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Introduction: To date, for all non-small cell lung cancer (NSCLC) cases, it is

recommended to test for driver alterations to identify actionable therapeutic

targets. In this light, comprehensive genomic profiling (CGP) with next

generation sequencing (NGS) has progressively gained increasing importance

in clinical practice. Here, with the aim of assessing the distribution and the real-

world frequency of gene alterations and their correlation with patient

characteristics, we present the outcomes obtained using FoundationOne

(F1CDx) and FoundationLiquid CDx (F1L/F1LCDx) NGS-based profiling in a

nationwide initiative for advanced NSCLC patients.
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Methods: F1CDx (324 genes) was used for tissue samples, and F1L (70 genes) or

F1LCDx (324 genes) for liquid biopsy, aiming to explore the real-world occurrence of

molecular alterations in aNSCLC and their relationship with patients’ characteristics.

Results: Overall, 232 advanced NSCLC patients from 11 Institutions were gathered

[median age 63 years; never/former or current smokers 29.3/65.9%; adenocarcinoma/

squamous 79.3/12.5%; F1CDx/F1L+F1LCDx 59.5/40.5%]. Alterations were found in 170

different genes. Median number of mutated genes per sample was 4 (IQR 3–6) and 2

(IQR 1–3) in the F1CDx and F1L/F1LCDx cohorts, respectively. TP53 (58%), KRAS (22%),

CDKN2A/B (19%), and STK11 (17%) alterations were the most frequently detected.

Actionability rates (tier I and II) were comparable: 36.2% F1CDx vs. 34% ctDNA NGS

assays (29.5% and 40.9% F1L and F1LCDx, respectively). Alterations in KEAP1 were

significantly associated with STK11 and KRAS, so as TP53 with RB1. Median tumor

mutational burden was 6 (IQR 3–10) and was significantly higher in smokers. Median

OS frommetastatic diagnosis was 23months (IQR 18.5–19.5) and significantly lower in

patients harboring ≥3 gene mutations. Conditional three-year survival probabilities

increased over time for patients profiled at initial diagnosis and exceeded those of

individuals tested later in their clinical history after 12 months.

Conclusion: This study confirms that NGS-based molecular profiling of aNSCLC

on tissue or blood samples offers valuable predictive and prognostic insights.
KEYWORDS

next generation sequencing, non-small cell lung cancer, precision medicine, liquid
biopsy, target therapy
1 Background

Lung cancer is the second most common cancer in the world and

the first cause of cancer-related deaths (1). In Italy, lung cancer ranks

second and third in incidence in men (15% of all tumors) and women

(6% of all tumors), respectively, and accounted for 34,000 estimated

deaths in 2021 (2). Histologically, most cases are categorized as non-

small-cell lung cancer (NSCLC) and approximately half of the

patients are diagnosed with metastatic disease (3).

The therapeutic landscape has evolved to encompass oncogene-

addicted (15–20%), for whom molecularly targeted agents are

available over multiple lines of treatment, and non-oncogene

addicted disease (80–85%), for whom immune checkpoint

blockade, alone or combined with chemotherapy, is the preferred

treatment path (4), resulting in a dramatic change in survival and

quality of life for advanced NSCLC patients.

Most actionable oncogenic alterations occur in lung

adenocarcinoma (LUAD), the most common NSCLC subtype (5,

6). Actionable drivers in lung LUAD involve the epidermal growth

factor receptor (EGFR), KRAS, ALK genes and, less commonly,

ROS1, BRAF, MET, RET, ERBB2, NTRK, and NRG1 (5, 6). Drivers

found in squamous cell carcinoma (SCC, accounting for 35% of

NSCLC patients) are much less frequently actionable and include

TP53, PIK3CA, CDKN2A, SOX2, and CCND1 alterations (4).
02
Testing for driver alterations is recommended for all NSCLC

cases to find actionable therapeutic targets (6). To this purpose,

different techniques may be used: immunohistochemistry (IHC),

fluorescence in situ hybridization (FISH), multiplex reverse

transcriptase-polymerase chain reaction (RT-PCR) panel assays,

in situ hybridization (ISH), or comparative genomic hybridization.

However, all relevant molecular alterations may also be detected by

next generation sequencing (NGS). In that respect, ESMO

guidelines (6) state that “if available, multiplex platforms (NGS)

for molecular testing are preferable”, favoring the use of RNA- or

DNA-based NGS designed to capture gene fusions (7).

