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Introduction: Brain tumors are characterized by abnormal cell growth within or

around the brain, posing severe health risks often associated with high mortality

rates. Various imaging techniques, including magnetic resonance imaging (MRI),

are commonly employed to visualize the brain and identify malignant growths.

Computer-aided diagnosis tools (CAD) utilizing Convolutional Neural Networks

(CNNs) have proven effective in feature extraction and predictive analysis across

diverse medical imaging modalities.

Methods: This study explores a CNN trained and evaluated with nine activation

functions, encompassing eight established ones from the literature and a

modified version of the soft sign activation function.

Results: The latter demonstrates notable efficacy in discriminating between four

types of brain tumors in MR images, achieving an accuracy of 97.6%. The

sensitivity for glioma is 93.7%; for meningioma, it is 97.4%; for cases with no

tumor, it is 98.8%; and for pituitary tumors, it reaches 100%.

Discussion: In this manuscript, we propose an advanced CNN architecture that

integrates a newly developed activation function. Our extensive experimentation

and analysis showcase the model's remarkable ability to precisely distinguish

between different types of brain tumors within a substantial and diverse dataset.

The findings from our study suggest that this model could serve as an invaluable

supplementary tool for healthcare practitioners, including specialized medical

professionals and resident physicians, in the accurate diagnosis of brain tumors.
KEYWORDS

brain tumors, Convolutional neural networks, detection, medical imaging, computer-
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Introduction

The brain is an essential organ responsible for regulating the

nervous systems in both humans and animals (1). Brain tumors are

severe conditions characterized by abnormal cell proliferation

within or near the brain, often resulting in high mortality rates

(2). These tumors can be categorized as either primary or secondary

based on their point of origin and as benign or malignant based on

their characteristics. Primary tumors develop within the brain,

while secondary tumors metastasize to the brain from elsewhere.

Malignant tumors exhibit rapid growth and tend to infiltrate

healthy cells in other body areas (3). The early detection and

accurate diagnosis of brain tumors is crucial for effective

treatment and improving patient outcomes.

Some prevalent forms of primary brain tumors consist of

gliomas, meningiomas, pituitary adenomas, and schwannomas.

Gliomas, mainly grades 3 and 4, are the most frequently

occurring malignant tumors. Meningiomas and pituitary tumors

are the prevailing benign tumors. Meningiomas arise from the

membranes enveloping the spinal cord and brain, while pituitary

tumors develop from the pituitary gland at the brain’s base (4, 5).

Imaging techniques, such as magnetic resonance imaging, are

widely employed for visualizing the brain and identifying tumors.

MRI utilizes a combination of a magnetic field and radio waves to

generate detailed images of body tissues and organs, facilitating

precise diagnosis and evaluation of tumor-related damage (6). In

certain instances, tumor typing may require a biopsy. Improvements

in computer technology have enhanced processing speed and

memory capabilities. Many healthcare professionals acknowledge

the necessity for creating reliable predictive models to confront

their ongoing challenges. These models aim to recognize and

categorize patterns, assisting medical experts in patient diagnosis

and treatment strategies (7).

Deep Learning, a subset of machine learning, has become

widely known for its ability to construct intricate structures or

non-linear transformations through neural networks with multiple

layers. This approach has shown significant promise in radiology

and medical imaging by enhancing the precision and speed of tasks

like image classification, segmentation, and anomaly detection (8).

Training deep learning models on extensive medical images allows

them to extract essential features and patterns autonomously. This

capability empowers them to recognize and categorize various medical

conditions, such as brain tumors, lung diseases, and cardiovascular

abnormalities (9).

Various medical imaging modalities, including MRI, CT, and

PET scans, have benefited from successfully applying different types

of deep learning models like convolutional neural networks. These

CNNs are designed with convolutional layers for extracting features

and densely connected layers for classification (10). Through

extensive image data analysis and understanding of intricate

patterns, CNNs have enhanced disease diagnosis and prognosis

accuracy. A standard CNN typically comprises four layers: a

convolutional layer, an activation function layer, a pooling layer,

and a fully connected layer. These layers work together to process
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the input image, extract relevant features, and make predictions

based on those features (11).

The activation function layer enables the network to capture

non-linear correlations between input and output. Incorporating

non-linearity into the network facilitates the representation of

intricate patterns and connections within the data (12).

Transfer learning is commonly used to simplify the development

of new models for similar tasks. It entails utilizing a pre-trained

model trained on a large dataset as a basis for a specific task. This

approach enables us to capitalize on the knowledge and features

already captured by the pre-trained model, eliminating the necessity

to train an entirely new model from the beginning. Numerous

transfer learning models exist, including VGG, EfficientNet,

ResNet, Inception, MobileNet, DenseNet, and others (13).

This work is applicable in the field of medical imaging,

specifically for detecting and diagnosing brain tumors using

advanced deep-learning models. The proposed method utilizes

Convolutional Neural Networks (CNNs) with tailored activation

functions to improve the accuracy and efficiency of brain tumor

detection in MRI or CT scan images. The aim is to support

radiologists, residents, and medical professionals by offering a

more precise and automated tool for early diagnosis, which is

essential for effective treatment planning. The proposed work

introduces an innovative approach to brain tumor detection by

developing and implementing a novel CNN architecture enhanced

with advanced activation functions. This CNN model is specifically

designed to analyze medical imaging data, such as MRI or CT scans,

and accurately identify the presence of brain tumors. The primary

innovation is the introduction of these advanced activation

functions, which enhance the model’s capacity to recognize

intricate patterns and subtle features within medical images. This

approach can potentially enable more reliable and earlier detection

of brain tumors, ultimately improving patient outcomes.

