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Breast cancer is the most frequent malignancy in women, constituting 15.2% of

all new cancers diagnosed in the United States. Distant breast cancer metastasis

accounts for the majority of breast cancer-related deaths; brain metastasis is the

third most common site for metastatic breast cancer but is associated with worst

prognosis of approximately eight months of survival. Current treatment options

for breast cancer brain metastasis (BCBM) are limited and ineffective. To help

identify new and effective therapies for BCBM, it is important to investigate the

mechanisms by which breast cancer cells metastasize to the brain and thrive in

the brain microenvironment. To this end, studies have reported that primary

breast tumor cells can prime brain microenvironmental cells, including,

astrocytes and microglia, to promote the formation of BCBM through the

release of extracellular vesicle-microRNAs (miRNAs). Breast tumor-derived

miRNAs can also promote breast cancer cell invasion through the blood-brain

barrier by disrupting the integrity of the brain microvascular endothelial cells. In

this review, we summarize current literature on breast cancer-derived BCBM-

promoting miRNAs, cover their roles in the complex steps of BCBM particularly

their interactions with microenvironmental cells within the brain metastatic

niche, and finally discuss their therapeutic applications in the management

of BCBM.
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1 Introduction

According to the latest statistics by the American Cancer

Society, the estimated number of new breast cancer cases in 2024

is 310,720, accounting for 32% of all cancers diagnosed in women

(1). Breast cancer patients have the second highest rate of brain

metastasis behind lung cancer (2). Furthermore, subtype analysis of

breast cancer brain metastasis (BCBM) patients showed that HER2-

enriched breast cancer and triple-negative breast cancer (TNBC)

subtypes have a higher potential to develop brain metastasis,

underscoring the particular importance of studying BCBM in

these two subtypes of breast cancer (3).

In 1993, Ambros and his team made the groundbreaking

discovery of a microRNA (miRNA) in Caenorhabditis elegans (4).

The miRNA, transcribed from the lin-4 gene, exhibits

complementarity to and consequently regulates the expression of

the lin-14 protein (4). miRNAs are part of the small non-coding

RNA family that are endogenous, single-stranded RNAs with an

average length of 20–22 nucleotides, known to regulate gene

expression in many physiological processes (5, 6). Studies have

shown that miRNAs play a pleiotropic role acting as tumor

suppressors and/or oncogenes in different cancers (7, 8).

Numerous studies have now implicated miRNAs in every step of

brain metastasis beginning from epithelial-mesenchymal transition

to colonization in the brain parenchyma (9–29).

Brain organotropism in breast cancer is influenced by several

factors: breast cancer subtype, molecular features of circulating

tumor cells, extracellular vesicle-derived miRNA expression

profile, tumor microenvironment, and the ability of breast cancer

cells to penetrate the blood-brain barrier (BBB) (30). BBB is a

specialized neurovascular unit adjoining blood capillaries with

brain parenchyma, comprising of brain microvascular endothelial

cells (BMECs), astrocytic end-feet, and pericytes (31). BMECs line

the luminal and abluminal membranes and are held together by

tight and adherens junctions (32). They tightly regulate the

transport of cells and molecules from blood to the brain

parenchyma. BMECs lack leukocyte adhesion molecules and have

a higher concentration of mitochondria, which limits the influx of

immune cells from blood into central nervous system (CNS) and

indicates the prevalence of high-energy requiring role of BMECs

respectively (33). In response to pathological changes in the CNS,

astrocytes undergo molecular, functional, and morphological

transformation and are termed as “reactive astrocytes”. Studies

have shown the reactive astrocytes stimulate BMECs through

secretion of SERPINA3 by activating NF-kB/STAT3 signaling axis

(34). Pericytes play a few roles in the maintenance of BBB integrity

including regulating microvascular stability, angioarchitecture, and

clearance of foreign proteins and tissue debris (35).

