across

various cancers through via diverse mechanisms (Figure 3A).

4.1.1 LncRNAs regulate ferroptosis in lung cancer
Lung cancer remains the leading cause of cancer-related

mortality globally, with non-small cell lung cancer (NSCLC)
FIGURE 3

The role of lncRNA-mediated ferroptosis, pyroptosis and necroptosis in different cancer types. (A) LncRNAs can regulate ferroptosis to influence
various types of cancers, including lung, liver, stomach, bladder, prostate, colorectal, and pancreatic cancers. (B) LncRNAs mediate pyroptosis in
lung, liver, gastric, breast, endometrial, ovarian, colorectal, and oral squamous cell carcinomas. (C) The dysregulation of lncRNAs inhibits necroptosis
in lung and liver cancers. BLCA, bladder cancer; PCa, prostatic cancer; PAAD, pancreatic adenocarcinoma; EC, endometrial cancer; OC, ovarian
cancer; OSCC, oral squamous cell carcinoma.
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TABLE 1 Examples of non-apoptotic regulated cell death (RCD) regulated by long non-coding RNAs (lncRNAs) in cancers.

lncRNA
Interacting
molecules

Axis/
Signaling
Pathways

Anti-/Pro-
non-apoptotic
RCDs types

Function Cancer Reference

LINC00336 miR-6852 CBS Anti-ferroptosis
Inhibits ferroptosis in lung cancer by sponging
miR-6852

Lung cancer (122)

H19 miR-19b-3p FTH1 Anti-ferroptosis
H19 inhibits ferroptosis via the miR-19b-3p/
FTH1 axis under curcumenol treatment.

Lung cancer (123)

mir503HG miR-1273c SOX4 Anti-ferroptosis
Inhibits NSCLC via sponging miR-1273c and
regulating SOX4 expression.

NCSLC (124)

P53RRA G3BP1 — — Pro-ferroptosis
Promotes ferroptosis and apoptosis in cancer
via nuclear sequestration of p53.

Lung and
breast cancers

(125)

MT1DP miR-365a-3p NRF2 Pro-ferroptosis
Ectopic expression of MT1DP sensitized A549
and H1299 cells to erastin-induced ferroptosis
through downregulation of NRF2;

NCSLC (125)

GSEC miR-101-3p CISD1 Pro-ferroptosis
Inhibit the proliferative and migratory
capabilities of LUAD cells by miR-101-3p/
CISD1 axis

LUAD (126)

NEAT1 ASCL4 — — Pro-ferroptosis Regulates ferroptosis sensitivity in NSCLC NCSLC (127)

LINC01134 Nrf2 GPX4 Anti-ferroptosis
Inhibits ferroptosis through GPX4 in
Hepatocarcinoma and inhibits sensitivity
of oxaliplatin

HCC (128)

HEPFAL — — — — Pro-ferroptosis
Promotes ferroptosis by mediating
SLC7A11 ubiquitination

HCC (129)

GABPB1-AS1 GABPB1 — — Pro-ferroptosis
Causes the accumulation of ROS during
erastin-induced ferroptosis in HepG2 cells

HCC (130)

HULC miR-3200-5p ATF4 Anti-ferroptosis

Downregulation of HULC induces liver cancer
cell ferroptosis by targeting the miR-3200-5p/
ATF4 axis to modulate the development
of HCC

HCC (131)

PMAN HIF-1a — — Anti-ferroptosis
Inhibits ferroptosis by promoting the
cytoplasmic translocation of ELAVL1 in
peritoneal dissemination from GC

GC (19)

CBSLR m6A-YTHDF2 — — Anti-ferroptosis
Suppresses ferroptosis through m6A-YTHDF2-
dependent modulation of CBS in GC.

GC (21)

BDNF-AS WDR5 FBXW7 Anti-ferroptosis
regulates ferroptosis in GC by affecting
VDAC3 ubiquitination

GC (132)

LINC00239 Keap1 — — Anti-ferroptosis
inhibits ferroptosis in CRC by binding to
Keap1 to stabilize Nrf2

CRC (133)

LINC01606 miR-423-5p
SCD1-Wnt/
b-catenin-TFE3

Anti-ferroptosis
Protects colon cancer cells from ferroptotic cell
death and promotes stemness by SCD1-Wnt/b-
catenin-TFE3 feedback loop signalling

CRC (134)

LINC02432 Hsa-miR-98-5p HK2 Anti-ferroptosis
Inhibits ferroptosis and predicts immune
infiltration, tumour mutation burden, and drug
sensitivity in PAAD.