Comprehensive genomic profiling (CGP) with NGS allows for

multigene sequencing in a unique sample, identification of

structural variants and genomic signatures and has predictive,

prognostic, and therapeutic impact. Although the benefit of

broad-based genomic sequencing, defined as any multigene panel

testing more than 30 genes, remains debated (8), CGP is becoming

increasingly easy and cheap, thus growing in utility with a larger

number of patients (9). Previously unreported alterations are now

routinely found, thus making it difficult to interpret genomic

testing, as only 2% of somatic alterations are known oncogenic

events (9). Moreover, non-invasive testing using blood as the source

biological material and circulating free DNA (cfDNA) or circulating

tumor DNA (ctDNA) as the substrate for CGP (liquid biopsy) is
frontiersin.org
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becoming increasingly used as an alternative to tissue-based

profiling (10).

FoundationOne®CDx (F1CDx; Foundation Medicine, Inc.,

Cambridge, MA, USA) is a qualitative, NGS-based in vitro

diagnostic test (11). Using a targeted high throughput

hybridization-based capture technology, it is able to detect

substitutions, insertion and deletion alterations (indels), copy

number alterations (CNAs), and gene rearrangements in 324

genes, genomic biomarkers including microsatellite instability

(MSI), and tumor mutational burden (TMB) (11). Source

material is formalin-fixed, paraffin-embedded (FFPE) tumor

tissue specimens (11) FoundationOne®Liquid (F1L; Foundation

Medicine, Inc., Cambridge, MA, USA) and FoundationOne®Liquid

CDx (F1LCDx; Foundation Medicine, Inc., Cambridge, MA, USA)

are other NGS-based in vitro diagnostic tests (12) that use targeted

high throughput hybridization-based capture technology to detect

and report alterations in 70 and 324 genes, respectively, from

plasma derived from anti-coagulated peripheral whole blood.

The IMpact of broad genoMic profIling oN advancEd NSCLC

ouTcome (IMMINENT) study aimed at assessing the distribution

and the real-world frequency of gene alterations and their

correlation with patient characteristics in a population of

advanced NSCLC patients; it also sought to evaluate the clinical

impact of molecular profiling and the timing of CGP with respect to

the line of treatment.
2 Materials and methods

2.1 Study design and informed
consent statement

This retrospective real-world data analysis leveraged a clinical-

genomic database including anonymized patient-level data of NSCLC

patients who underwent CGP within a national FoundationOne access

program in 11 Italian Oncological centers between May 2019 and

November 2022. Data had been previously collected and stored by the

University Hospital Trust in Verona in accordance with the Helsinki

declaration, as all the patients signed the informed consent form (ICF)

for secondary use of their data for research purposes. Data included

clinico-pathological features, treatment history, and tumor profiling

results. Genomic analysis was performed using the F1CDx assay on

tumor tissue specimens or using circulating tumor DNA (ctDNA)

profiling assays, including F1L and F1LCDx (the latter launched in

August 2020) on DNA from blood sampling.
2.2 Inclusion and exclusion criteria

Patients included in this study were adults with histologically

confirmed advanced NSCLC diagnosis who were profiled by NGS test

using tissue biopsies (F1CDx) or blood samples (F1L and F1LCDx).

Exclusion criteria were patients<18 years of age, lack of medical

reports, and unwillingness or impossibility to sign the written ICF.
Frontiers in Oncology 03
2.3 NGS analysis

F1CDx analyzes DNA extracted from formalin-fixed paraffin-

embedded (FFPE) tumor samples. Specimens with at least 50 ng of

DNA were used for library construction. Hybridization capture and

multiplex sequencing were performed to a mean coverage depth of

>550X for 324 cancer-related genes. Sequencing data were

processed using a proprietary bioinformatics pipeline, which was

designed to detect base substitutions, indels, CNAs, gene

rearrangements, TMB, and MSI (13–15).

For F1L and its new version F1LCDx assays, circulating free

DNA (cfDNA) was obtained from plasma derived from peripheral

whole blood. Extracted cfDNA underwent whole-genome shotgun

library construction and hybridization-based capture of 70 and 324

genes. Then, selected libraries were sequenced with deep coverage

(median depth >6000x).

Testing were conducted to evaluate the impact of a range of

cfDNA input masses (50% below the lower limit and 33% above the

upper limit) for F1LCDx using an updated library construction

input range (20-60ng).

The assays reported base substitutions, indels, and selected

CNAs and gene rearrangements (16, 17). F1LCDx also detected

genomic signatures, such as MSI and blood TMB (bTMB), while

F1L reported only MSI.

Only known or likely pathogenic alterations were considered in

this study.

