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Introduction: Spread through air spaces (STAS) represents a novel invasive

pattern in lung adenocarcinoma (LUAD) and is a risk factor for poor prognosis

in stage T1 LUAD. This study aims to develop and validate a CT habitat imaging

analysis model for predicting STAS in stage T1 invasive LUAD.

Methods: We retrospectively analyzed 217 patients with preoperative stage T1

invasive LUAD (115 STAS-positive and 102 STAS-negative cases, including 151 in

the train set and 66 in the test set). Semi-automatic segmentation was performed

on the regions of interest (ROIs) in all CT images, with an automatic 3mm

expansion around the tumor, considering the intratumoral and peritumoral 3mm

area. This area was divided into three sub-regions via K-means clustering, and

1197 radiomic features were extracted from each sub-region and the overall

combined region. After dimension reduction through the Mann-Whitney U test,

Pearson correlation analysis, and least absolute shrinkage and selection operator

(LASSO), the best features for each sub-region and overall were selected. Models

were then built using the selected radiomic features through the Adaptive

Boosting (AdaBoost) and Multilayer Perceptron (MLP) classifiers. Four different

models were established based on different sub-regions and the overall features.

The performance of these models was evaluated through receiver operating

characteristic curves (AUC) under the DeLong test, calibration curves via the

Hosmer-Lemeshow test, and decision curve analysis to assess the performance

of these features.

Results: In this study, we evaluated the predictive performance of AdaBoost and

MLP classifiers on rad feature models across various subregions and the overall

dataset. In the test set, the AdaBoost classifier achieved a maximum AUC of 0.871

in Habitat 3, whereas the MLP classifier demonstrated slightly superior

performance with an AUC of 0.879. Both classifiers exhibited high efficiency in

habitat 3, with the MLP algorithm showing enhanced model performance.
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Conclusions: CT habitat imaging analysis for the preoperative prediction of STAS

in stage T1 invasive LUAD shows satisfactory diagnostic performance, with the

habitat3 model exhibiting the highest efficacy, reflecting tumor heterogeneity.
KEYWORDS

invasive lung adenocarcinoma, radiomics, habitat imaging, tumor microenvironment,
air space spread
1 Introduction

Lung adenocarcinoma (LUAD) is one of the malignancies with

high incidence and mortality rates globally, and early-stage

diagnosis and treatment significantly impact patient survival rates

(1). In recent years, with the advancement of low-dose helical

computed tomography and increased public health screening

awareness, the detection rate of early-stage lung cancer has been

on the rise; according to guidelines by the National Comprehensive

Cancer Network(NCCN)in the United States, the current standard

treatment for stage T1 LUAD is radical pulmonary resection,

specifically lobectomy (2). Numerous domestic and international

studies have also suggested that sublobar resection for early-stage

lung nodules not only preserves lung function but also reduces the

incidence of postoperative complications (3, 4). Despite surgical

treatment significantly enhancing the cure rate and survival of

patients with stage T1 lung adenocarcinoma, the recurrence rate

in these patients still stands at 20-30% (5). Therefore, identifying

patients with stage T1 LUAD at high risk of recurrence to provide

precise surgical strategies has become a focal point of current

clinical research.

Spread through air spaces (STAS) is a dissemination mode

specific to lung cancer, involving cancer cells detaching from the

primary site and spreading to surrounding areas via respiratory

movements, reimplanting in the respiratory tract and alveolar walls,

and further growing, thus facilitating lung cancer metastasis. This

concept was first introduced in 2015 and was quickly recognized as

an independent risk factor for lung adenocarcinoma recurrence and

poor prognosis (6). Current studies have explored the relationship

between STAS and postoperat ive prognos i s o f lung

adenocarcinoma, where STAS-positive patients exhibit higher

local and distant recurrence rates and shorter recurrence-free

survival (RFS) (7–9). Some scholars have compared lobectomy

and sublobar resection in stage T1 LUAD STAS-positive patients,

finding significantly increased recurrence and metastasis rates in

sublobar resections, suggesting that STAS positivity is an

independent risk factor for stage T1 LUAD (10). Therefore,

preoperative prediction of STAS status is crucial for choosing the

surgical approach for stage T1 LUAD. If STAS can be diagnosed

preoperatively or intraoperatively, it would guide the selection of

clinical surgical treatment methods. Due to the limited inflation of

lung tissues in intraoperative frozen sections, their ability to predict
02
STAS status is limited. Currently, choosing a preoperative surgical