PAAD (135)

OIP5-AS1 miR-128-3p SLC7A11 Anti-ferroptosis
Inhibits ferroptosis under chronic Cd exposure
by targeting miR-128-3p/SLC7A11 signaling

PCa (136)

PCAT1 TFAP2C
c-Myc/miR-25-
3p/SLC7A11

Anti-ferroptosis
Inhibits ferroptosis in docetaxel-resistant
prostate cancer

PCa (137)

RP11-89
miR-129-
5p/PROM2

— — Anti-ferroptosis

induces tumour cell proliferation and
migration, promotes tumorigenesis and inhibits
cell cycle arrest and inhibits ferroptosis via
PROM2-activated iron export

BLCA (138)

AC006160.1 — — — — Pro-ferroptosis protective factor for the progression of BLCA. BLCA (139)

(Continued)
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representing over 80% of all cases (155). Recent studies have

unveiled that lncRNAs can either promote or inhibit ferroptosis,

thereby influencing lung cancer progression. Ferroptosis plays a

significant role in tumorigenesis depression by selectively
Frontiers in Oncology 08
eliminating cells experiencing a nutrient deficiency or damage

caused by environmental or infection-induced stress (156). For

instance, LINC00336 acts as a competing endogenous RNA

(ceRNA) to suppress ferroptosis in lung cancer. The inactivation
TABLE 1 Continued

lncRNA
Interacting
molecules

Axis/
Signaling
Pathways

Anti-/Pro-
non-apoptotic
RCDs types

Function Cancer Reference

TUG1 MAZ
TUG1/MAZ/
FTH1 Axis

Anti-ferroptosis
Attenuates the antiglioma effect of
dihydroartemisinin by inhibiting ferroptosis.

Glioma (140)

NEAT1 SLC7A11 GPX4 Anti-ferroptosis
NEAT1 overexpression suppresses GNA
inhibition on cell vitality and eliminates GNA-
induced melanoma cell ferroptosis.

Melanoma (127)

MEG8 miR-497-5p
miR-497-5p/
NOTCH2 axis

Pro-ferroptosis
Inhibits the proliferation and induces the
ferroptosis of hemangioma endothelial cells by
regulating miR-497-5p/NOTCH2 axis.

Hemangioma (141)

HOXC-AS2 miR-876-5p HKDC1 Anti-pyroptosis
Increases pyroptosis of EC cells under HG
conditions via HOXC-AS2/miR-876-5p/
HKDC1 axis.

EC (142)

SNHG7 miR-34a miR-34a/SIRT1 Anti-pyroptosis
Inhibits NLRP3-dependent pyroptosis via miR-
34a/SIRT1 axis in liver cancer.

HCC (143)

HOTTIP miR-148a-3p
miR-148a-
3p/Akt2

Anti-pyroptosis
Promotes OC proliferation and suppresses
NLRP1 inflammasome-dependent pyroptosis
through miR-148a-3p/Akt2 signaling pathway.

OC (144)

RP1-85F18.6 — —
DNp63
and GSDMD

Anti-pyroptosis

Downregulation of RP1-85F18.6 promotes LDH
release, induces GSDMD cleavage and cell
membrane rupture, leading to CRC
cell pyroptosis

CRC (145)

lncOR7C2-1 EPS15L1 GSDME Anti-pyroptosis
The chimeric protein EPS15L1-lncOR7C2-1
can promote tumours by regulating GSDME-
dependent pyroptosis

Breast cancer (146)

GAS5 — — — — Pro-pyroptosis
Inhibited OC cell proliferation by activating
cell pyroptosis

OC (147)

LINC00958 miR-4306
miR-
4306/AIM2

Pro-pyroptosis

Induces AIM2-dependent pyroptosis via miR-
4306/AIM2 axis and enhanced OSCC cell
proliferation by downregulating SIRT1 to
decrease p53 expression.

OSCC (148)

ADAMTS9-
AS2

miR-223-3p
miR-223-
3p/NLRP3

Pro-pyroptosis

Acted as a tumour suppressor and enhanced
cisplatin sensitivity in GC cells by activating
NLRP3 mediated pyroptosis through sponging
miR-223-3p

GC (149)

MEG3 — —

NLRP3/
caspase-
1/GSDMD

Pro-pyroptosis
Induces pyroptosis via the NLRP3/caspase-1/
GSDMD pathway under cisplatin treatment

BRCA (150)

XIST miR-335
miR-335/
SOD2/ROS

Pro-pyroptosis
Knockdown of LncRNA-XIST inhibited NSCLC
progression by triggering miR-335/SOD2/ROS
signal pathway mediated pyroptotic cell death

NSCLC (151)

HABON mPTP — — Anti-necroptosis

Upregulated by TCF-4 and inhibited RIPK1-
induced necroptosis in the mesenchymal-like
LUAD cells by impairing of RIPK1–RIPK3
interaction via binding to the ID of RIPK1.

Liver cancer (152)

lncCRLA — — — — Anti-necroptosis
Inhibits RIPK1-induced necroptosis by
impairing RIPK1RIPK3 interaction via binding
to the intermediate domain of RIPK1

LUAD (153)

LncRNA-
107053293

miR-148a-3p
miR-148a-3p/
FAF1 axis

Pro-necroptosis
Regulated necroptosis by acting as a ceRNA of
miR-148a-3p. FAF1, as a gene target of miR-
148a-3p, also affects necroptosis.

Chicken
trachea cell

(154)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1437698
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1437698
of p53 by lymphoid-specific helicase leads to the induction of

ELAV-like RNA binding protein 1 expression, which, in turn,

enhances the levels of LINC00336 through transcriptional

regulation. Subsequently, LINC00336 acts as a ceRNA by

sequestering miR-6852, ultimately resulting in increased CBS

mRNA levels. This molecular cascade promotes cell proliferation

and tumour growth, while concurrently inhibiting ferroptosis in

lung cancer (122). As another example, lncRNA H19 counteracts

the anticancer properties of curcumenol via the miR-19b-3p/FTH1

axis in lung cancer. H19 suppresses lipid ROS generation while

promoting GSH production, thereby impeding ferroptosis (123).