This study involved the development of a novel model utilizing

CNN to categorize various forms of brain cancer using (MRI). We

have made the following critical contributions to this study:
a. This study introduces an innovative CNN methodology for

classifying four distinct types of brain tumors: glioma,

meningioma, pituitary tumors, and no tumor.

b. We utilized various activation functions and conducted a

comparative analysis between them.

c. After comparing them, we proposed a new type of activation

function, which proved to be the most effective.

d. By attaining the best accuracy score on the Kaggle dataset,

the study’s findings demonstrate that the suggested

methodology performs better than current methods.

Comparisons with previously used techniques and pre-

trained models were also made to evaluate the approach’s

prediction ability.
The remaining sections of this paper are structured as follows:

Section 2 provides an overview of the related work, while Section 3

describes the proposed model for brain tumor classification. In
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Section 4, we present the experimental results. Finally, Section 5

concludes the paper.
Related work

The intricate clinical significance of brain tumor classification

using MR images makes this an important study field. Automation

can be achieved using Deep Learning (DL) and Machine Learning

(ML). The manual tumor segmentation and feature extraction

processes of ML-based systems are their bottlenecks. DL-based

methods, such as Convolutional Neural Networks (CNNs), are

gaining ground on diagnosis challenges due to their superior

performance in medical image processing. In this section, we focused

on methods for brain tumor classification using deep learning.

Researchers either utilized the same dataset in this study or created

new CNN architectures and applied them to different datasets.

Additionally, we included studies that employed transfer learning.

Elena McCain-Nino and her colleagues created a CRISP-DM

model to identify brain cancers by adding a classification header to a

ResNet-50 framework (14). They constructed a data generator to split

pixels by 255 using a dataset of 3847 brain MRI images scaled to 256 ×

256. The model demonstrated 92% accuracy and 94% precision

throughout the test procedure. Using three distinct networks,

including GoogleNet, Manish and Rajiv (15) used the idea of transfer

learning to diagnose brain cancer images. 224 of the 696 MR-type

images in the dataset are benign, while 472 are malignant. An accuracy

of 96.65 is attained using the suggested framework.

Muhammad Altaf et al. proposed an approach to classification

that uses pre-trained Google Net and deep transfer learning (16).

This work examines a three-class method to differentiate between

three prevalent brain cancer types: pituitary tumors, meningiomas,

and gliomas. They used 930 images of pituitary tumors, 708 images

of meningiomas, and 1426 MRI images of brains affected by

gliomas. The accuracy was 91% when they used updated

GoogleNet to power independently softmax classifiers. It is

important to note that a hybrid approach that combines deep

learning and machine learning was used in this study to improve

accuracy. Accuracy increased to 95% after machine learning

techniques were applied.

The seven recent CNNs for categorizing meningioma, glioma,

and pituitary-type cancers were assessed by Anaya-Isaza et al. (17).

The outcomes show that neural network detection and classification

methods are quite good. First, the InceptionResNetV2 network

outperformed the other networks with accuracy levels as high as

97%—next, a new network design known as the cross-transformer

was added to the experiment. The FLAIR sequence was more effective

in detecting brain tumors, with an essential level below 0.03 in six out

of eight networks. Furthermore, it was demonstrated that the cross-

transformer obtained accuracy values that were nearly 90%.

Ravinder et al. (18) proposed a CNN-based model to predict

brain tumor types (Meningioma, Pituitary, Glioma, or No tumor)

using non-Euclidean distances in image data. The model achieved an

accuracy of 95.01%, with Net-2 with Graph input-based CNN and

Gaussian Adjacency matrix achieving the highest accuracy. This
Frontiers in Oncology 03
model is considered a vital alternative for detecting brain tumors in

suspected patients.

The study in (1) investigated the CNN structure and its ability to

classify data, and the low number of layers revealed shortcomings. The

effect of the VGG16Net, in addition to DenseNet models, on success

rates was examined. The approach was not applied since transfer

learning had no discernible impact on the success rate in the health

industry. Positive outcomes in thick layers were shown by DenseNet

analysis; however, not to the anticipated extent. The training step was

finished in person using CNN architecture. It was possible to locate a

dataset with approximately 7,000 photos split between 80% training

and 20% testing phases. The model’s success rate was 94–97% without

using transfer learning techniques.

This study created a CNN In (19) to identify brain cancers from

MRI data. The network was trained using a sixteen-layer VGG 16

model that had already been trained. The study aimed to find brain

tumors (Meningioma, Pituitary, and Glioma). With various processing

activities to increase efficiency, the suggested network design detected

cancers remarkably effectively. With an accuracy rate of 96%, the CNN

model performed substantially better than earlier research.

Manali Gupta et al. (20) used image edge detection and

cropping to detect ROI in MRI images, then expanded datasets

using data preparation. A basic CNN network containing 14 layers

was proposed as a practical classification approach for brain

tumors. The approach achieved 96% accuracy, surpassing VGG-

16, even with a small dataset, potentially aiding in tumor

identification in individuals with brain malignancies.

Zobeda Al-Azzwi1 and Nazarov2 (21) utilized CNN models to

classify images of cancer disease using stacking ensemble DL

methodology. Three models, VGG19, Inception v3, and Resnet

101, were used to train the data set of unhealthy and normal brains.

The 96.6% accuracy demonstrates the efficacy of ensemble models

for binary categorization, which was attained by using the Adam

optimizer and a Loss binary cross-entropy model.