The interactions between tumor cells and brainmicroenvironmental

cells, primarily astrocytes and microglia, facilitate various stages of

metastasis. Reactive astrocytes through the secretion of inflammatory

chemokines such as interferon-a (IFNa) and Ciliary Neurotrophic

Factor promote tumor growth by activating transcriptional and cell

survival pathways (36–38). Microglial cells, known as the resident

macrophages of the CNS, are often polarized from M1 to M2
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microglia to secrete immunosuppressive chemokines (39). These

modulations in the environment play a key role in promoting the

growth of brain metastasis. Through regulating the brain-metastatic

microenvironmental cells and their interaction with breast cancer cells,

miRNAs can influence breast cancer metastasis to the brain and

progression within the brain.
2 MicroRNA biogenesis and
mechanism of action

The biogenesis of miRNAs is classified into canonical and non-

canonical pathways. The canonical pathway begins with the

transcription of a hairpin-containing primary miRNA (pri-

miRNA) in the nucleus (8). The pri-miRNA transcript is then

cleaved by the microprocessor complex containing DiGeorge

Syndrome Critical Region 8 (DGCR8) and Drosha to form the

precursor miRNA (pre-miRNA). DGCR8 is an RNA-binding

protein that recognizes and binds N6-methyladenosine GGAC

motif in the pri-miRNA, and the RNase III enzyme, Drosha,

recognizes and cleaves the base of the hairpin structure (40, 41).

The pre-miRNA is transported from the nucleus to the cytoplasm

through an exportin5/RanGTP complex where RNase III

endonuclease Dicer cleaves the hairpin loop structure and leads

to the formation of mature double-stranded miRNA (40, 42, 43).

There are two non-canonical pathways: Drosha/DGCR8-

independent and Dicer-independent pathways. In the former

pathway, (mirtrons) RNAs are exported to the cytoplasm through

exportin 1 without undergoing Drosha processing; and in most

cases, the 3p strand is loaded onto the AGO protein due to the

presence of a 7-methylguanosine cap at the 5’ end (44). In the Dicer

independent pathway, shRNA transcripts are processed by Drosha/

DGCR8 complex and exported to the cytoplasm by exportin5/

RanGTP where they are loaded onto AGO2 and processed (45, 46).

miRNAs binding to a specific seed sequence at either the 3’ or 5’

untranslated region of the target mRNA can lead to mRNA

degradation or translational repression, leading to gene silencing

(47–50). miRNAs can also bind at the promoter region of target

mRNAs leading to transcriptional activation (51). miRNAs can

regulate multiple biological pathways such as cell proliferation, cell

death, immune evasion, invasion, metastasis, and angiogenesis.

miRNAs are classified as tumor suppressors or oncogenes

depending on their target gene and cell type (8).
3 Development of brain metastases

For the initiation of metastasis to occur, cancer cells undergo

epithelial-mesenchymal transition (EMT) demonstrated by an

increase in self-renewing stem cells, anoikis resistance, and

dissemination (52–56). TWIST1, SNAIL1, and SLUG are some of

the most heavily studied transcription factors in the context of

breast cancer metastasis (57). Under regulation of pathways like the

Notch signaling pathway, these transformed cells can penetrate the

vascular endothelium where endothelial cells promote membrane
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remodeling and cancer cells enter blood vasculature (58–61). An

important part of metastasis is the development of a tumor-

supportive environment in distant target organs. Cancer cells

prime a secondary site by secreting tumor-promoting

extracellular vesicles and inflammatory chemokines, forming the

premetastatic niche (62, 63). Extravasation into the brain requires

tampering with the BBB permeability. The cross-talk between

cancer cells and BMEC is stimulated by the expression of cellular

adhesion molecules (E-selectin, VCAM-1) on cancer cells and

degradation of the BBB by matrix metalloproteinases (64–66).