The reduction in lncRNA MIR503HG levels, influenced by

XAV939, may suppress NSCLC by serving as a sponge for miR-

1273c and controlling SOX4 expression. Additionally, the decrease

in SLC7A11 expression, which is triggered by XAV939, may hinder

NSCLC progression through the ferroptosis pathway (124).

Moreover, lncRNA can also facilitate ferroptosis in lung cancer.

For example, the tumour-suppressive lncRNA P53RRA, also

referred to as LINC00472, is downregulated in various cancers,

such as lung, liver, breast and colon cancers. In lung cancer,

P53RRA interacts with Ras GTPase-activating protein-binding

protein 1 (G3BP1) within the cytosol, resulting in the

displacement of p53 from the G3BP1 complex. As a result, p53 is

localised to the nucleus, resulting in cell cycle arrest, apoptosis

activation and ferroptosis promotion. P53RRA facilitates

ferroptosis by influencing the transcription of various metabolic

genes, including the inhibition of SCL7A11. Furthermore, P53RRA

enhances erastin-induced ferroptosis and increases lipid ROS and

iron levels in cells (125). A recent study reported a new approach

wherein targeting the MT1DP/miR-365a-3p/NRF2 pathway

facilitated erastin-induced ferroptosis. The use of erastin/

MT1DP@FA-LPs (E/M@FA-LPs) effectively intensified

ferroptosis, leading to reduced cellular GSH levels and increased

lipid ROS. Moreover, the ectopic expression of the metallothionein

1D pseudogene (MT1DP) enhanced the susceptibility of A549 and

H1299 cells to erastin-induced ferroptosis by suppressing NRF2.

Additionally, MT1DP overexpression resulted in elevated levels of

malondialdehyde (MDA) and ROS. Notably, in instances of cancer

cells being exposed to erastin, an evident increase in intracellular

ferrous iron levels has been noted along with a decline in GSH

concentrations. Conversely, downregulating MT1DP demonstrated

the opposite effect (126). In lung adenocarcinoma (LUAD),

ferroptosis-related lncRNA GSEC expression was increased, while

miR-101-3p expression was decreased. Moreover, GSEC can

influence ferroptosis by sequestering miR-101-3p, thereby

influencing LUAD progression (157). Another study investigated

the involvement of nuclear-enriched transcript 1 (NEAT1) has been

reported to influence ferroptosis, exhibiting susceptibility to erastin-

induced ferroptosis (127).

4.1.2 LncRNAs regulate ferroptosis in liver cancer
Liver cancer is the leading cause of death from malignancies

globally, underscoring the urgent need for new treatment options

for patients (158, 159). Numerous studies have shown that lncRNAs

can either promote or inhibit ferroptosis in liver cancer through
Frontiers in Oncology 09
various mechanisms, including transcriptional regulation, protein

modification and sequestering miRNA. For instance, Kang et al.

revealed that LINC01134 suppresses ferroptosis by facilitating Nrf2

protein recruitment to the promoter region of the GPX4 gene,

thereby promoting GPX4 transcription and enhancing liver cancer

resistance to OXA (128). Another study indicated that lncRNA

HEPFAL contributes to ferroptosis in hepatoma cells by facilitating

the ubiquitination of SLC7A11. Thereby, HEPFAL emerges as a

promising candidate for the diagnosis and therapeutic intervention

of HCC (129). A recent study has revealed that URB1-AS1

attenuates sorafenib-induced ferroptosis by facilitating ferritin

phase separation and decreasing the intracellular free iron level.

Moreover, it was discovered that specifically silencing the

expression of URB1-AS1 with N-acetylgalactosamine (GalNAc)-

small interfering URB1-AS1 effectively potentiated the sensitivity of

HCC cells to sorafenib in an in vivo tumour model. This suggests

that URB1-AS1 targeting may represent a potential therapeutic

approach to overcome sorafenib resistance in HCC (160).

Erastin-induced upregulation of lncRNA GABPB1-AS1

promotes the formation of RNA duplexes with GABPB1 mRNA,

leading to the inhibition of GABPB1 translation. This inhibition

ultimately results in reduced expression of PRDX5, leading to ROS

accumulation. Therefore, GABPB1-AS1 lncRNA could potentially

contribute significantly to erastin-induced ferroptosis in HCC

(130). Another study found that liver cancer cell ferroptosis can

be induced by suppressing HULC, mediated by the miR-3200-5p/

ATF4 axis. This regulatory pathway emerges as a crucial

determinant in the pathogenesis of HCC (131).