approach for stage T1 LUAD remains a challenge, and accurate

preoperative prediction of STAS is a hot research topic and an

essential means to improve lung cancer survival rates, offering

significant guidance for planning clinical surgical strategies.

Currently, radiomics technology has been extensively validated

for predicting air space spread in LUAD but is limited to traditional

radiomic analysis, i.e., of the tumor and surrounding areas (11–15).

Each tumor is not just a homogenous entity but a mosaic of unique

microenvironments, or habitats, composed of clusters of voxels with

similar characteristics, consisting of tumor cells with identical

genotypes and phenotypes. Habitat imaging distinctly segments

the tumor into these sub-regions, which can reflect the spatial

heterogeneity within the tumor to a certain extent, providing a new

perspective for understanding and predicting the invasive behavior

of tumors (16, 17). Habitat analysis has been applied to other types

of tumors, such as breast cancer (18, 19), glioma (20, 21), cervical

cancer (22, 23), liver cancer (24), colorectal cancer (25), recurrence

of non-small cell lung cancer (26), pulmonary metastases (27), etc.,

but reports on its application in predicting STAS in lung

adenocarcinoma are yet to be seen. The purpose of this study is

to use habitat imaging to segment tumor sub-regions and

incorporate peritumoral imaging to characterize spatial

heterogeneity more accurately, aiming to predict the STAS status

in stage T1 invasive LUAD more precisely, thereby providing a new

scientific basis for preoperative assessment and treatment decision-

making in stage T1 invasive LUAD.
2 Materials and methods

2.1 Patient selection and
clinicopathological information

This study follows the Declaration of Helsinki, has been

approved by the Ethics Committee of Huzhou First People’s

Hospital, and has waived the patients’ informed consent. The

data of patients admitted to T1 invasive lung adenocarcinoma

from January 2019 to December 2023. Inclusion criteria: (1)

patients with maximum CT tumor diameter less than 3CM; (2)

patients with CT imaging data within one month before surgery; (3)

patients diagnosed with invasive lung adenocarcinoma; and (4)
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patients without distant metastasis before surgery. Exclusion

criteria: (1) patients who had received neoadjuvant therapy; (2)

patients with multiple pulmonary nodules reported on preoperative

CT images; (3) patients with current or previous history of other

malignancy; (4) patients with incomplete clinical data collection;

and (5) patients whose images were not identified by ITK-SNAP.

Ultimately, 455 eligible patients were continuously enrolled, of

whom 115 were positive for STAS and 340 were negative for

STAS. To overcome the possible imbalance in the data, we

randomly grouped the STAS negative cases by 3:7 and matched

them to an almost 1:1 ratio of the STAS positive group. This data

balancing method has been demonstrated in previous studies (15),

divided into a training group (n=151) and a validation group

(n=66) (Figure 1).