Extravasation is followed by mesenchymal-epithelial transition

(MET) or partial MET lending a higher aggressive phenotype to

the cancer cell (67–69). Reactive astrocytes play a dichotomous role

by initially inhibiting brain metastases and switching to a pro-

metastatic role in later stages (37, 62, 70–72). Glial cells such as

tumor-associated microglia/macrophages lend a supportive hand to

cancer cells by stimulation of TGF-b1 signaling pathway (73).
4 miRNAs implicated in the cross-talk
between breast cancer cells and
brain cells

The cross-talk between breast cancer cells and astrocytes/microglia

at any stage of brain metastasis leads to microenvironmental

modulation that subsequently facilitates the progression of brain

metastasis. miRNAs involved in these interactions are listed in

Table 1 and depicted in Figure 1.

miR-122 is upregulated in the conditioned media of breast

cancer cells (80). Uptake of breast cancer-derived miR-122 by

astrocytes led to a reprogramming of glucose uptake, notably

through the downregulation of PKM1/2 and GLUT1, resulting in

decreased uptake of 2-NBDG (a fluorescent glucose analogue). The

authors reported reduced glucose uptake by tumor cells led to

inhibition of tumor cell proliferation in primary tumors, while

simultaneously supporting metastatic tumor cell colonization in the

pre-metastatic niche (80).

miR-194 and miR-802 were downregulated in plasma samples

collected from brain metastasis model of a 4T1-injected mice (83).

MEF2C was validated as a target gene using an in vivo model

through immunofluorescence staining. MEF2C was found to be

highly expressed in established metastatic cells in the brain

parenchyma and peritumoral astrocytes. These findings were

further validated in human TNBC brain metastases samples (83).

Moreover, miR-802 inhibits FoxM1 decreasing the proliferation of

breast cancer cells and miR-194 inhibits proliferation and migration

of breast cancer cells, supporting the tumor-suppressive roles of

these miRNAs (91, 92).

Breast cancer-derived miR-345 expression is upregulated due to

increased astrocytic secretion of CCL2 and CXCL12 (87). miR-345

downregulates KISS1 which in turn leads to localization of breast

cancer cells in the brain microenvironment (87). Another study

reports that miR-345-mediated KISS1 transcriptional inhibition

plays a role in promoting autophagy and invasiveness of breast

cancer cells (87, 93).
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miR-1290 is upregulated in the sera of breast cancer patients

(36). miR-1290 activates astrocytes and promotes cancer stemness

factors, subsequently aiding the progression of BCBM. miR-1290

binds to FOXA2 and induces transcriptional repression, leading to

upregulation of CNTF expression in astrocytes. Astrocytes activated

by miR-1290 promoted intracranial growth of co-implanted breast

cancer cells in the brain in vivo (36).

miR-199a, miR-150, and miR-155 are downregulated, whereas

miR-132-3p is upregulated in tissue obtained from BCBM patients

(81). The authors report an increase in miR-132-3p correlated with

improved brain metastasis-free survival (BMFS) and overall

survival (OS) whereas miR-199a, miR-150 and miR-155

correlated with poorer BMFS and OS. MET was identified as a

target oncogene and reported to be overexpressed in microglial cells

responsible for tumor angiogenesis and colonization of breast

cancer cells (81). miR-503 is upregulated in the sera of BCBM

patients and is reported to promote the M1 to M2 polarization of

microglia, demonstrated by increased phosphorylation of STAT3

along with decreased phosphorylation of NF-kB (26). Taken

together, these findings suggest an important role for miRNAs in

regulating the brain microenvironmental cells.
5 miRNAs implicated in the cross-talk
between breast cancer cells and
BBB cells

A pivotal aspect of brain metastasis involves the disruption of

the BBB integrity. Thus, studying the interactions between breast

cancer cells and BBB cells is of utmost importance. miRNAs

involved in mediating cross-talk between breast cancer cells and

BBB cells are listed in Table 1.

miR-101-3p is decreased in BCBM leading to increased

expression of COX-2 and stimulation of COX-2/MMP-1 signaling

pathway, promoting trans-endothelial migration of breast cancer cells

and extravasation across the BBB (78). miR-105 downregulates ZO-1

expression in endothelial cells hindering the integrity of endothelial

and epithelial tight junctions leading to trans-endothelial invasion of

breast cancer cells. Disruption of the endothelial barriers and

increased vascular permeability promoted distant metastases

formation in lung and brain (79). miR-181c is increased in sera of

brain metastasis patients compared to non-brain metastasis patients.