4.1.3 LncRNAs regulate ferroptosis in
gastrointestinal tumours

GC, the fifth most prevalent cancer worldwide, is the third

highest cause of cancer-related deaths (161, 162). LncRNAs can

influence ferroptosis by interacting with different regulators,

thereby cata lys ing the ini t iat ion and progress ion of

gastrointestinal tumours. For example, in GC, hypoxia-induced

HIF-1a and lncRNA-PMAN facilitate the cytoplasmic

translocation of ELAVL1 during peritoneal dissemination. This

orchestration effectively inhibits ferroptosis, as PMAN,

upregulated by HIF-1a, stabilises SLC7A11 mRNA through

ELAVL1-mediated cytoplasmic distribution. The resulting

accumulation of SLC7A11 elevates l-GSH levels, inhibiting ROS

and iron accumulation, thereby shielding GC cells from ferroptosis

induced by agents like erastin and RSL3 (19). Additionally, hypoxia-

induced signalling pathways, including CBSLR, CBS and ACSL4,

modulate the metabolism of PUFAs, conferring resistance to

ferroptosis in GC cells. Under hypoxic conditions, CBSLR is

transactivated by HIF-1a, leading to the modulation of ferroptosis

in GC cells. Moreover, the increased expression of CBSLR in GC

tissues correlates with an unfavourable prognosis and reduced

responsiveness to chemotherapy, underscoring its potential as a

prognostic biomarker and a determinant of chemotherapy efficacy

(21). As another example, the BDNF-AS/WDR5/FBXW7 axis

regulates ferroptosis in GC by influencing the ubiquitination of

VDAC3. Furthermore, BDNF-AS demonstrates promising
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prospects as both a prognostic biomarker and a therapeutic target in

GC (132).

In CRC, which ranks as the second leading cause of cancer-

related deaths globally, lncRNAs like LINC00239 fosters CRC cell

proliferation by interacting with Keap1, thereby disrupting the

Keap1/Nrf2 complex and consequently bolstering Nrf2 protein

stability, which results in its translocation to the nucleus (163,

164). The overexpression of LINC00239 suppresses ferroptosis by

interacting with the Kelch domain (Nrf2-binding site) of Keap1,

thereby blocking Nrf2 ubiquitination and augmenting its protein

stability. LINC00239 promotes CRC tumorigenesis in vitro and in

vivo (133). Similarly, LINC01606 inhibits ferroptosis and promotes

CRC stemness via the SCD1-Wnt/b-catenin-IGHM enhancer 3

(TFE3) positive feedback loop signalling. Thus, LINC01606

emerges as a pivotal therapeutic target for CRC treatment (134).

Furthermore, LINC02432 exert an oncogenic role in PAAD by

inhibiting ferroptosis through the miR-98-5p/HK2 axis. Moreover,

its potential as a predictive marker for immune infiltration, drug

responsiveness and tumour mutation burden underscores its

significance. Further research is warranted to elucidate the precise

mechanism underlying LINC02432 impact on PAAD

prognosis (135).
4.1.4 LncRNAs regulate ferroptosis in
other cancers

In other cancers, lncRNAs also play crucial roles in initiating

and progressing tumours by affecting ferroptosis. For instance, in

PCa cells exposed to chronic Cd, the expression of lncRNA OIP5-

AS1 is significantly elevated. OIP5-AS1 enhances cell proliferation

and inhibits ferroptosis upon chronic Cd exposure by modulating

the miR-128-3p/SLC7A11 pathway. Furthermore, targeting OIP5-

AS1 holds promise as a viable therapeutic approach for managing

Cd-induced progression of PCa (136). Another example is

TFAP2C-regulated lncRNA PCAT1, which suppresses ferroptosis

in docetaxel-resistant PCa via c-Myc/miR-25-3p/SLC7A11

pathway (137).

In BLCA, the lncRNA RP11-89 exerts an inhibitory effect on

ferroptosis by facilitating PROM2-mediated iron export through its

interaction with miR-129-5p. Moreover, the miR-129-5p/PROM2

axis is utilised by RP11-89 to promote tumour cell proliferation and

migration, boost tumorigenesis and hinder cell cycle arrest. RP11-

89 upregulates PROM2 expression and functions as a ceRNA

targeting miR-129-5p (138). Additionally, the lncRNA

AC006160.1 is a ferroptosis-related lncRNA that demonstrates

significant potential in accurately predicting survival outcomes,

clinical stages, tumour grades, immune cell infiltration and

immune checkpoint expression in BLCA. Moreover, AC006160.1

exhibits a protective role in hindering BLCA progression (139).

In glioma, the lncRNA TUG1 undermines the antiglioma

efficacy of dihydroartemisinin (DHA) by suppressing ferroptosis

through the MAZ/FTH1 axis. Modulating TUG1 expression or

inhibiting FTH1 can augment the antiglioma effects of DHA,

presenting a promising strategy to enhance DHA’s effectiveness

against glioma (140). As another example, SNAI3-AS1 interacted

with SND1 in a competitive manner, disrupting the m6A-
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dependent recognition of Nrf2 mRNA 3’UTR by SND1, thereby

reducing the mRNA stability of Nrf2. This, in turn, enhanced the

anti-tumour efficacy of erastin in vitro and in vivo by facilitating

ferroptosis, providing a theoretical basis for inducing ferroptosis to

improve the treatment of glioma (165). Furthermore, the

downregulation of NEAT1 inhibits the direct interaction between

SLC7A11, indirectly inhibiting GPX-4 activity and facilitating

ferroptosis. Moreover, NEAT1 overexpression counteracts GNA-

mediated suppression of cell viability and prevents GNA-induced

ferroptosis in melanoma cells (166). Another study investigated the

impact of lncRNA MEG8 downregulation on haemangioma

endothelial cells and found that decreased expression of lncRNA

MEG8 inhibited cell proliferation and stimulated the occurrence of

ferroptosis. Additionally, they observed that these effects were

mediated through the modulation of the miR-497-5p/NOTCH2

signal pathway (141).