Clinical and pathological variables included age, sex, serum

tumor markers (carcinoembryonic antigen (CEA) and sugar
Frontiers in Oncology 03
antigen CA125 (CA125)), smoking status, tumor location, and

emphysema; KI67, vascular infiltration, nerve infiltration, and

invasion of pleural membrane.
2.2 Histopathological evaluation

According to the WHO, STAS is defined as the spread of

micropapillary clusters, solid nests, or individual tumor cells into

the alveolar spaces beyond the main tumor edge. The main

morphological features include: (1) alveolar spaces filled with

ring-shaped micropapillary structures without or with occasional

central fibrovascular cores; (2) alveolar spaces filled with solid nests

or tumor islands composed of tumor cells; and (3) alveolar spaces

filled with discontinuous individual tumor cells. In this study,

pathological examinations were reassessed and diagnosed by an
FIGURE 1

Flow diagram of the enrolment patients. STAS spread through air spaces; STAS(+), presence of STAS; STAS(-), absence of STAS.
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attending physician with 5 years of experience and a chief physician

with 15 years of experience, based on the WHO definition of STAS.
2.3 CT examination protocol

The chest scan was performed with German Siemens Definition

AS 64-row 128-slice spiral CT. Scan from thoracic entrance to

diaphragm level. The subjects were placed in the supine position

and held their breath after deep inhalation. Scanning parameters:

tube voltage 120kv, tube current 120mA, window width 1300-1500,

window position: -600~-700, pitch 1.0, frame rotation time 0.33S/

360 degrees. Lung window reconstruction was performed using the

lung method with a reconstruction thickness of 1.25mm and layer

spacing of 1.25mm. Mediastinal window reconstruction thickness

and layer spacing were 5mm.
2.4 Image segmentation and
data preprocessing

Image segmentation was performed independently by two

radiologists with extensive experience. They were blinded to the

patients’ histopathology. One of the radiologists (radiologist A, with

5 years of experience) manually drew the ROI slice by slice using the

open-source software ITK-SNAP (version3.8.0, http://

www.itksnap.org). Another radiologist (radiologist B, with 10

years of experience) reviewed all ROIs manually segmented by

radiologist A. The software automatically expands its boundaries by

3mm to get a gross peritumor ROI. The 3mm area surrounding the

tumor was manually removed where the soft tissue, bone, and

mediastinum overlapped in the chest wall. Intra-class correlation

coefficients (ICCs) are used to evaluate feature extraction. In terms

of intra-observer and inter-observer consistency, ICCs≥0.75

indicates good consistency.

The dataset was randomly assigned in a 7:3 ratio to either the

training dataset or the test dataset. All cases in the training dataset

were used to train the predictive model, while cases in the test

dataset were used to evaluate the model’s performance

independently. Medical volumes are common with heterogeneous

voxel spacing because of different scanners or acquisition protocols.

Such spacing refers to the physical distance between two pixels in an

image. Spatial normalization is often employed to reduce the effect

of voxel spacing variation. The fixed-resolution resampling method

was used in our experiment to handle the problems mentioned

above. All images were resampled to a voxel size of 1*1*1 mm to

standardize the voxel spacing. Finally, the data were standardized

using z-score standardization (zero-mean normalization).
2.5 Sub-region clustering and
feature extraction

Habitat utilizes voxel and entropy values from CT images to

cluster VOIs into sub-regions (28–30). The voxel counts for each

tumor VOI were determined using a traditional method, whereas
Frontiers in Oncology 04
the entropy values were computed for each layer of the CT images

using the following formula:

Vvoxel = o
NV

k=1

Vk

 entropy  =   −oNg

i=1p(i) log2 (p(i) + e)  =

The k-means method was employed to cluster the VOI regions

at the patient level, forming multiple habitats, and the distance

correlation between samples was calculated using the Euclidean

distance (voxel values and entropy values). The number of habitats

was tested from 2 to 10 to determine the optimized number of

habitats with the highest evaluation metric, the Calinski–Harabasz

index (31). The optimal k-value was the criterion for selecting the

optimal number of clusters at the patient population level. The

optimal k-value was found to be 3. Using Python software, we

imported the volume of interest (VOI) for each patient into the

system. The T1 aggressive lung adenocarcinomas were classified

into three distinct categories: habitat 1, habitat 2, and habitat 3.

The handcrafted features can be divided into three groups: (I)

geometry, (II) intensity, and (III) texture. The geometry features

describe the three-dimensional shape characteristics of the tumor.