TMB was measured by counting somatic, non-driver coding

mutations per megabase (mut/Mb) of coding genome (14, 17). The

MSI status was based on genome wide analysis across >2000

microsatellite loci, and was generated by calculating the fraction

of unstable ones (containing a repeated length not present in an

internal database generated using >3000 clinical samples) (14, 17).
2.4 Actionability classification

Genomic alterations classified as tier I-III mutations according

to ESCAT (6, 7) were analyzed.
2.5 Statistical analysis

Statistical analysis was performed using R (version 4.1.2).

Descriptive statistics included percentages and frequencies for

categorical variables, and median and interquartile range (IQR) for

continuous variables. Categorical variables were compared using the

c2 or Fisher exact test when appropriate, while continuous variables

were compared using the Mann-Whitney U or Kruskal Wallis test.

Comparisons between proportions were analyzed by Fisher’s exact

test. Multiple testing correction was applied using the Benjamin-

Hochberg (BH) method. The overall survival from histological (hOS)

and metastatic (mOS) diagnosis were analyzed using Kaplan-Meier

(KM) method, and the log rank test was used to compare the survival

curves among the groups. Conditional survival (CS) was computed

using the multiplicative law of probability. CS(y|x) can be defined as
frontiersin.org

https://doi.org/10.3389/fonc.2024.1436588
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sposito et al. 10.3389/fonc.2024.1436588
the probability of surviving additional y years, given that the patient

has already survived x years. It can be expressed as:

CS(y ∣ x) =
S(x + y)
S(x)

A p-value<0.05 was considered statistically significant.
3 Results

3.1 Patient characteristics

A total of 246NSCLC patients were profiled by tissue- and ctDNA-

based NGS assays (F1CDx, F1L, and F1LCDx). Tissue-based F1CDx

assay was performed in 146 (59.3%) patients, while the remaining 100

(40.7%) were liquid biopsy samples, 78 (78%) and 22 (22%) of which

tested by F1L and F1LCDx, respectively. The proportion of testing

failure (no results) was 5.5% (8 out of 146) for tissue sequencing and

6% (6 out of 100) for ctDNA testing (all with F1L). Overall, analyses

were completed for 232 samples, with a success rate of 94.3%. For those

patients in whom molecular profiling failed, further analysis through

liquid biopsy was not proposed, as per protocol.

Table 1 and Supplementary Data 1, Supplementary Figure S1,

summarize patients’ clinico-pathological characteristics; differences

between the patients tested with tissue- and ctDNA-based NGS

were statistically significant.
3.2 Mutational profile of NSCLC

A total of 923 genomic alterations were detected in 170 genes, with

a median number of altered genes per sample of 3 (IQR: 2–5). Of the

232 successfully tested samples, 219 (94.4%) exhibited one or more

genomic alterations, with a significantly lower number of altered genes

per sample detected by F1L, as compared to F1CDx and F1LCDx

(p<0.001, Supplementary Data 1, Supplementary Figure S2). The

genomic profile of the analyzed NSCLC samples is presented

in Figure 1A.

The top frequently altered genes included TP53 (57.8%), KRAS

(22%), CDKN2A/B (19%; comprising 50% gene loss and 9.1% structural

variation), STK11 (17.2%), and EGFR (15.1%). Most variant types were

point mutations (61%), followed by amplifications (14.7%), and

structural variations (6.8%), which included insertions, deletions,

truncations, large-scale gene losses, and gene rearrangements.

The comparison of gene frequencies between solid and liquid biopsy

is presented in Figure 1B and Supplementary Data 1, Supplementary

Table S1. Notable differences between tissue-based and ctDNA NGS

included KRAS (31.2% vs. 8.5%, p<0.01), CDKN2A/B (29.7% vs. 3.2%,

p<0.01), and MTAP (13.8% vs. 0%, p<0.01). Furthermore, ctDNA

sequencing did not detect any alterations in NKX2-1, ERBB2, and

NFKBIA. Mutations in EGFR were detected more frequently in liquid

biopsy samples compared to tissue specimens, albeit the differences were

non-significant, after adjusting for multiple comparisons.

For the top-20 mutated genes, associations between mutations

and clinical characteristics are depicted in Supplementary Figures
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S3A–C. KRAS and STK11 mutation rates were more frequent in

ever- than in never-smokers (KRAS: 29.4% ever-smoker vs. 7.4%

never-smoker, p=0.03; STK11: 22.2% vs. 4.4%, p=0.06). Conversely,

ALK alterations were more frequent in never-smokers, although

this difference did not reach statistical significance (2.3% in ever-

smokers vs. 11.8% in never-smokers, p=0.09). Additional

information on the comparison of gene alteration frequencies is

presented in Supplementary Data 1, Supplementary Tables S2–S4.
TABLE 1 Clinical characteristics of NSCLC patients.