A novel diagnostic system utilizing CNN with DWT data

processing was introduced in (22) to diagnose brain glioma

tumors. Discrete Wavelet Transformation (DWT) was used to

transfer original MRI pictures to the frequency domain, allowing

the suggested CNN model to employ temporal and spatial data

instead of typical pixel intensities. The original photographs receive

no pre-processing. MRI slices from 382 adult patients are used to

train the model. When using the DWT format data and the

suggested CNN model, the performance numbers are higher than

when using the MRI intensity values as input data. The

experimental results demonstrated the superior performance of

CNN based on DWT details for binary classification of glioma

tumors, with an accuracy of 0.97.

The authors Kibriya et al. (23) suggested developing a 13-layer

CNN architecture that is lightweight, has fewer layers, and has

learnable parameters to classify brain cancers from MRI data. The

proposed model was tested using a benchmark dataset for glioma,

pituitary, and meningioma, and it performed best with an accuracy

of 97.2%.

Innovative methods for categorizing brain tumor scans were

proposed in (24), including hybrid CNNs and transfer learning.
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There were four classes in each of the 2880 T1-weighted MRI brain

scans that made up the dataset (no tumor, glioma, meningioma, and

pituitary tumor). The brain tumor types were classified, and two

CNNs (AlexNet and GoogleNet) were fine-tuned using transfer

learning approaches. They obtained a 97% accuracy rate.

In (25), the study used 3264 MRI images to classify brain

tumors using various models. The ResNet-50 model performed

best with 80% accuracy, 75% recall, 84% precision, and 75% F1

score. The VGG-19 model had the lowest accuracy rate. The

transfer learning approach was more effective than peer studies,

especially with small data and fewer epochs. The study highlighted

the importance of preprocessing raw MRI scan images for training.

The potential advantages of combining the Python Imaging

Library (PIL) with the VGG16 DL algorithm for brain tumor

identification have been illustrated by Karamehić and Jukić (26).

Accurate and dependable tumor detection has been achieved by

integrating the feature collection powers of VGG16 with PIL’s

picture preprocessing and processing capabilities. The study’s

findings demonstrate the efficacy of this method in accurately

classifying various kinds of tumors. With 96.9% accuracy, the

research’s methodology delivered reliable identification of tumors

across the dataset.

Sarada et al. (27) utilized a modified ResNet50V2 deep learning

model to classify four types of brain tumor images. The traditional

resNet model was enhanced using batch normalization,

maxpooling, and dropout layers. The proposed model achieved

an accuracy rate of 96.33%.

Al-Otaibi et al. (28) implemented VGG16 and 2D-CNN to

present a unique neural network-based feature engineering

technique. Without human involvement, the resulting 2DCNN-

VGG16 model extracted spatial features from MRI images. To

diagnose brain cancers, machine learning models are then trained

using the newly generated hybrid feature set. Using a k-fold

accuracy performance score of 0.96.

Shamshad et al. (29). classified benign and malignant brain

tumors using MRI images by comparing pre-trained CNN

architectures, including VGG16, MobileNet, and ResNet-50.
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VGG-16 achieves the best accuracy of all the algorithms they

propose coming in at 97%.

A unique deep-learning model that makes use of a soft attention

mechanism was presented by Mohanty et al. (30) They used a CNN

Network with four convolution layers. Their method gathers and

combines attributes from all layers instead of obtaining features

only from the last layer, as is typical in many models. This

guarantees that each layer’s essential qualities are retained and

combined into a strong, comprehensive feature vector instead of

being lost. The accuracy rate of the suggested model was 95.1%.

Kurniawan et al. (31) used the InceptionResNetV2 structure and

data augmentation and Transfer Learning to classify images of brain

tumors. In Scenario 1, the accuracy of the suggested architecture used

in the test data evaluation was 94.18%. Scenario 2, which paired

InceptionResNetV2 augmentation with augmentation, demonstrated

an accuracy boost of 95.10%. Moreover, Scenario 3’s accuracy of

96.63% was achieved by combining InceptionResNetV2 via Transfer

Learning and augmentation.

This study aims to automate the detection of four types of brain

tumors using MRI images. We proposed a classification system

using CNN. In the beginning, we used existing activation functions

and compared their results. Then, we selected the best-performing

function and proposed modifications to enhance its performance

further. These modifications improved accuracy compared to the

current state-of-the-art.
Methods

This section presents the proposed methodology for identifying

and categorizing brain cancers using a unique CNN framework.

The suggested method has two main parts. First, the dataset must be

prepared, and then a custom CNN must be built to extract deep

characteristics and classify brain tumors. First, we resized and

normalized MRI images. The suggested 16-layered CNN

architecture is then fed these images. The general process of the

suggested method is depicted in Figure 1.
FIGURE 1

The structure of CNN is proposed.
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Dataset

The model was created using the Convolutional Neural

Network (CNN) architecture, a popular deep-learning algorithm

for image classification. To assess the performance of our model, we

used the open-source Brain Tumor MRI Dataset available on

Kaggle, a platform for data science competitions and projects,

which can be accessed through the following link: https://

www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-

dataset?select=Training. Three datasets (figshare, SARTAJ, and

Br35H) were combined to create this dataset (32). The diverse

dataset provides the model with a wide range of brain tumor

images. This helps the model learn different behaviors and

features, improving its ability to predict new, unseen data. As a

result, bias towards a specific subset of the dataset is reduced,

leading to the development of fairer AI systems. Training on a broad

dataset also enhances the model’s robustness and adaptability,

allowing it to handle a wider array of situations and data variances.

The data collection consists of four classes, as shown in Figure 2.

These are brain MRI images of healthy people, meningiomas, gliomas,

and other tumors. Images for gliomas (1621), meningiomas (1645),

pituitaries (1757), and healthy individuals (2000) are available. The

figshare dataset includes 3,064 T1-weighted, contrast-enhanced images

from 233 patients. These images represent three different types of brain

tumors: meningioma (708 slices), glioma (1,426 slices), and pituitary

tumor (930 slices). The SARTAJ dataset contains 3,260 T1-weighted,

contrast-enhanced images undergoing thorough cleaning and

augmentation. Lastly, the Br35H dataset consists of 3,060 Brain MRI

Images. Table 1 presents the information related to the dataset.