The study reports that miR-181c regulates the expression of PDPK1

in BMECs, where PDPK1 plays a role in localization of N-cadherin

and actin filaments in BMECs. Delocalization of actin in the BMECs

plays a role in BBB dysregulation (82).

miR-202-3p is decreased in brain-tropic breast cancer cell lines.

The authors report restoration of miR-202-3p leading to MMP-1

suppression results in inhibited extravasation of BCBM cells (85).

MMP-1 has previously been reported to promote trans-endothelial

migration of breast cancer cells by degrading endothelial junctions

in BMECs and permeabilizing the endothelial barrier. One study

reported the upregulation of miR-205 and miR-181a-1-3p along

with downregulation of miR-194 in co-culture models. The

authors report overexpression of miR-181a-1-3p results from the
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TABLE 1 miRNAs mediate dysregulation of various cells and stages of BCBM.

miRNA Activity Validated
Target(s)

In-vitro Models Additional
Model(s)

Reference

let-7d Promote brain
metastatic colonization

Pdgfb/PGDFA 4T1, D2A1, MDA-MB-231, MDA-
MB-231-BrM2

Mouse (74)

miR-7 Suppress brain metastases formation
by inhibiting proliferation, invasion,
and transmigration of CSCs

KLF4 MDA-MB-231, 231BoM-1833,
231BrM-2a, CN34, CN34-BoM2d,
CN34-BrM2c, MCF7, MCF7-BoM2d

Mouse (75)

miR-10b Promote invasion of BC cells No specific target MDA-MB-231, MDA-MB-468 Patient samples (76)

miR-20b Promote colony formation and
invasion of BC cells

No specific target MCF-7, MDA-MB-231, MDA-MB-
231-brain and bone derivatives

Patient samples (77)

miR-101-3p Promote extravasation and trans-
endothelial migration of BC cells

COX2 MCF-7, MDA-MB-231, MDA-MB-
231-BrM2, MDA-MB-231-TGL

N/A (78)

miR-105 Promote tumor cell invasion and
disrupt vascular endothelium

ZO-1 MDA-MB-231, MCF-10A,
MCFDCIS, MDA-231-HM,
Primary HMVECs

Patient samples (79)

miR-122 Inhibit glucose uptake by astrocytes PKM MCF10A, MDA-MB-231 Mouse (80)

miR-132-3p, miR-
199a, miR-150 and
miR-155

Promote tumor angiogenesis and
colonization of BC cells

MET Patient samples (81)

miR-181c Downregulate PDPK1 promoting
BBB destruction

PDPK1 MDA-MB-231-luc-D3H1, MDA-MB-
231-luc-D3H2LN, BMD2a, BMD2b

Mouse (82)

miR-194 and
miR-802

Upregulate MEF2C highly expressed
in peritumoral astrocytes promoting
cross-talk

MEF2C 4T1 Mouse,
patient samples

(83)

miR-194, miR-
181a-1-3p,
miR-205,

Mediate cross-talk between BC cells
and BMECs

No specific target b.End5, 4T1 Mouse (84)

miR-200 family
(miR-141)

Induce MET and brain
metastatic colonization

E-cadherin SUM149, SUM159, MDA-IBC3,
MDA-231, MCF7

Mouse,
patient samples

(18)

miR-202-3p Induce MMP-1 and promote
extravasation of BC cells

MMP-1 MCF-7, MDA-MB-231-TGL, MDA-
MB-231-BrM2, hCMEC/D3

Mouse (85)

miR-211 Promote early colonization and BBB
adherence through regulation of
SOX11/NGN2 axis