The intensity features describe the first-order statistical distribution

of the voxel intensities within the tumor. The texture features

describe the patterns or the second and high-order spatial

distributions of the intensities. Here the texture features are

extracted using several different methods, including the gray-level

co-occurrence matrix (GLCM), gray-level run length matrix

(GLRLM), gray-level size zone matrix (GLSZM), and

neighborhood gray-tone difference matrix (NGTDM) methods.

Based on habitat imaging, image omics features were extracted

from three subregions and the peri-tumor region, respectively. All

features were extracted using the Pyradiomics package in Python

version 3.9. Eight wavelet transform algorithms are used to obtain

high-throughput features for first-order statistics and texture

features, namely LLL, LLH, LHL, LHH, HLL, HLH, HHL, and

HHH. Do z-score normalization for all features and change the

feature value to 0 mean 1 variance.
2.6 Feature selection and model design

Statistics: We performed a Mann-Whitney U test and feature

screening for all radiomic features. Only the radiomic features with

a p-value< 0.05 were kept. Correlation: For features with high

repeatability, Spearman’s rank correlation coefficient was also

used to calculate the correlation between features, and one of the

features with a correlation coefficient greater than 0.9 between any

two features is retained. We use a greedy recursive deletion strategy

for feature filtering to maintain the ability to depict features to the

greatest extent. That is, the feature with the greatest redundancy in

the current set is deleted each time. Lasso: LASSO regression model

was used on the discovery data set for signature construction.

Depending on the regulation weight l, LASSO shrinks all

regression coefficients toward zero and sets the coefficients of
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many irrelevant features exactly to zero. To find an optimal l, 10-
fold cross-validation with minimum criteria was employed, where

the final value of l yielded minimum cross-validation error. The

retained features with nonzero coefficients were used for regression

model fitting and combined into a radiomics signature.

Subsequently, we obtained a radiomics score for each patient by a

linear combination of retained features weighed by their model

coefficients. The Python scikit-learn package was used for LASSO

regression modeling.

After Lasso feature screening, we input the final features into the

AdaBoost and MLP classifiers for risk model construction. Here, we

adopt 5 5-fold cross-verification to obtain the final Rad Signature.

Receiver operating characteristic (ROC) curves were plotted to

assess the diagnostic performance of the predictive models, and

the corresponding area under the curve (AUC), diagnostic

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were analyzed.
2.7 Statistical analysis

The Python state models (version 0.13.2) package was used to

perform statistical analysis, and a p-value< 0.05 was considered

statistically significant. We analyzed the differences between groups

using Student’s t-test or Mann−Whitney U tests for continuous

variables; the chi-square test or Fisher’s exact test was applied for

categorical variables.
3 Results

3.1 Patient characteristics

A total of 217 patients, including STAS positive 115and STAS

negative 102patients, were included in our study. Patients were

divided into a training set (151 patients) and an independent test set

(66 patients) based on treatment duration. A pathologist reviewed

the pathological data. All patients underwent surgical treatment;

there were 77 (51%) patients with STAS positive and 74 (49%)

patients with STAS negative in the training group and37 (56%)

patients with STAS positive and 29(44%) patients with STAS

negative in the test group.

The characteristics of the patients in the cohort are shown in

Table 1. The comparison of age, gender, CA125, smoking status,

lobular locations, Vascular infiltration, perineural invasion, and

Pleural infiltration showed no significant difference between the two

groups and within each group (p>0.05), ensuring a reasonable

classification. Significant differences between the cohorts were

found in CEA (p<0.05).
3.2 Workflow of radiomics analysis

The radiomics analysis consisted of a series of steps: image

segmentation, feature extraction, feature selection, signature

construction, and evaluation (Figure 2).
Frontiers in Oncology 05
3.3 Feature selection and radiomics
signature development

Features Statistics: Optimal CH value emerged when tumors

were clustered into three sub-regions in the entire cohort (Figure 3).