Variable
Total

(N=232)

F1CDx
(N=138,
59.5%)

F1L/F1LCDx
(N=94,
40.5%)

Sex (male) -
N (%)

122 (52.6%) 87 (63%) 35 (37.2%)

Age - Median
(IQR)*

63 (55.3–69.8) 64 (56.8–70) 61 (53.3–66.8)

Smoking status - N (%)

Never-smoker 68 (29.3%) 25 (18.1%) 43 (45.7%)

Ever-smoker 153 (65.9%) 103 (74.6%) 50 (53.2%)

NA 11 (4.7%) 10 (7.3%) 1 (1.1%)

Pack/year
smoking history -
Median (IQR)^

10 (0–35) 30 (6.8–47.8) 3 (0–9)

ECOG performance status - N (%)

0 130 (56%) 68 (49.3%) 62 (66%)

1 85 (36.6%) 55 (39.9%) 30 (31.9%)

2 16 (6.9%) 14 (10.1%) 2 (2.1%)

3 1 (0.4%) 1 (0.7%) –

Histology - N (%)

LUAD 184 (79.3%) 100 (72.5%) 84 (89.4%)

SCC 29 (12.5%) 22 (15.9%) 7 (7.5%)

Other 16 (6.9%) 13 (9.4%) 3 (3.2%)

NA 3 (1.3%) 3 (2.2%)

Metastases at
histological
diagnosis -
N (%)§

154 (70%) 81 (60.4%) 73 (84.9%)

Number of
metastatic sites -
Median (IQR)

1 (0–2) 1 (0–2) 2 (1–3)

Stage at histological diagnosis - N (%)

I-II 18 (7.8%) 14 (10.2%) 4 (4.3%)

III 49 (21.1%) 38 (27.5%) 11 (11.7%)

IV 161 (69.4%) 83 (60.2%) 78 (83%)

NA 4 (1.7%) 3 (2.2%) 1 (1.1%)
*2 missing values; ^27 missing values; §12 missing values. LUAD, adenocarcinoma; ECOG,
Eastern Cooperative Oncology Group; IQR, interquartile range; N, number; NA, not available;
SCC, squamous cell carcinoma.
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3.3 Actionability

Frequencies and types of oncogenic driver alterations across all

samples are presented in Supplementary Data 1, Supplementary Table

S1 and S5. Based on the ESCAT actionability scale, we identified 82

cases (35.3%) harboring at least one actionable gene alteration (74

[31.9%] tier I and 8 [3.5%] tier II), and 10 (4.3%) additional cases had

an ESCAT tier III biomarker (Figure 2). Identified targetable genomic

variants were: EGFR mutations (3.4%) and structural variations

(including exon 19 deletion and exon 20 insertion, 8.6%; considering

that in some patients both were detected, the total patients involved by

EGFR mutations were 11.6%), KRAS mutations (G12C: 9.1%), ALK

fusions (3.9%) and rearrangements (0.4%), RET fusions (3.4%, with

0.4% of patients carrying also a rearrangement in the same gene), MET

exon 14 skipping mutations (2.2%) and amplifications (0.9%), BRAF

mutations (V600E: 0.9%), NTRK1 fusions (0.9%, with 0.4% of patients

carrying also a rearrangement in the same gene), ROS1 fusions (0.9%),
Frontiers in Oncology 05
and ERBB2 mutations (3%). The frequency of ESCAT tier III

mutations was 3.4% for PIK3CA, 1.7% for BRCA1, and 1.3%

for BRCA2.

Actionability rates (tier I and II) were comparable across panel

types: 36.2% F1CDx vs. 34% ctDNA NGS assays (29.5% and 40.9%

F1L and F1LCDx, respectively).
3.4 TMB and MSI status

TMB was evaluable for 123 (89.1%) and 22 (100%) patients

profiled by F1CDx and F1LCDx respectively. The difference in

TMB between the two groups was on the verge of statistical

significance, with a higher TMB in tissue specimens compared to

liquid biopsy samples (median TMB: 6 for F1CDx vs. 3.5 for

F1LCDx, p=0.051) (Figure 3A). In the whole cohort, the median

TMB was 6 mut/Mb (IQR: 3–10) and 28.3% of patients exhibited
B

A

FIGURE 1

(A) Mutation profile of NSCLC. Figure shows driver genes and genes mutated in at least 1% of the patients, and distribution of alteration types.
(B) Comparison of gene frequencies between tissue-based NGS (n=138) and ctDNA NGS (n=94) (top-20 mutated genes). The Y-axis indicates the
percentage of patients with the mutated genes across the X-axis for groups under study. **Adjusted p-value<0.01; ***Adjusted p-value<0.001.
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TMB ≥10 mut/Mb. Significantly higher TMB was observed in ever-

smokers (Figure 3B); TMB also tended to be higher in SCC tumors

(vs. LUAD; Supplementary Figure S4).