There were 7023 MRI pictures used in all. The Kaggle software

offers the dataset as open source. The 512 × 512 JPEG images each have

a label identifying the kind of brain tumor. Every model used this data

set as input data. 70% and 10% of the images were used for the training

and validation tasks, respectively. 20% of the images, however, served as

test data. However, to give the dataset a suitable input size for every

model, resizing was done during the preparation phase.
CNN

Overview
Convolutional neural networks (CNNs) are now the most widely

used DL networks. CNNs can process various data inputs, including
Frontiers in Oncology 05
1D signals and 2D pictures. An algorithm for deep learning that can

assess an input image, rank different visual characteristics according

to importance, and differentiate between them is a ConvNet/CNN

(33). Compared to other classification methods, ConvNet requires

comparatively less preprocessing. While the filters in outdated

methods are made by hand, ConvNets can learn about these filters

and their attributes. A CNN typically consists of multiple layers,

including the input, convolutional, Activation function, fully

connected, classification, and output layers. CNN’s core algorithm

is a convolution that uses an adaptable filter with preset weight and

size values that are changed throughout the training phase’s

downsampling to achieve high accuracy. Figure 3 presents the

suggested strategy for this work.

Activation function
Neural network activation functions are essential because they

compute the weighted total of input and biases to decide whether a

neuron can fire or not. Through gradient processing—most

commonly gradient descent—they change data and generate an

output containing the parameters found in the input. These

functions, which can be non-linear or linear, regulate outputs in

several fields, such as cancer detection systems, segmentation, object

recognition, and speech systems. Here are some commonly used

activation functions in deep learning:
i. ReLU

The Rectified Linear Unit (ReLU) is a non-linear activation

function that can carry out the derivative operation. While

leaving positive values unaltered, the ReLU function makes

all negative values zero. The problem of the vanishing

gradient can be prevented, which is why ReLU’s

simplicity has made it popular (34). It is possible to

define the ReLU function mathematically as

F(x) =  
  0,   x < 0  

  x,   x   ≥ 0
where   x   is   the   input   value

(
(1)

ii. Leaky ReLU

The “dying ReLU” issue is addressed by the Leaky ReLU

function, an adaptation of the ReLU algorithm that allows

negative values to descend modestly rather than being set to

zero (34).
FIGURE 2

Classes for brain tumors in the dataset (32).
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F(x) =  
  a*x,     x < 0  

    x  ,       x   ≥ 0
where a is the scalar number

(
(2)

iii. Clipped ReLU

An update to ReLU called Clipped ReLU applies a threshold

operation. Every value entered below zero is set to zero, and

any value that exceeds the clipping threshold is set to that

limit (36).

F(x) =    

0,      x < 0      

x  ,       constant >   x   ≥ 0

constant,   x ≥ constant

8>><
>>: (3)

iv. Exponential Linear Units (ELUs)

Another kind of AF suggested by Clevert et al. (2015) is

called ELUs, which is used to expedite the training of DNN

(34). The primary benefit of ELUs is their ability to enhance

learning features and mitigate the vanishing gradient issue

by employing identity for positive values. Their negative

values push the mean unit activation closer to zero,

lowering computational cost and accelerating learning

(35). Because it reduces bias shifts by driving mean

activation towards zero during training, the ELU is a

good substitute for the ReLU.

F(x) =  
 a : ex − 1,     x < 0  

      x  ,             x   ≥ 0

(
(4)

Where a is the ELU hyperparameter, typically set to 1.0,

regulates the saturation level for negative net inputs.
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v. Gaussian Error Linear Unit

The Gaussian Error Linear Unit (GELU) was introduced as

an alternative to more conventional activation functions

like ReLU (37). GELU seeks to offer a smooth and distinct

non-linearity to enhance the network’s learning and

performance.

GELU(x) =
x
2
: (1 + erf (0:707*x)) (5)
In this case, the mathematical function that represents the

degree of divergence of a normal distribution over zero is

called the error function, or erf(x).

vi. Hyperbolic Tangent Function

A popular non-linear activation function in neural networks

is the hyperbolic tangent function or tanh for short. The

conventional tangent function is extended to the hyperbolic

space in this way. In some circumstances, the zero-

centeredness of the tanh function makes it preferable to

the sigmoid function. Tanh, which has a mean value around

zero, might enhance learned dynamics in neural networks

and lessen the effects of the vanishing gradient issue (38).

Tanh function has the following mathematical expression:

F(x) =  
ex − e−x

ex + e−x
(6)

vii. Softsign

A non-linear AF that transfers the value of the input to a

range between -1 and 1 is the Softsign activation function.

Apart from the point of origin, the function is continuous,

smooth, and differentiable everywhere (36). The following

defines the Softsign function:

F(x) =
x

1 + xj j (7)

The key difference between the tanh and Softsign functions

is that the latter converges exponentially, while the former

converges in polynomial form.

viii. Swish Activation Function

In 2017, Google researchers unveiled the Swish, a non-

linear activation function. It is intended to offer a smooth
FIGURE 3

Structure of the suggested approach for classifying brain tumors.
TABLE 1 Dataset description.

figshare SARTAJ Br35H Total

gliomas 1426 195 1621

meningiomas 708 937 1645

pituitaries 930 827 1757

normal 500 1500 2000

Total 7023
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and effective activation function in terms of computing,

which may enhance the capabilities of DL (36). The Swish

generally possesses a single, uninterrupted positive or

negative derivative throughout the construction.