A total of 1197 manual features were extracted for each sub-region

and population, among which 234 were the first feature, 14 were

shape features, and the last were texture features. All handcrafted

features are extracted with an in-house feature analysis program

implemented in Pyradiomic (http://pyradiomics.readthedocs.io).

Feature selection: Through the Mann-Whitney U test, Pearson

correlation analysis, and LASSO dimension reduction processing,

we screened out the best features of each sub-region and the whole.

Fifteen features were obtained in habitat 1. 23 features were

obtained in habitat 2. Fifteen features were obtained in habitat 3.

In the whole region, 20 features are obtained.

We use AdaBoost and MLP classifiers, respectively, to predict

rad feature models for each habitat. Among them, the test group

habitat 3 of the AdaBoost classifier has the highest AUC, 0.871. The

test group of the MLP classifier also has the highest AUC, which is

0.879. Therefore, among the two classifiers, habitat 3 has higher

efficiency, and the model efficiency of the MLP classifier is higher.

(Tables 2, 3). Figure 4 shows the receiver operating characteristic

(ROC) curves, calibration curves, and decision curve analysis

(DCA) for all features in the training and testing sets of the MLP

model. Barplots depicting the classification performance of the

habitat3 signature in the training and validation cohorts are

shown in Figure 5. The distribution of three different habitats in a

three-dimensional space is shown in Figure 6.

CT images and histopathological photographs of STAS-positive

nodule is shown in Figure 7.
4 Discussion

In this study, we utilized CT images to extract radiomic features

from the tumor and an additional 3mm peritumoral sub-regions,

establishing a multi-regional radiomics model for predicting the

status of STAS. Results indicated that Habitat3 models exhibited

robust predictive performance, with AUC values of 0.881 in the

training set and 0.879 in the testing set using the MLP classifier.

This approach, employing radiomics from the tumor and 3mm

peritumoral sub-regions divided into different areas, is a novel

method proposed for predicting STAS status, providing a robust

basis for preoperative precise surgical planning for patients with

stage T1 invasive LUAD.

Numerous researchers have explored radiomics to predict

LUAD STAS. Chen et al. (32) segmented tumors in a cohort of

233 stage I LUAD patients, extracted radiomic features, and

constructed a model to predict the presence of STAS. The model

demonstrated AUC values of 0.63 and 0.69 during internal and

external validation, respectively, underscoring CT-based

radiomics’s utility in the preoperative STAS prediction in stage I

LUAD. Han et al. (15) employed a similar radiomic approach on

preoperative stage IA LUAD patients, achieving AUC values of
frontiersin.org
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TABLE 1 Baseline characteristics of patients in the training cohort and test cohort.

Characteristics Total (N=217) Train(N=151) Test(N=66) P-value

Age (years) 64.96 ± 9.58 65.44 ± 9.21 63.88 ± 10.37 0.424

Maximum-diametere(cm) ()
()(cm)

1.68 ± 0.64 1.67 ± 0.65 1.70 ± 0.61 0.574

Gender 0.07

Male 104(47.93) 79(52.32) 25(37.88)

Female 113(52.07) 72(47.68) 41(62.12)

Smoke 0.414

Non-smoker 164(75.58) 117(77.48) 47(71.21)

Smoker 53(24.42) 34(22.52) 19(28.79)

CEA 0.007

Negative 171(78.80) 111(73.51) 60(90.91)

Positive 46(21.20) 40(26.49) 6(9.09)

CA125 0.056

Negative 206(94.93) 140(92.72) 66(100.00)

Positive 11(5.07) 11(7.28) 0

Lobular locations 0.533

RUL 67(30.88) 48(31.79) 19(28.79)

RML 27(12.44) 15(9.93) 12(18.18)

RLL 31(14.29) 21(13.91) 10(15.15)

LUL 59(27.19) 43(28.48) 16(24.24)

LLL 33(15.21) 24(15.89) 9(13.64)