Except for 2 cases with microsatellite instability, all tumors for

which MSI status was available (135, 58.2%) were stable. The

proportion of undetermined MSI status was significantly higher in

liquid biopsy samples compared to tissue specimens (Supplementary

Data 1, Supplementary Figure S5, p<0.001), as, by design, specimens

assayed using F1L are reported as “Unknown” if MSI-H (high) is

not detected.
3.5 Co-occurrence

We investigated the distribution of co-occurring alterations in

driver genes (Supplementary Data 1, Supplementary Figure S6) and

analyzed the statistical significance of mutual exclusivity and co-

occurrence of the most frequent variants in this cohort (Figure 4).

Concurrently mutated genes were identified in 187 (80.6%)

patients. TP53 represented the most prevalent co-alteration in all
Frontiers in Oncology 06
tumors (Figure 4A) and significantly co-occurred with RB1

(Figure 4B, p<0.01). KEAP1 co-mutations were highly represented

in tumors with KRAS (9/51, 17.6%; p=0.01) and STK11 (9/40,

22.5%; p<0.01) alterations. Despite the propensity for mutual

exclusivity, we discovered 3 (5.9%) and 24 (47.1%) KRAS-mutant

patients harboring EGFR and TP53 alterations, respectively. The

spectrum of KRAS co-mutations also comprised aberrations in

STK11 (15/51, 29.4%) and CDKN2A/B (10/51, 19.6%)

(Supplementary Data 1, Supplementary Figure S6A). Among

EGFR-mutant patients, TP53 alterations were detected in 57.1%

(20/35) of cases, followed by PTEN (5/35, 14.3%), CDKN2A/B (4/

35, 11.4%), and RB1 (4/35, 11.4%) (Supplementary Data 1,

Supplementary Figure S6B). ERBB2-mutant patients were

significantly enriched with MYC (4/10, 40%; p=0.03), whereas

ALK mostly co-occurred with TP53 (6/11, 54.5%) and CDKN2A/

B (4/11, 36.7%) (Supplementary Data 1, Supplementary Figures

S6C, D). MTAP/CDKN2A/B, MYC/STK11, and NFKBIA/NKX2-1

were other co-occurrent variants with statistical significance. These

results mostly apply to patients who underwent tissue biopsy. Due

to the low number of cases, patients profiled by F1L/F1LCDx
FIGURE 2

Frequencies of ESCAT tier I-III alterations. SNV, single nucleotide variant.
A B

FIGURE 3

TMB comparison of genomic testing and smoking status. Y-axis presented in square root transformation. (A) F1CDx (n=123) vs. F1LCDx (n=22).
(B) Ever-smoker (n=101) vs. never-smoker (n= 37). TMB, tumor mutational burden.
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exhibited a less obvious pattern (Supplementary Data 1,

Supplementary Figure S7), with no significant co-occurrences and

a non-significant tendency of MET-mutated tumors towards

MDM2 enrichment.
3.6 Overall survival

Survival data were available for 229 (98.7%) patients, 217 of

whom (94.6%) with metastatic disease. The median hOS and mOS

were 27.8 (95% CI: 24.2–42.7) and 23 (95% CI: 18.5–26.7) months,

respectively, with a 5-year survival rate of 29.3% (hOS; 95% CI:

22.1–39%) and 18.6% (mOS; 95% CI: 12.1–28.7%). In an

explorative univariate analysis, a higher number of altered genes

was associated with worse hOS and mOS (p<0.01; Figure 5,

Supplementary Figure S8G).

Never-smokers had longer hOS than those with a smoking

history (p = 0.041; Supplementary Data 1, Supplementary Figure

S8E), and patients with stage at diagnosis I-II had longer hOS than

patients who were diagnosed with stage III or IV (p<0.0001;

Supplementary Data 1, Supplementary Figure S8A). Kaplan-Meier

curves also indicated poorer survival in patients with higher ECOG

PS (p<0.0001; Supplementary Data 1, Supplementary Figures

S8C, D).