Furthermore, it has negative derivatives over some points

instead of merely taking positive ones across every point.

Through testing on difficult datasets, the developers have

shown that the swish function performs better than the

widely used ReLU activation function. The mathematical

expression for the Swish activation function is:

F(x) =  
x

1 + e−x
(8)
ix. Proposed modified softsign Activation Function

In this study, we proposed a new type of activation function

by modifying the softsign function. In the positive

direction, we kept it as it was in softsign, but in the

negative direction, we multiplied it by zero. The

mathematical expression for the proposed type is:

F(x) =
x

1+ xj j ,   x ≥ 0

  0  ,     x < 0

( )
(9)
The ReLU has a drawback in that it readily overfits when

compared to the soft sign function; however, the dropout approach

has been used to lessen the effect of ReLU overfitting, and the rectified

networks increased the performance of deep neural networks.

Furthermore, the Softsign function increases polynomially

rather than exponentially. This softer non-linearity leads to

improved and more rapid learning since it eliminates the need to

struggle with diminishing gradients. Due to this modification, the

learning process is disrupted by dying of some neurons because

negative responses cannot discriminate. Figure 4 compares the

Softsign, ReLU, and proposed functions.
Proposed CNN
This paper’s CNN structure started at the input layer,

containing an image size of 224 x 224 x 3, as Figure 5 illustrates.
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CNN’s structure comprised three convolutional layers to extract

deep features and generate the most accurate features map. The

batch normalization layer came after each map and oversaw

determining the training procedure and lowering the number of

epochs needed for CNN structures to learn. The layer with the

activation function was placed after the batch normalization layer.

The max pooling layer then downsampled the features map. An

ultimately linked layer with two neurons was used; in the second

stage, this was changed to three neurons.

Within the initial convolutional layer, thirty-two filters with a 3 ×

3 size were utilized. Smaller kernel sizes, such as 1x1, 2x2, 3x3, and

4x4, offer advantages over larger sizes like 5x5 and beyond. One of the

primary reasons for preferring smaller kernel sizes is their ability to

reduce computational costs and promote weight sharing, resulting in

fewer weights for backpropagation. However, it is not recommended

to use a 1x1 kernel as it generates finely grained and local features

without considering information from neighboring pixels. Moreover,

the 2x2 and 4x4 sizes are generally less favorable because odd-sized

filters symmetrically divide the previous layer’s pixels around the

output pixel. Therefore, the optimal choice is a 3x3 kernel. The same

kernel size was used for the second and third convolutional layers,

which had 64 and 32 filters. To determine the number of filters, we

followed a methodology that involved starting with a small number

and gradually optimizing them. Our goal was to find the right balance

between accuracy and computational efficiency. Ultimately, we

selected several filters that allowed us to learn the necessary

features effectively. Three × three stride by two padding sizes were

used in all convolutional layers. The classification layer was involved

to differentiate between the demand classifications. Table 2 illustrates

the configuration of our CNN.

A thorough study was conducted on the suggested framework,

emphasizing accuracy, F1-score, precision, and recall (37). F1-score

assesses the trade-off between accuracy and recall, measuring the

model’s ability to minimize misclassifying negative instances as

positive and recall accurately classifying the appropriate tumor type.

Accuracy divides the percentage of correct classifications to determine

the model’s overall performance. The receiver operating characteristic

curve, or ROC curve, is a graph that illustrates a classification model’s

performance overall categorization stages. The term AUC represents

“Area under the ROC Curve.” In other words, AUC calculates the area
FIGURE 4

Softsign, ReLU, and proposed functions Comparison Diagram.
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in two dimensions beneath the ROC curve, ranging from (0,0) to (1,1).

The AUC score has a value between 0 and 1. The model is better the

higher its AUC score.

Table 3 presents the critical performance metrics alongside their

respective mathematical equations.

Regarding the previous equations, the number of expected

positive instances is known as True Positive (TP). The number of

expected negative cases is True Negative (TN). False Negative (FN),

often called a (type two) error, is the number of expected adverse

events that turn out to be positive. The number of anticipated

positive outcomes that are negative is known as a false positive (FP).
Results and discussion

This paper introduces the impact of the activation layer on the

classification accuracy for four types of brain tumors. The proposed

CNN is trained using various activation layers, as mentioned in the

methodology section, and then the trained models are tested. The

confusion matrix is generated for each simulation to show how

the activation layer affects the accuracy of the brain tumor images.

The corresponding confusion matrices are for the testing phase. The

data is split into 70% training, 10% validation, and 20% testing.

MATLAB 2023a was utilized to carry out the tasks. The simulation

was run on an Intel(R) Core i5 CPU with 8GB RAM and Windows

10 software. Figure 6 shows the performance of the proposed model

after using the ReLU activation layer. All experiments are carried

out using the following hyperparameters; Adaptive Moment

Estimation (Adam) optimizer with initial learning rate of 0.0001,

minibatch size of 64, and maximum epoch of 64.

After applying ReLU, 254 out of 300 glioma cases were accurately

identified, resulting in a sensitivity of 84.7%. Among these, 41 cases

were incorrectly classified as meningioma, one as having no tumor, and

four as pituitary. Conversely, one meningioma case was misclassified as
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glioma. The precision for glioma was high at 99.6%. Furthermore, 299

meningioma cases were correctly identified, yielding a recall of 97.7%.

However, four cases were misclassified as having no tumor, two as

pituitary, and only one as glioma. Notably, the lowest precision among

the four classes was observed for no tumor cases, with a rate of 87.7%.