SOX11/NGN2 MDA-MB-231, HCC1806, LM2-4175,
BrM-831

Mouse (86)

miR-345 Induce cancer progression through
cross-talk and niche formation

KISS1, E-cadherin CN34TGL, MDA-MB-231,
CN34Br, MDA231Br

Mouse (87)

miR-503 Induce M1 to M2 polarization
of microglia

STAT3/NF-
kB pathways

MCF7, ZR75-1, SKBR3, MDA-MB-
231, SKBrM3, MDA-MB-231BrM2a,
SIM-A9

Mouse,
patient samples

(26)

miR-509 Suppress RhoC and TNFa mediated
transmigration and invasion of
BC cells

RhoC, TNF-a MDA-MB-231, MDA-MB231BrM-2a,
CN34, CN34-BrM2c, MCF7, MDA-
MB-231-HM, 293TN, mBrEC

Mouse,
patient samples

(88)

miR-623 Promote extravasation and trans-
endothelial migration of BC cells

MMP-1 MDA-MB-231-BrM2, MDA-MB-231-
TGL, hCMEC/D3

N/A (89)

miR-637 Promote autophagy and invasion of
TNBC cells

STAT3 MCF10A, BT549, MDA-MB-361,
MDA-MB-453, MDA-MB-, MDA-
MB-468, SUM-159, HCC-1806

Mouse,
patient samples

(90)

miR-1258 Inhibit Heparanase to
promote invasion

HPSE MDA-MB-231BR1, MDA-MB-
231BR3, SUM-225, SUM-149,
HMEC, MCF-10A

Mouse,
patient samples

(25)

miR-1290 Activate astrocytes in the brain
metastatic microenvironment via the
FOXA2→CNTF axis

FOXA2 MDA-MB-231, MDA-231-BRM,
SKBR3, CN34, SKBRM-tGLI1,
immortalized human astrocytes

Mouse (36)
F
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interaction between breast cancer cells and BMECs, and that

BMECs contribute to the downregulation of miR-194, while

breast cancer cells upregulate the expression of miR-205 (84).

miR-211 is upregulated in the brain-tropic TNBC cells and

human breast cancer tissue from TNBC and non-TNBC patients.

miR-211 overexpressing breast cancer cells promote brain metastases

in vivo; inhibition of miR-211 with anti-miR-211 treatment

suppresses brain metastases in vivo. Increased expression of miR-

211 promoted migration and invasion of TNBC cells and enhanced

adherence of cancer cells to the BBB through downregulation of

SOX11/NGN2 axis (86).

miR-509 is downregulated in brain metastases compared to

primary breast tumors and targets RhoC, a critical mediator of

metastasis and invasion. Additionally, miR-509 suppressed the

trans-endothelial migration of breast cancer cells and contributed

to the suppression of MMP9 via modulation of RhoC (94). miR-

509 also indirectly represses TNFa leading to decreased BBB

permeability (88). miR-623 is downregulated in brain metastatic

lesions in comparison to primary breast tumors. MMP-1 is known

to play a significant role in promoting extravasation of TNBC cells

into the brain endothelium and is suppressed by miR-623. This

study reports the restoration of miR-623 inhibits trans-endothelial

migration of brain-tropic TNBC cells, thereby suppressing BCBM

(89). Downregulation of miR-1258 was associated with an

increase in HPSE levels in BCBM cell lines, paired primary

breast tissue, and BCBM tissue. miR-1258 expression leads to a

decrease in HPSE levels and HPSE-related proteins: p-Akt, p-

EGFR, MMP-9, COX2 consequently, leading to inhibition of brain

metastasis by limiting breast cancer cell invasion (25). These
Frontiers in Oncology 05
studies are further proof of the crucial role of miRNAs in

maintenance of BBB integrity.