In conclusion, lncRNAs can affect the development of cancers

by regulating the ferroptosis inducer ROS, the key regulatory factor

Nrf2, SLC7A11, and the NF-kB signalling pathway. Therefore, an

in-depth exploration of the molecular mechanism of lncRNA-

regulated ferroptosis in tumours will illuminate new insight on

the prevention and treatment of cancers.
4.2 LncRNAs regulate pyroptosis

Pyroptosis can suppress tumour initiation and progression, it

also has the potential to create a microenvironment that favours

tumour growth. LncRNAs can influence the initiation and

progression of various cancers by interacting with various

regulators to modulate pyroptosis (Figure 3B). This section

describes the signalling pathways associated with lncRNA-

mediated pyroptosis, which may represent a potential approach

for regulating pyroptosis in cancers.

4.2.1 LncRNAs regulate pyroptosis in
gastrointestinal tumours

In CRC, silencing of lncRNA RP1-85F18.6 facilitates the

induction of pyroptosis in CRC cells by escalating the discharge

of LDH, promoting the fragmentation of GSDMD and disrupting

the cell membrane, thereby impeding CRC cell proliferation and

invasion. Additionally, lncRNA RP1-85F18.6 can inhibit GSDMD

activity by enhancing DNp63 expression, thereby inhibiting the

pyroptosis of CRC cells and facilitating the progression of cancer

(145). The upregulation of ADAMTS9-AS2 suppresses GC

advancement and enhances the sensitivity of cisplatin-resistant

GC cells to cisplatin by mediating the miR-223-3p/NLRP3 axis,

thereby inducing pyroptosis (149).

4.2.2 LncRNAs regulate pyroptosis in OC
It has been demonstrated that HOTTIP is highly expressed in

OC tissue samples and cell lines. The inhibition of HOTTIP inhibits

the progression of OC and the initiation of pyroptosis regulated by

the NLRP1 inflammasome through the miR-148a-3p/Akt2

signalling pathway (144). Likewise, lncRNA growth arrest-specific
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transcript 5 (GAS5) induces the formation of the inflammasome

and promotes the inflammatory process by interfering with the

glucocorticoid receptor. LncRNA GAS5 acts as a tumour suppressor

and could be used as a potential therapeutic target for the diagnosis

and treatment of OC (147).

4.2.3 LncRNAs regulate pyroptosis in
other cancers

In triple-negative breast cancer (TNBC), the inhibition of

MEG3 not only partially mitigated the stimulatory effect of DDP

on the NLRP3/caspase-1/GSDMD-mediated pyroptosis pathways,

but also counteracted DDP’s inhibitory effect on tumour growth

and metastasis, highlighting new avenues for the development of

innovative therapeutic approaches for TNBC (150). HOXC‐AS2, a

ceRNA, promotes pyroptosis and glycolysis through the miR‐876‐

5p/HKDC1 signalling pathway, thereby stimulating the generation

of inflammatory factors and the release of lactic acid into the TME,

ultimately enhancing the proliferation and migration of EC cells

(142). In liver cancer, lncRNA small nucleolar RNA host gene 7

(SNHG7) suppresses NLRP3-triggered pyroptosis through the miR-

34a/SIRT1 pathway (143). LINC00958 also induces AIM2-

dependent pyroptosis via the miR-4306/AIM2 axis and enhances

OSCC cell growth by reducing SIRT1 levels, resulting in decreased

p53 expression (148). Silencing of lncRNA-XIST hinders the

proliferation of NSCLC via triggering the miR-335/SOD2/ROS

axis-regulated cell pyroptosis (151). Moreover, emerging research

indicates a potential correlation between the fusion of mRNA-

lncRNA, leading to the production of the chimeric protein

EPS15L1-lncOR7C2-1, which facilitates tumour growth by

potentially controlling GSDME-related pyroptosis. These findings

underscore the significance of lncRNA fusions in the regulation of

tumour immunity via pyroptosis (146). Recent research has

substantially refined our knowledge of the interplay between

lncRNAs and pyroptosis in various cancers, offering significant

insights that could enhance clinical strategies for the diagnosis and

treatment of cancers.
4.3 LncRNAs regulate necroptosis

Mounting evidence underscores the role of lncRNA in either

promoting or inhibiting necroptosis, thereby influencing tumour

progression. In this section, we listed some lncRNAs linked with

necroptosis in cancers (Figure 3C). For instance, lncCRLA, exhibits

significant upregulation mediated by TCF-4 and suppresses RIPK1-

induced necroptosis in mesenchymal-like LUAD cells. By impairing

the interaction between RIPK1 and RIPK3, lncCRLA effectively

obstructs necroptosis (153). Furthermore, HABON, a hypoxia-

activated lncRNA, exerts a suppressive effect on necroptosis in

liver cancer by binding with the mitochondria-related protein

VDAC1. This interaction modulates the opening of the

mitochondrial permeability transition pore, thereby regulating

necroptosis (152). In addition, lncRNA-107053293 inhibits

necroptosis induced by ammonia in trachea cells and LMH cells

via miR-148a-3p/FAF1 axis. FAF1, as a gene target of miR-148a-3p,
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also affects necroptosis via its interaction with the necrosis-related

genes RIPK1 and RIPK3 (154). Together, lncRNAs can affect

necroptosis to influence the development of cancers by

interacting with the molecular effectors RIPK3 and MLKL.