The highest sensitivity was achieved in no tumor cases, reaching 100%,

with a precision of 98.8%. Pituitary cases demonstrated promising

results in actual predictive rate (99.7%) and precision (98%). The

overall accuracy obtained in the experiment is 95.9%. The F1-score,

representing the geometric mean between sensitivity and precision, has

been evaluated at 95.55%.

The same experiment is carried out using Leaky -ReLU. Figure 7

shows the performance of the proposed model.

Upon applying Leaky ReLU, 233 glioma cases out of 300 were

correctly identified, resulting in a sensitivity of 77.7%. Among these,

52 cases were erroneously classified as meningioma and 15 as

pituitary. Conversely, three meningioma cases were misclassified

as glioma. The precision for glioma was notably high at 97.9%.

Additionally, 258 meningioma cases were accurately identified,

producing a recall of 84.3%. However, 22 cases were misclassified

as having no tumor, 19 as pituitary, and three as glioma. Notably, a

moderate precision among the four classes was observed for no

tumor cases, with a rate of 93.3%. The sensitivity in no tumor cases

was remarkable, reaching 98.8%, with a precision of 93.9%. Pituitary

cases demonstrated the highest results in true predictive rate

(99.7%) and a moderate precision of 98%. The overall accuracy

achieved using Leaky ReLU was 90.8%. The F1-score, calculated as

the geometric mean between sensitivity and precision, is 90.15%.

An identical experiment was conducted utilizing Clipped ReLU,

and Figure 8 displays the performance of the proposed model.

Upon employing clipped ReLU, 240 out of 300 glioma cases

were accurately identified, resulting in the lowest recall among all

four classes, with a sensitivity of 80.0%. Among these, 53 cases were

misclassified as meningioma, one as having no tumor, and six as
FIGURE 5

The proposed CNN architecture block.
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pituitary. Conversely, four meningioma cases were misclassified as

glioma. The precision for glioma was notably high at 97.6%.

Furthermore, 263 meningioma cases were correctly identified,

yielding the lowest recall of 84.3%. However, 23 cases were

misclassified as having no tumor, 16 as pituitary, and four as

glioma. Notably, a moderate precision among the four classes was

observed for no tumor cases, with a rate of 81.2%. The sensitivity in

no tumor cases was remarkable, reaching 98.3%, with a precision of
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94.3%. Pituitary cases exhibited the highest results in true predictive

rate (98.7%) and a moderate precision of 92.8%. The overall

accuracy achieved using clipped ReLU was 91.3%. The F1-score is

calculated, representing the geometric mean between sensitivity and

precision, resulting in 90.82%. The same experiment uses ELU, and

Figure 9 illustrates the performance of proposed model.

Utilizing ELU, 262 out of 300 glioma cases were correctly

identified, resulting in the lowest recall among all four classes,
TABLE 2 CNN configuration.

Layer name Type Layer configuration Number of Learnables

imageinput Input 224 * 224 *3 0

conv_1 Convolution
Number of Filters = 32

Kernel Size =3*3
stride 3*3

896

batchnorm batch Normalization Layer scale: 1*1*32 64

functionLayer activation function 0

maxpool1 Max pooling layer
Kernel Size =3*3

stride 1*1

conv_2 Convolution
Number of Filters = 64

Kernel Size =3*3
stride 3*3

18496

batchnorm batch Normalization Layer scale: 1*1*64 128

functionLayer activation function 0

maxpool2 Max pooling layer
Kernel Size =3*3

stride 1*1
0

conv_3 Convolution
Number of Filters = 32

Kernel Size =3*3
stride 3*3

18464

batchnorm batch Normalization Layer scale: 1*1*64 64

functionLayer activation function 0

maxpool3 Max pooling layer
Kernel Size =3*3

stride 1*1
0

Fc fully connected layer Weights: 4*2592 10372

softmax soft max Layer

classoutput Classification layer
TABLE 3 Performance metrics.

Name Definition equation

Accuracy Accuracy is defined as the ratio of accurate predictions to the total number of data points. TP + TN
TP + TN + FP + FN

Precision Precision is the percentage of positive forecasts in the all-positive category. TP
TP + FP

Recall The amount of true positive (TP) results divided by a total amount of positive class TP
TP + FN

F1-score F1 score represents a harmonic average of recall and precision.
2*

Recall*Precision

Recall + Precision

The receiver operating
characteristics (ROC)

The correlation between the rate of true positives and the rate of false positives.

AUC the classifier’s capacity to discriminate between classes, which is measured and used to summarize the
ROC curve.
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FIGURE 6

The performance of the ReLU activation layer (A) Test confusion matrix. (B) ROC curve.
FIGURE 7

The performance of the Leaky-ReLU activation layer (A) Test confusion matrix. (B) ROC curve.
FIGURE 8

The performance of the clipped ReLU activation layer (A) Test confusion matrix (B) ROC curve.
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with a sensitivity of 87.3%. Among these, 37 cases were misclassified

as meningioma and one as pituitary. Conversely, four meningioma

cases were misclassified as glioma. The precision for glioma was

notably high at 96.7%.

Additionally, 294 meningioma cases were accurately identified,

achieving a high recall of 96.1%. However, six cases were misclassified

as having no tumor, two as pituitary, and four as glioma. Notably, the

highest precision among the four classes was observed for no tumor

cases, with a rate of 98.5%. The sensitivity in no tumor cases was the

highest, reaching 98.3%. Pituitary cases demonstrated the highest

results in positive predictive value (99.0%) and a moderate recall of

95.3%. The overall accuracy achieved using ELU was 94.6%. The F1-

score is assessed, representing the geometric mean between sensitivity

and precision, yielding a value of 94.33%.