6 miRNAs implicated in EMT, invasion,
and colonization of breast cancer
cells in BCBM

EMT, invasion, and colonization serve an essential role in

metastasis of cancer cells. miRNAs involved in these processes are

briefly described in Table 1.

miR-7 is downregulated in mammospheres and brain-tropic

breast cancer cell lines compared to parental cells (75). KLF4 is a

miR-7 target gene and in vivo studies report miR-7 inhibits the

expression of KLF4 downregulating the proliferation, invasion, and

transmigration of brain-tropic cancer stem cells (CSCs). The miR-7

and KLF4 correlation was further validated in human samples from

primary breast tumor and brain metastatic lesions, and the authors

suggest interaction between CSCs and brain cells promotes

formation of a pre-metastatic niche (75).

miR-10b is significantly upregulated in tumor samples of

BCBM patients when compared to primary breast tumors without

brain metastasis (76). It was reported that higher levels of miR-10b

were correlated with increased invasiveness of breast cancer cells

(76). miR-20b is increased in brain metastatic lesions of BCBM

patients compared to breast cancer patients without brain

metastasis (77). miR-20b is also upregulated in brain-tropic breast

cancer cells compared to bone-tropic breast cancer cells

highlighting brain-tropism of miR-20b. miR-20b overexpression
FIGURE 1

miRNAs are involved in dysregulation of various cells and stages of BCBM. BC-derived miRNAs alter functionality of brain and BBB
microenvironmental cells. Created with BioRender.com.
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resulted in increased colony formation and invasiveness of breast

cancer cells (77).

let-7d is downregulated in brain metastatic breast cancer cells

and regulates PGDFA expression (74). PGDFA inhibition leads to

decreased brain metastases formation in mice models due to the loss

of autocrine proliferation loop activity which promotes metastatic

colonization. The authors also reported HIF1 activity is negatively

regulated by let-7d (74). miR-141 expression is upregulated in sera

from BCBM patients (18). Upregulation of miR-141 was correlated

with increased E-cadherin expression, which suggests miR-141

plays a role in EMT. The role of miR-200 family (miR-200a, miR-

200b, miR-200c, miR-141, miR-429) in EMT has been well

established in various metastatic models and the authors propose

a possible role in breast cancer brain metastatic colonization (18).

Moreover, circKIF4A sponges miR-637 to suppress its expression in

brain metastatic lesions compared to primary breast tumors. miR-

637 inhibits STAT3, therefore, miR-637 inhibition increases STAT3

protein levels and promotes the brain metastatic properties of

TNBC cells through autophagic activation (90). These studies

suggest that miRNAs play key roles in regulating multiple stages

of BCBM; however, further investigations into these mechanisms

are necessary.
7 Application of miRNAs in
cancer therapeutics

The dismal overall survival of patients with BCBM is partly due

to the lack of early biomarkers and targeted BBB-penetrant

therapies (95–97), and miRNAs could possibly be used to address

both deficiencies. The ubiquitous presence of miRNAs in peripheral

blood, urine, and saliva makes it a highly valuable and non-invasive

biomarker of disease burden, progression, treatment response, and

resistance (98–100). Currently, there are several clinical trials

assessing the potential application of miRNAs as biomarkers.

Project CADENCE (NCT05633342) is a cohort study aimed at

investigating miRNA expression along with other biomarkers and

ultimately developing in-vitro diagnostic assays for screening nine

highly prevalent cancers: breast, colorectal, lung, prostate, liver,

pancreatic, gastric, ovarian and esophageal (101). Oncoliq US

(NCT06439940) is actively recruiting for a prospective cohort

study to identify early diagnosis markers for breast cancer

utilizing liquid biopsies and miRNAs (102). Another prospective

cohort study (NCT05417048) at Peking University is currently

investigating the performance of a blood-based assay utilizing

miRNAs to differentiate between benign and malignant breast

disease (103). MiraKind is currently running a prospective cohort

study (NCT02253251) to validate the role of mutations at miRNA

binding sites in breast and ovarian cancer patients (104). A

randomized diagnostic clinical trial (NCT04516330) is

investigating the role of an 84-miRNA panel in predicting

multicentricity in breast cancer (105). City of Hope Medical
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Center conducted a cohort study (NCT01231386) to perform

miRNA profiling in patients undergoing treatment for locally

advanced or inflammatory breast cancer (106).

miRNA profiling has also been used as a non-surgical tool to

differentiate between medulloblastoma, glioblastoma, BCBM, and

lung cancer brain metastasis (107). High expression of miR-200

family in the cerebrospinal fluid of brain metastasis patients helps

differentiate between cases of brain metastasis and glioblastoma (108).