Although lncRNA-mediated necroptosis are still limited to

molecular biology and disease model experiments, the regulatory

role of lncRNA-mediated necroptosis in cancers, as well as its

participation in the pathophysiological process of various cancers

reflected by lncRNA, are bound to be applied and reflected in future

clinical studies. The scene will be set for lncRNA-mediated

necroptosis to emerge prominently through early screening of

high-risk groups for tumours and diagnosis and treatment

of patients.

Taken together, lncRNAs exhibit oncogenic or anti-

carcinogenic effects by various mechanisms to regulate non-

apoptotic RCD genes and relative pathways involved in GSH,

NLRP3 and RIPK3/MLKL. The above mentioned that a large

number of lncRNAs have been implicated in hallmarks of cancer

by promoting or inhibiting non-apoptotic RCDs. Therefore, non-

apoptotic RCD associated lncRNAs could be used as promising

diagnostic biomarkers and therapeutic targets in cancer treatment.
5 Potential clinical applications of
lncRNAs in non-apoptotic RCDs

Recent studies have highlighted the close association between

lncRNAs and non-apoptotic RCDs processes, including ferroptosis,

pyroptosis and necroptosis. These lncRNAs play pivotal roles in

modulating RCD and related cell death pathways, thereby

influencing cancer progression and the efficacy of clinical

therapies (134, 167). Given their prevalence, functional

significance, and expression specificity, there is growing interest

in evaluating lncRNAs as novel biomarkers and therapeutic targets

in clinical settings. In the following sections, we will delve into the

involvement of lncRNAs in pathways leading to RCD across various

tumour types. Additionally, we will explore the therapeutic

potential of targeting lncRNAs involved in RCD as a promising

strategy for cancer treatment (Figure 4).
5.1 The diagnostic and prognostic value
of lncRNAs

A considerable number of lncRNAs is detectable in both

traditional tumour biopsies and liquid biopsies (e.g. blood, serum,

and urine), presenting potential as diagnostic and prognostic

biomarkers (Figure 4A). The current clinical applications of

lncRNAs functioning as biomarkers in different tumours are

outlined in Table 2. These lncRNA biomarkers offer distinct

advantages over traditional diagnostic markers in clinical settings.

For instance, lncRNA prostate cancer antigen 3 (PCA3) has been

established as a non-invasive initial diagnostic indicator for prostate

cancer, demonstrating reliable test characteristics and clinical utility

(NCT01632930) (168). Additionally, several clinical trials are
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currently underway to explore the diagnostic and prognostic

potential of lncRNAs in various cancer types (e.g., NCT04269746,

NCT05397548, NCT04729855).

In preclinical studies, lncRNAs have shown promise as valuable

biomarkers for diagnosing and predicting the prognosis of different

cancer types. For example, recent research has identified C5orf66

antisense RNA 1 as a diagnostic marker for early GC, with an area

under the curve (AUC) value of 0.789 (169). Combining multiple

lncRNAs often enhances biomarker performance. For instance, a

combination of lncRNA PANDAR, FOXD2-AS1 and SMARCC2

increases the AUC value to 0.84, indicating improved diagnostic

accuracy (170). Similarly, an 11-lncRNA signature has been

proposed as a prognostic indicator for BC, independent of

various clinicopathological parameters (171). While numerous

studies await validation in clinical settings, the utilisation of
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lncRNA expression profiles in cancer holds promise for future

applications in early detection and prognosis, offering high accuracy

and specificity.

As lncRNAs exhibit dysregulated expression in cancer and can

modulate key tumorigenic processes by promoting or inhibiting

different RCDs, they hold potential as diagnostic and prognostic

biomarkers. For instance, plasma-derived ZFAS1, SNHG11,

LINC00909 and LINC00654 together demonstrated a strong

diagnostic capability for CRC with an AUC of 0.937, particularly

in early-stage disease (AUC: 0.935) (172). Additionally, a nine-

pyroptosis-associated lncRNA signature has been independently

validated as a prognostic indicator for patients with BC. The AUC

of this lncRNA signature associated with pyroptosis reached 0.880

in the training dataset and 0.799 in the validation dataset (173). As

their regulatory roles in non-apoptotic RCDs are gradually being
FIGURE 4

Potential clinical applications of lncRNAs in cancers. (A) These lncRNAs can be quantified and analysed from tumour tissue and liquid biopsy
specimens (e.g. serum and urine) and thus have great potential as diagnostic and prognostic biomarkers; (B) Strategies for modulating lncRNAs
within the cytoplasm and nucleus encompass knockdown and overexpression techniques. Knockdown methodologies comprise RNA interference
(RNAi) and antisense oligonucleotides (ASOs). RNAi can be achieved through chemically synthesized siRNAs or pooled via lentivirally delivered short
hairpin RNAs (shRNAs). RNAi, RNA interference; ASO, antisense oligonucleotides; RISC, RNA-induced silencing complex; ROC, receiver
operating characteristic.
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unveiled, lncRNAs are emerging as effective diagnostic and