We also analyzed the impact of the timing of NGS tests on OS.

The majority of the patients underwent single-gene analysis, at least

for EGFR evaluation (94% of patients), at the time of diagnosis.

Most NGS tests (114, 49.1%) were performed after initial diagnosis

or before starting the first line of therapy; 59 (25.4%) were

performed when first-line treatment was ongoing; all others were

performed before or during subsequent lines (41, 17.7%). For 18

(7.8%), this information was not available.

Patients who were profiled at or after second line display longer

mOS, as compared with subjects tested at the time of diagnosis or
Frontiers in Oncology 07
during the first-line treatment (Figure 5B). However, conditional

one- and three-year survival probabilities increased over time for

patients profiled at initial diagnosis and exceeded those of

individuals tested later in their clinical history after 36 and 12

months, respectively (Figure 5C, Supplementary Data 1,

Supplementary Figure S9).
4 Discussion

In this study, we analyzed the results of CGP performed on

either tissue or liquid biopsy samples in a real-world population of

Italian NSCLC patients. The patient population analyzed was

strikingly similar to the NSCLC population recently reported in

the context of the RATIONAL Italian registry study (18),

encompassing advanced disease, 85% adenocarcinoma histology,

and approximately 45% of tests performed at diagnosis or at I-line

treatment start. These figures reflect current indications for NGS

testing in Italy (5). In line with indications to liquid biopsy at the

time of testing, the population of patients who underwent ctDNA

NGS was significantly skewed towards younger, female,

adenocarcinoma patients, less heavily exposed to cigarette smoke,

who were metastatic at diagnosis. Regardless of the sample source

(tissue or ctDNA), NGS tools had a very high success rate in

sequencing, i.e., a mean of 94.3%, which is in line with the relevant

technical information and other reported series (11, 12, 19, 20).

The number and types of gene alterations (in particular those

falling in ESCAT tiers I/II) reported in our experience are in line

with the literature (6, 7). MET alterations were slightly less

prevalent in our cohort, primarily due to the lower occurrence of

high-level amplifications (0.9% compared with 2-4% reported in the

literature (21, 22)). This discrepancy may be due to the rarity of

these mutations and the low sample size of our cohort, as well as to

the lower ability of ct-DNA-based methods (employed in
BA

FIGURE 4

(A) Number of co-occurrences between gene pairs. (B) Mutual exclusivity and co-occurrence of top-20 genes/driver genes in 232 NSCLC tumors.
P-values (not adjusted) were calculated using Fisher’s exact test and transformed into a score, -log10(P-value). *Adjusted p-value<0.05; N, number.
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approximately 41% of our cohort) to detect MET amplifications

(23). Exon 14 skipping mutation rate (2.2%) was consistent with

that reported in the literature (3%) (6).

Significant differences between tissue-based and ctDNA NGS

included KRAS, CDKN2A/B, and MTAP. KRAS frequency was

significantly higher in cases tested with the tissue-based F1CDx

than in those tested by ctDNA-based panels (F1L/F1LCDx). This

may be due to a selection bias skewing the population subjected to

liquid testing towards second or further lines and enriching it for

EGFR-mutant cases progressing on TKI treatment; indeed, the
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prevalence of smokers was significantly lower (74.6% vs 53.2%)

and that of EGFR mutations was higher (9.4% vs 23.4%) in patients

tested by liquid biopsy. Genes like CDKN2A/B andMTAPmay have

an artificially low prevalence in this type of study, due to copy

number deletions not being detected by liquid assays. Similarly, no

alterations in NKX2-1, ERBB2, and NFKBIA were found using

ctDNA sequencing, possibly due to lower sensitivity of liquid

biopsy to detect ERBB2 copy number alterations (23) and the fact

that NKX2-1 and NFKBIA are not baited on F1L test. Part of the

differences in detection rates observed with liquid, as opposed to
B

C

A

FIGURE 5

(A) Kaplan-Meier Curves indicating overall survival from metastatic diagnosis stratified by number of altered genes per sample. (B) Kaplan-Meier
Curves indicating overall survival from metastatic diagnosis stratified by NSG timing. (C) Three-year conditional mOS by NGS timing. The x-axis
represents the duration of survival to date (6-month intervals). All patients in the “Diagnosis” group died within 42 months; therefore, they were
assumed to have a constant survival rate from that point onwards. mOS, overall survival from metastatic diagnosis.
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tissue-based tests, may also be attributable to the size of the panel

used; indeed, even though the sample size in the F1LCDx was low,

we observed a higher proportion of actionable genes detected by

this test compared to the older F1L (40.9% vs. 29.5%), presumably

due to the greater number of genes analyzed (324 vs. 70). It seems

that the larger the gene panel, the higher the proportion of

actionable genes detected (24, 25). The increase in the percentage

of actionable genes ranged from 31% (24) to 45% (25). In addition,

F1LCDx was shown to have a higher success rate than F1L (26).