The identical experiment uses the Gaussian Error Linear Unit

(GELU), and Figure 10 depicts the performance of proposed model.

Using GELU, 270 out of 300 glioma cases were accurately

identified, resulting in the lowest recall among all four classes with a

sensitivity of 90%. Among these, 30 cases were misclassified as

meningioma. Conversely, two meningioma cases and two no-tumor
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cases were incorrectly classified as glioma. The precision for glioma was

notably high at 98.2%.

Furthermore, 281 meningioma cases were correctly identified,

achieving a high recall of 91.8%. However, nineteen cases were

misclassified as having no tumor, four as pituitary, and two as

glioma. Notably, the highest sensitivity among the four classes was

observed for no tumor cases, with a rate of 99.3%. The precision in no

tumor cases was high, reaching 95.5%. Pituitary cases demonstrated

the highest results in positive predictive value (98.3%) and a true

positive rate of 98.5%. The overall accuracy achieved using GELUwas

95.3%. The F1-score is assessed, representing the geometric mean

between sensitivity and precision, yielding a value of 95.10%.

The activation layer is changed to a Hyperbolic Tangent

Function, and the corresponding test confusion matrix depicts the

performance of the trained model. An identical experiment was

conducted utilizing Hyperbolic Tangent, and Figure 11 displays the

performance of proposed model.

With the utilization of the hyperbolic tangent activation function,

226 out of 300 glioma cases were correctly identified, resulting in the

lowest recall among all four classes with a sensitivity of 75.3%. Among
FIGURE 9

The performance of the ELUs activation layer (A) Test confusion matrix. (B) ROC curve.
FIGURE 10

The performance of the GLEU activation layer (A) Test confusion matrix. (B) ROC curve.
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these, 69 cases were misclassified as meningioma. Conversely, three

meningioma cases and one pituitary case were inaccurately classified as

glioma. The precision for glioma was notably high at 98.3%.

Additionally, 274 meningioma cases were accurately identified,

achieving a high true positive rate of 89.5%. However, twenty-four

cases were misclassified as having no tumor, five as pituitary, and three

as glioma. Notably, the highest sensitivity among the four classes was

observed for no tumor cases, with a rate of 98.5%. The precision in no

tumor cases was high, reaching 93.53%. Pituitary cases demonstrated

high performance in positive predictive value (96.7%) and a true

positive rate of 98.3%. The overall accuracy achieved using the

hyperbolic tangent activation function was 91.1%. The F1-score,

representing the geometric mean between sensitivity and precision, is

evaluated at 90.59%.

The activation layer has been switched to the soft sign activation

function, and the accompanying test confusion matrix illustrates the

performance of the trained model. An identical experiment was

conducted utilizing soft signs, and Figure 12 displays the

performance of proposed model.
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Utilizing the soft sign activation function, 276 out of 300 glioma

cases were accurately identified, resulting in the lowest recall among all

four classes, with a sensitivity of 92%. Among these, 20 cases were

misclassified as meningioma, while four were inaccurately classified as

glioma. The precision for glioma was notably high at 96.8%.

Furthermore, 284 meningioma cases were correctly identified,

achieving a high true positive rate of 97.8%. However, nine cases were

misclassified as having no tumor, six as pituitary, and seven as glioma.

Notably, the highest sensitivity among the four classes was observed for

no tumor cases, with a rate of 99.8%. The precision in no tumor cases

was the highest, reaching 97.8%. Pituitary cases demonstrated high

performance in positive predictive value (96.8%) and a sensitivity rate

of 98.3%. The overall accuracy achieved using the soft sign activation

function was 96.3%. The F1-score, which assesses the geometric mean

between sensitivity and precision, is determined to be 96.03%.

The activation layer has been changed to the swish activation

function, and the corresponding test confusion matrix showcases

the performance of the trained model. The same experiment uses

swish, and Figure 13 illustrates the performance of proposed model.
FIGURE 12

The performance of the soft sign activation layer (A) Test confusion matrix. (B) ROC curve.
FIGURE 11

The performance of the Hyperbolic Tangent activation layer (A) Test confusion matrix. (B) ROC curve.
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Using the swish activation function, 268 out of 300 glioma cases

were correctly identified, resulting in the lowest recall among all four

classes with a sensitivity of 89.3%. Among these, 29 cases were

misclassified as meningioma, while 16 were inaccurately classified as

glioma. The precision for glioma was notably high at 93.7%.

Furthermore, 255 meningioma cases were correctly identified,

achieving the lowest true positive rate of 83.3%. However, twenty-

seven cases were misclassified as having no tumor, and eight as

pituitary. Notably, the highest sensitivity among the four classes was

observed for no tumor cases, with a rate of 99.8%. The precision in no

tumor cases was high, reaching 93.5%. Pituitary cases demonstrated

high performance in positive predictive value (96.7%) and a sensitivity

rate of 97.3%. The overall accuracy achieved using the swish activation

function was 96.3%. The F1-score, representing the geometric mean

between sensitivity and precision, is evaluated at 92.61%.

The activation function proposed is a modified version of the soft

sign function applied in the activation layer. The model undergoes

training and testing, and the performance of the confusion matrix is

visually represented in the corresponding figures. Figure 14A delineates
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the instances correctly classified across all classes at the same time;

Figure 14B illustrates the receiver operating characteristics curve (ROC),

which defines the area under the curve (AUC) of the proposed function.

This AUC graph depicts the relationship between the true positive rate

on the y-axis and the false positive rate on the x-axis.

Applying the proposed activation function, 281 out of 300

glioma cases were accurately identified, resulting in a high true

positive rate of 93.7%. Among these, 18 cases were misclassified as

meningioma, and only two meningioma cases were inaccurately

classified as glioma. The precision for glioma was notably high at

99.3%. Furthermore, 298 meningioma cases were correctly

identified, achieving the lowest true positive rate of 92.8%.