prognosis biomarkers in diseases. For instance, a clinical trial

reveals that lncRNA NBR2 regulates septic endothelial pyroptosis,

thereby underscoring the prognostic significance of pyroptosis

levels in patients with sepsis (NCT04427371). Furthermore,

lncRNAs regulating non-apoptotic RCDs pathways hold promise

as tumour diagnostic markers. Integrating specific lncRNAs with

other biomarkers has the potential to enhance diagnostic sensitivity

and specificity across various cancer types. In conclusion, the
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integration of lncRNAs with traditional biomarkers will enhance

diagnostic sensitivity and specificity, particularly in specific diseases

or cellular subtypes.
5.2 Therapeutic potential of lncRNAs

Recent studies have unveiled the capacity of lncRNAs to

influence RCD processes in cancer cells, presenting a potential
TABLE 2 Examples of clinical trials exploring the application of lncRNAs in cancers.

NCT
Number

Study Title LncRNA
Cancer
type

Primary
Purpose

Interventions Study Status

NCT04269746
Assessment Of Long Noncoding
RNA CCAT1 In Colorectal
Cancer Patients

CCAT1 CRC Diagnosis DIAGNOSTIC_TEST: CCAT1 COMPLETED

NCT05397548
Use of Circulating Exosomal
LncRNA-GC1 to Monitor
Gastric Cancer

LncRNA-
GC1

GC
Prognostic
biomarkers

DIAGNOSTIC_TEST:
Measurement of levels of
circulating exosomal lncRNA-GC1

COMPLETED

NCT04729855

Association of Autophagy-related
Genes, LncRNA and SNPs With
Colorectal Cancer in
Egyptian Population

HOTTIP CRC
Diagnostic
biomarkers

DIAGNOSTIC_TEST: serum
HOTTIP, EIF4EBP1 and serum
SNP HOTTIP rs1859168

RECRUITING

NCT05141383
Comparative Study of Diagnostic
and Prognosis Biomarkers of
Prostate Cancer in Liquid Biopsy

— —
Prostate
Cancer

Diagnostic
and
prognosis
biomarkers

OTHER: Urine sampling RECRUITING

NCT05270174

A Prospective, Multicenter Cohort
Study of Urinary Exosome
lncRNAs for Preoperative
Diagnosis of Lymphatic Metastasis
in Patients With Bladder Cancer

ELNAT1 BLCA

Prognosis
and
independent
predictor

OTHER: no intervention NOT_YET_RECRUITING

NCT05840133
Study of Long Non-coding RNA
SNHG15 as a Novel Biomarker in
HBV Associated HCC

SNHG15 HCC
Diagnostic
biomarker

DIAGNOSTIC_TEST: No
intervention was required for
patients or control group in
this study

NOT_YET_RECRUITING

NCT05749497

Prediction of the Chronicization of
Radiation-induced Acute Intestinal
Injury Based on the Expression
Level of lncRNA

UCID,
NEAT1,
ciRS-7

Radiation-
induced
Intestinal
Injury

Prognosis OTHER: NCRT+TME NOT_YET_RECRUITING

NCT03830619
Serum Exosomal Long Noncoding
RNAs as Potential Biomarkers for
Lung Cancer Diagnosis

— — Lung Cancer
Prognostic
biomarkers

DIAGNOSTIC_TEST:
collect samples

COMPLETED

NCT05708209

The Long Non Coding MALAT1
as a Potential Salivary Diagnostic
Biomarker in Oral Squamous Cell
Carcinoma Through Targeting mi
RNA 124

MALAT1 OSCC
Diagnostic
biomarker

— — COMPLETED

NCT03469544
Long Non Coding RNA HOTAIR
and Midkine as Biomarkers in
Thyroid Cancer

HOTAIR
Thyroid
Cancer

Diagnostic
biomarker

OTHER: complete blood picture,
serum urea and creatinine,liver
function test,T3,T4,thyroid
stimulating hormone,
thyroglobuline and thyroglobuline
anti body specific test Real time
polymerase chain reaction

UNKNOWN

NCT02304471
Circulating lncRNA and CV
Morbidities in CKD and ESRD

— —

Chronic
Kidney
Disease|End-
stage
Renal Disease

Prognostic
biomarkers

— — UNKNOWN
frontiersin.org

https://doi.org/10.3389/fonc.2024.1437698
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1437698
avenue for suppressing tumour development. Understanding the

mechanisms underlying gene overexpression or knockdown could

provide new insight for targeting lncRNAs in treatment strategies.