In addition to IHC-based PD-L1 expression, high TMB,

generally defined as TMB ≥ 10 mutations/Mb, may predict

response to immunotherapy (7, 27), although this is not yet a

recognized regulatory biomarker in Europe (7). In our cohort, 28%

of 145 TMB-assessable patients had high TMB (30.1% in tissue

biopsies); such frequency is slightly lower than that reported in the

literature for NSCLC (36%), possibly due to differences between

tests. Indeed, greater TMB was detected by F1CDx than by F1LCDx;

such difference may be explained by a relatively lower prevalence of

smokers in the liquid cohort (a greater frequency of high TMB is

observed among ever-smokers in our cohort, consistent with other

reports (28)) and/or by the possibility that a low tumor fraction may

lead to TMB underestimation in blood samples (29). MSI status is

another predictive biomarker for immunotherapy (30). In our

study, a greater proportion of patients (86%) had undetermined

MSI status in liquid specimens when compared to tissue ones

(12%). This is due to the design of F1L assay, which reports only

MSI-H status. Genomic space covered and panel composition may

result in a different efficiency in detecting MSI. However, in NSCLC

MSI is rare (1%) and only a few studies have evaluated its impact on

response to immunotherapy (31).

Another potential advantage of NGS is the ability to detect co-

occurrences that may affect the response to anticancer therapies in

NSCLC (32). TP53 is one of the most important tumor suppressors

(33), frequently mutated in almost all types of cancers, including

NSCLC (34). Thus, it is not surprising that concomitant alterations

of TP53 and actionable genes may affect responsiveness to TKI and

immunotherapy. In the IMMINENT cohort, TP53 was the most

prevalent co-alteration in all tumors, particularly in EGFR- and

KRAS-mutated tumors. Co-occurrence of TP53 and EGFR

mutations is generally associated with worse prognosis in patients

treated with TKIs (35, 36). In the IMMINENT cohort, co-

occurrences were also significant with RB1; patients with EGFR/

RB1/TP53 co-mutant lung cancer are at risk of small or large cell

neuroendocrine lung cancer transformation (37, 38). Although

usually mutually exclusive, co-occurrence of EGFR and KRAS

alterations (found in three patients in the IMMINENT cohort)

can be found with highly sensitive methods and usually portends

primary and/or acquired resistance to EGFR TKIs (39). In the

IMMINENT dataset, STK11 was the second most frequently co-

mutated gene, among KRAS-mutant patients, although this

association did not reach statistical significance. STK11/KEAP1

and KRAS/KEAP1 co-mutations have been reported by other

studies (40), with variable association with clinical outcome (41,

42). To our knowledge, this is the first study reporting co-
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occurrences of MYC/STK11 and MYC/ERBB2 and were

preliminarily confirmed as statistically significant in the TCGA

pan-lung cancer cohort (43). Overall, the concept that co-mutations

are associated with worse outcome is supported by an exploratory

univariate analysis showing, in the IMMINENT cohort, a

significantly better survival for patients whose tumors harbored

no or a single genomic driver, as compared to those characterized

by a more complex genomic landscape. These findings, however,

need further analysis to exclude potential confounders: smoking

history may play a role in the association between the number of

altered genes and worse OS, as smokers display both a higher

number of mutations and worse prognosis. Moreover, the

association between a higher number of altered genes and worse

hOS and mOS was not observed when the analysis was restricted to

tissue specimens; in blood samples, the absence of mutations may

indicate minimal or no shedding of tumor DNA, which may have

positive prognostic value (44).

Survival outcomes for the IMMINENT population compare

favorably with those reported in a recent Italian real-world

experience (45). Better figures in the IMMINENT cohort, as

compared to registry data, probably reflect a relative selection of

patients, as well as the inclusion of patients who had been treated

with first-line chemo-immunotherapy combinations (reimbursed

in Italy since 2019). The clear impact of well-known prognostic

factors (such as stage at diagnosis for hOS, ECOG PS, and smoking

status for both h and mOS) attests to the representativeness of the

population studied and to the generalizability of the results.