However, only five cases were misclassified as having no tumor.

Notably, a remarkably high sensitivity was obtained in no tumor

cases, with a rate of 98.8%. The precision in no tumor cases was the

highest, reaching 99.5%. Pituitary cases demonstrated high

performance in positive predictive value (98.4%) and the highest

sensitivity rate of 100%. The overall accuracy achieved using the

proposed activation function was 97.6%. The F1-score, calculated as
FIGURE 14

The performance of the proposed activation function is as follows: (A) Test confusion matrix and (B) ROC curve.
FIGURE 13

The performance of the swish activation layer (A) Test confusion matrix. (B) ROC curve.
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FIGURE 16

Grad-CAM representations of several tumor types.
FIGURE 15

Comparison between various activation functions in terms of accuracy.
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TABLE 4 Detailed comparison of the results with those from previous studies.

Ref year classes # of Images Method Acc Drawback

14 2023 2 3847 Transfer learning 92.00% Low accuracy

15 2023 2 696 Transfer learning 96.65%
The employed methodology

lacked novelty.

16 2023 3 3064 Transfer learning 91.00%

The employed methodology lacked
novelty. Absent a

comparative examination.

17 2023 3 3064 Transfer learning 97.00%
Absent a comparative examination. Long

Processing time

18 2023 4 3094 Proposed CNN 95.01%
Complex design High rate

of learning

1 2023 4 7021 Proposed CNN 96.00% long time for training

19 2022 3 253 Proposed CNN 96.00% The small dataset used to train the model

20 2023 2 253 Proposed CNN 96.00% The small dataset used to train the model

21 2023 2 250 Transfer learning 96.60%
The small dataset used to train the model

Absent a comparative examination.

22 2023 2 572 Proposed CNN 97.00%
The small dataset used to train the model

Complex design

23 2022 3 3046 Proposed CNN 97.20%

24 2023 4 2880 Transfer learning 97.00% Basic Model

25 2022 4 3264 Transfer learning 80.00%
The employed methodology lacked

novelty. Low accuracy

26 2023 4 7021 Transfer learning 96.90%
The employed methodology lacked

novelty. Basic Model

27 2024 4 7023 Modified ResNet50V2 96.33% long time for training

28 2024 4 21,672 Transfer learning 96.00% Complex design

29 2024 4 3096 Transfer learning 97.00%
The employed methodology

lacked novelty.

30 2024 3 11,538 Proposed CNN 95.10% long time for training

31 2024 4 3264 Transfer learning 96.63%
The employed methodology

lacked novelty.

The
proposed
Method 4

Novel CNN with Novel
activation function 97.6%

New approach with new
Activation function

Kaifi 10.3389/fonc.2024.1437185
the geometric mean between sensitivity and precision, is

determined to be 97.44%.

Moreover, Figure 14B elucidates the superiority of the proposed

function with an AUC almost equal to 1 for all classes. This indicates the

robustness of the proposed CNN with the proposed activation function

in discriminating between the four types of brain tumors. The proposed

method overcomes all challenges presented in the previously mentioned

activation functions, enabling the utilization of a vast dataset and

making the proposed model applicable in healthcare sectors.

The corresponding figure shows the impacts of changing

activation functions on the accuracy of the proposed model for

classifying brain MR images.

As depicted in Figure 15, the proposed method exhibits a notable

capability in classifying brain MR images into four distinct classes.

This approach is characterized by its speed, accuracy, and remarkable
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results. This paper uses Grad-CAM to generate a class activation

map, as shown in Figure 16. The degree to which a certain

component aids in distinguishing between distinct brain tumors

corresponds directly with the color of that component.

A consistent comparative table briefly describes every key

feature of every previously published study paper in this field

(Table 4). Table 4 is a summary of the strategies used thus far.

The collected results, along with some limitations and weaknesses,

have been noted for further research.
Conclusion

Convolutional neural networks for brain tumor classification

have paved the way for improved tumor identification and
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accuracy. MRI is the most extensively used method for detecting

and classifying brain tumors. Because of their apparent efficient

feature extraction capabilities, DL-based algorithms have recently

received increased attention and efficiency compared to traditional

medical imaging classification techniques. If cancer is detected,

many lives can be saved, and the appropriate grade is identified

using simple and inexpensive diagnostic methods.

This work provides a new CNN-based approach for MRI image

classification. The four classes into which the proposed approach can

identify tumors are Glioma, Meningioma, Pituitary, and No-tumor.

In deep learning designs, activation functions determine whether

information should be transferred to the next neuron. There are 16

layers in total in the architecture, including layers for convolution,

batch normalization, activation function, and maxpooling. In this

work, we experimented with several types of activation functions, and

in addition, we proposed a new type of activation function.

Our suggested approach achieved 97.6% accuracy on 7023 MRI

pictures from the dataset, which is accessible to the public. The

proposed CNN architecture does not require manual lesion

segmentation before classification. The results show that our

proposed approach is more effective than current approaches and

that physicians can use it to identify and categorize tumor types

from MRI scans in real-time. Even though the performance of our

suggested approach is promising, in future work, we will use a

variety of imaging modalities and segmentation approaches to

obtain the best estimation of affected areas in the brain and

isolate them from unaffected regions. Different modalities with

image registration differences will provide essential image traits in

the fixed image and perform the best classification, improving

precision and accuracy.

In addition, we plan to expand our database and analyze a larger

set of data in the future to design and conduct clinical experiments

more efficiently, deepening our understanding of brain cancer

behavior and therapeutic responses from different groups of patients.
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