Therapeutic miRNA development is being explored given the

significant roles that miRNAs play in dysregulation of multiple

genes leading to tumor initiation, progression, and metastasis (95–

97). MRG-106, an inhibitor of miR-155, was investigated for the

treatment of cutaneous T-cell lymphoma, mycosis fungoides

subtype. The Phase I study reported tolerability and reduction in

the Composite Assessment of Index Lesion Severity score and

modified Severity Weighted Assessment Tool used to measure

skin lesions/disease (109). However, the study by Miragen

Therapeutics was discontinued during Phase II (NCT03713320)

due to business reasons. Miragen Therapeutics also completed a

Phase I study (NCT03603431) with MRG-110, a miR-92a inhibitor,

which was investigated in healthy volunteers and was reported to

augment wound healing and angiogenesis (110). TransCode

Therapeutics recently entered a Phase I/II dose-escalation study

(NCT06260774) with TTX-MC138, a miR-10b inhibitor, which has

previously been implicated in metastatic lesions arising from

advanced solid tumors (111, 112). MRX34, miR-34a mimic, was

investigated in patients with unresectable primary liver cancer,

hematological malignancies and advanced solid tumors

(NCT01829971). MiRNA therapeutics reported treatment with

MRX34 demonstrated some clinical activity, however, treatment-

associated severe adverse events led to termination of the study

(113). CDR132L, a selective miR-132-3p inhibitor, is currently in

Phase II clinical trial (NCT05350969) for patients with reduced Left

Ventricular Ejection fraction post-myocardial infarction (114). In

2019, Regulus Therapeutics announced pre-clinical success of

RGLS5579, an anti-miR-10b, in combination with temozolomide

(TMZ) in glioblastoma animal models (115). Regulus Therapeutics

reported the median survival rate of glioblastoma-bearing mice

models treated with anti-miR-10b, anti-miR-10b in combination

with TMZ, and TMZ alone increased by 18%, >120%, and 27%

respectively. Combination of tumor suppressive miRNAs with

conventional chemotherapy is another promising avenue. Tumor

suppressive miR-770 inhibited doxorubicin resistance in TNBC and

promoted sensitivity to trastuzumab in HER2-positive breast

cancer (116, 117). Overexpression of miR-298 sensitizes

doxorubicin-resistant breast cancer cells to treatment by targeting

MDR1 (118). Other studies have also reported targeting of ABCG2

overexpression of miR-181a or miR-328 in breast cancer cells led to

increased sensitivity to mitoxantrone (119, 120). miRNAs may be

the key to improving targeted therapeutics for cancer patients;

however, it is worth noting that many Phase I and II clinical trials

have been halted in the past due to severe adverse effects (96, 121,

122). Nonetheless, these studies highlight the importance of further
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investigations into the role of miRNAs as biomarkers and for the

advancement of miRNA incorporation into cancer therapeutics.
8 Discussion

There has been a rise in incidence of BCBM, due to significantly

advanced and effective therapies that prolong patient survival. This

extended survival period allows latent metastatic cells greater

opportunity to penetrate the BBB and colonize in the brain

parenchyma. Given the rise in frequency and limited treatment

opportunities of brain metastasis, there is an urgent need for new

predictive, diagnostic, and prognostic biomarkers to assess brain

metastasis. miRNAs are small but mighty in the regulation of every

step of brain metastasis starting from the cancer stemness genes,

genes responsible for intravasation and extravasation into a foreign

site, organ tropism, and colonization-related genes. The specificity

of dysregulated miRNAs in brain metastasis from various primary

tumors can be utilized to differentiate tumor types and identify the

origin of primary tumors in unknown cases. Certainly, further

research aimed at identifying novel miRNAs, elucidating their

biological functions, and uncovering their target genes will

significantly enhance our understanding of the role miRNAs play

in metastases formation and progression. This will, in turn, lay the

groundwork for the advancement of miRNA-related approaches for

cancer prognosis, diagnosis, and treatment.
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