Currently, lncRNA-focused therapeutic strategies primarily involve

RNA interference (RNAi) and antisense oligonucleotides (ASOs),

offering customisable options for targeting a diverse range of

transcripts (174) (Figure 4B). Preclinical models of human tumours

have demonstrated the potential of lncRNAs as targets for cancer

therapy.For example, the targetingof lncRNAs(e.g. LINC00336)using

shRNA has shown promise in reducing cancer cell growth by

promoting ferroptosis, suggesting these lncRNAs may represent

novel therapeutic targets for human cancer (19, 122). In other

studies, silencing of lncRNAs MAYA, MALAT1 and lncARSR using

ASO has been shown to attenuate metastasis in mouse models,

underscoring the therapeutic potential of ASOs targeting lncRNAs

in cancer (175–178). Despite the emergence of preclinical studies

highlighting the therapeutic potential of lncRNAs in cancer, further

clinical trials are warranted to elucidate the targeting of lncRNAs as

novel therapeutic options in clinical settings. Several ongoing clinical

trials focus on anticancer therapy targeting non-apoptotic RCDs

processes in cancers such as GC and HCC (e.g., NCT05334849,

NCT04767750). Additionally, targeting mediators of non-apoptotic

RCDsholds promise as candidates to enhance the efficacy and safety of

therapeutic interventions. For instance, clinical trials evaluating the

potential efficacy of targeting necroptosis in metastatic solid cancer

(NCT04739618) and assessing the clinical efficacy of Aurora kinase A

(AURKA), a negative regulator of necrosome activation, inhibitors in

pancreatic ductal adenocarcinoma (NCT04479306, NCT04555837,

NCT04085315 and NCT01924260) are underway. However, the

clinical application of targeting lncRNAs is still in its early stages,

necessitating extensive research to develop advanced strategies and

effective agents for clinical settings. Furthermore, emerging studies

have revealed that targeting specific lncRNAs (e.g. H19) is associated

withvarious typesof cell death inhumancells, suggesting that targeting

these lncRNAs could be a promising strategy for cancer therapy (123,

179). However, the precisemechanism by which lncRNAs facilitate or

impede various RCD processes in cancer cells by targeting shared key

molecules remains to be elucidated tumour prognosis by initiating

multiple RCD mechanisms, offering novel insights for both diagnosis

and treatment strategies.

Nonetheless, the current research on the role of lncRNAs as

biomarkers or therapeutic targets has some specific limitations that

require further study in cancer therapy. Although non-apoptotic

RCD is a significant programmed cell death process that moderates

the inflammatory response and cell demise in cancer, the

investigation into how lncRNAs affect cancer therapy by

modulating non-apoptotic RCD has not been thoroughly

investigated in clinical trials, and this represents a potential area

of exploration.
6 Conclusion and perspectives

Recent studies have highlighted the association between

dysregulated expression of lncRNAs and the onset and

progression of various cancers. Dysregulation of non-apoptotic
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RCDs, including necroptosis, pyroptosis and ferroptosis, has been

shown to play a significant role in the etiopathogenesis of cancer

(180). This review provides an overview of the functions and

mechanisms of lncRNA-mediated ferroptosis, pyroptosis and

necroptosis in tumour initiation and progression, emphasising the

diagnostic, prognostic and therapeutic implications of lncRNAs in

cancers. Thus, gaining a comprehensive understanding of the

correlation between lncRNAs and non-apoptotic RCDs could

offer valuable insights into the underlying molecular mechanisms

of cancer pathogenesis. Moreover, inducing cancer cell death by

targeting theses lncRNAs presents a promising strategy for

cancer therapy.

However, several critical questions remain unanswered. Firstly,

how can lncRNAs be used as reliable biomarkers for cancer

diagnosis or prognosis, and how can they be explored further as

therapeutic targets? While lncRNAs have shown promise as

biomarkers and therapeutic targets, further research is needed to

fully exploit their potential in clinical applications (181). A large

quantity of lncRNAs modulate non-apoptotic RCDs and related

pathways in tumour cells to exert oncogenic or anticancer effects,

indicating potential value as predictive biomarkers of cancer

chemotherapy responsiveness and clinical prognosis (74, 182,

183). Secondly, it is crucial to understand how to specifically

target cancer cells to promote non-apoptotic RCDs and overcome

treatment resistance. It is also important to understand the

common signalling pathways (e.g., caspase-8 and RIPK1) between

non-apoptotic RCDs and apoptosis, which are critical for targeting

non-apoptotic RCDs regulated by lncRNAs in cancer therapy (184).

Thirdly, targeting non-apoptotic RCD associated lncRNAs to

reshape the TME could accelerate the development of therapeutic

strategies for cancer therapy. Recent researches have highlighted

that abnormally expressed lncRNAs can contribute to the

modulation of the TME via non-apoptotic RCDs (185–187).

Currently, the integration of novel technologies, such as CRISPR

screening and single-cell sequencing to accurately identify genetic

perturbations in different components of the TME will aid in the

development of lncRNA-based therapeutics for clinical practice.

To date, only a limited number of chemical drugs and herbal

remedies have been identified to target lncRNAs in non-apoptotic

RCDs for cancer treatment, primarily focusing on understanding

the regulatory mechanisms of non-apoptotic RCDs. Therefore, the

development of lncRNA-targeted anticancer strategy, particularly

involving herbal remedies, holds significant promise and may

contribute to a more comprehensive clinical approach to

enhancing cancer therapeutic outcomes.
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