Current clinical guidelines advocate for the molecular

genotyping of patients newly diagnosed with metastatic NSCLC.

Real-world evidence underscores the significant survival benefits

associated with comprehensive molecular profiling performed

either at the time of diagnosis or before initiating first-line

treatment. This approach ensures that patients receive tailored

therapies targeting specific genetic alterations, thereby optimizing

treatment efficacy and patient outcomes (46, 47). In our study,

somewhat contrary to expectations, both h and mOS appeared to be

significantly longer for patients tested in second or further lines;

such finding may be explained in part by the fact that the

probability of surviving for a defined further period of time is

higher for patients who have already survived up to a certain

landmark (conditional survival (48)); indeed, in our series

conditional 3-year survival probability did not differ for patients

tested with NGS at different times in their disease course, provided

that they had already survived 1 year.

Additionally, single gene testing was conducted for the majority

of the analyzed patients, allowing for targeted therapy initiation at

diagnosis in many cases. However, previous single gene testing may

have, in some instances, compromised the amount of available

material for comprehensive genomic profiling (CGP) analysis (49).

This study has some limitations, which include its retrospective

nature and a relatively small sample size. Another significant

limitation is the unavailability of tumor fraction (TF) data in the

liquid biopsy cohort. Specifically, for patients who underwent the

F1L test, the TF data is not specified in the report. On the other
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hand, for patients who were subjected to the F1LCdx test, TF data

was available for only 13 patients, out of which only 6 patients had

high TF levels. This lack of comprehensive TF data is relevant given

the clinical implications of TF levels. Patients with who have

negative liquid biopsy results and a ctDNA TF of 1% or higher

are unlikely to have a driver mutation detected on subsequent tissue

testing. Therefore, these patients might benefit from starting

treatment immediately. On the other hand, those with a negative

liquid biopsy and a ctDNA TF of less than 1% often have a driver

mutation identified in follow-up tissue testing and should be

prioritized for additional analysis (50). Our limited availability of

TF data constrains the ability to draw comprehensive conclusions

about the correlation between TF levels and clinical outcomes in the

study population. Of note, high-risk clonal hematopoiesis (CH) is

often unexpectedly detected in solid tumor patients undergoing

plasma cell-free DNA sequencing. These findings could lead to

further hematologic diagnostic tests and uncover an occult

hematologic malignancy (51). These insights pose a limitation to

our study as we did not evaluate monoclonal components due to

data insufficiency and the primary objectives of the study.

In that respect, other data sources such as the ongoing ATLAS

registry [https://biomarkersatlas.com (52)], prospectively collecting

data on the molecular characterization of NSCLC in the majority of

Italian Centers, may overcome many of such limitations. Moreover,

currently ongoing prospective trials, such as the Liquid-First trial

(NCT05846594), will contribute to define the place of ctDNA-based

NGS tests in the upfront molecular characterization of newly

diagnosed, advanced NSCLC.
5 Conclusions

In conclusion, the IMMINENT study, analyzing data coming

from both liquid and tissue NGS tests performed on 246 patients

affected by NSCLC in the period May 2019–November 2022,

confirms the utility of CGP in the upfront molecular

characterization of advanced NSCLC. Further analysis will help

gaining insights into prognostic and predictive value of specific

genomic alterations or combinations thereof.
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Glossary

cfDNA circulating free DNA

CGP comprehensive genomic profiling

CNAs copy number alterations

CS conditional survival

ctDNA circulating tumor DNA

EGFR epidermal growth factor receptor

ESMO European Society for Medical Oncology

FFPE formalin-fixed paraffin-embedded

F1CDx FoundationOne®CDx

F1L FoundationOne®Liquid

F1LCDx FoundationOne®Liquid CDx

FISH fluorescence in situ hybridization

GCN gene copy number

hOS overall survival from histological diagnosis

ICF informed consent form

IHC immunohistochemistry

IMMINENT IMpact of broad genoMic profIling oN advancEd
NSCLC outcome

IQR interquartile range

ISH in situ hybridization

KM Kaplan-Meier

LUAD adenocarcinoma

mOS overall survival from metastatic diagnosis

MSI microsatellite instability

MS microsatellite status

NGS next generation sequencing

NSCLC non-small-cell lung cancer

PD-L1 programmed death-ligand 1

RT-PCR reverse transcriptase-polymerase chain reaction

SCC squamous cell carcinoma

SCLC small-cell lung cancer

SNV single nucleotide variations

TCGA The Cancer Genome Atlas

TMB tumor mutational burden
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