Vascular_infiltration 1.0

No 142(65.44) 99(65.56) 43(65.15)

Yes 75(34.56) 52(34.44) 23(34.85)

perineural_invasion 0.984

No 212(97.70) 147(97.35) 65(98.48)

Yes 5(2.30) 4(2.65) 1(1.52)

Pleural_infiltration 0.235

No 179(82.49) 121(80.13) 58(87.88)

Yes 38(17.51) 30(19.87) 8(12.12)

KI67 0.827

<20% 181(83.41) 127(84.11) 54(81.82)

≥20% 36(16.59) 24(15.89) 12(18.18)

lymphatic_metastasis 0.707

No 193(88.94) 133(88.08) 60(90.91)

Yes 24(11.06) 18(11.92) 6(9.09)

Emphysema 0.214

No 143(65.90) 104(68.87) 39(59.09)

Yes 74(34.10) 47(31.13) 27(40.91)
F
rontiers in Oncology
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LLL, left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe.
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0.812 and 0.850 in the training and testing sets, respectively, using

logistic regression. Jiang et al. (11) utilized the same segmentation

technique on a dataset of 462 LUAD patients and developed a

model using the random forest classifier, which achieved an AUC of

0.754. These studies focused solely on the tumor without analyzing

the peritumoral area’s impact on STAS. Zhuo and Qi et al. (12, 33)

studied various regions surrounding lung adenocarcinoma tumors

and determined that an integrated model incorporating peritumoral

areas along with other clinical parameters demonstrates higher

efficacy than a radiomic model based solely on the tumor itself.
Frontiers in Oncology 07
These studies highlight that STAS occurrence is mainly related to

the intrinsic aggressiveness of the tumor, with the peritumoral area

also reflecting the tumor’s invasive behavior to some extent.

Our study combined features from the tumor and its

surroundings, avoiding the oversight of additional value from the

tumor microenvironment. We discovered that representing the

spatial heterogeneity within different habitats of the tumor and its

surroundings can better predict the status of STAS. Tumors

themselves, as complex ecosystems akin to natural habitats,

consist of heterogeneous sub regions that follow the principle of
FIGURE 3

Calinski–Harabasz score plot. The red dotted line represented the optimal value beyond which the scores started to decrease in the radiomics
features from CT images.
FIGURE 2

Workflow of radiomics analysis.
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TABLE 3 Performance of each subregion and the whole imaging rad model of the MLP classifier in predicting STAS.

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Habitat1 0.795 0.844 0.7824 - 0.9057 0.872 0.712 0.764 0.839 Train

Habitat2 0.815 0.906 0.8615 - 0.9509 0.833 0.795 0.812 0.817 Train

Habitat3 0.808 0.881 0.8295 - 0.9334 0.885 0.726 0.775 0.855 Train

Whole 0.828 0.907 0.8616 - 0.9516 0.756 0.904 0.894 0.776 Train

Habitat1 0.788 0.822 0.7119 - 0.9311 0.838 0.724 0.795 0.778 Test

Habitat2 0.788 0.838 0.7386 - 0.9371 0.757 0.828 0.848 0.727 Test

Habitat3 0.803 0.879 0.7900 - 0.9677 0.757 0.862 0.875 0.735 Test

Whole 0.803 0.871 0.7838 - 0.9590 0.703 0.931 0.929 0.711 Test
F
rontiers in Oncol
ogy
 08
FIGURE 4

shows the Receiver Operating Characteristic (ROC) curve, correction curve, and decision curve analysis (DCA) for all features in the training cohort
(A–C) and test cohort (D–F) of the MLP model.
TABLE 2 Performance of each sub-region and the whole imaging rad model of the AdaBoost classifier in predicting STAS.

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Habitat1 0.815 0.905 0.8608 - 0.9499 0.885 0.740 0.784 0.857 Train

Habitat2 0.881 0.957 0.9307 - 0.9838 0.885 0.877 0.885 0.877 Train

Habitat3 0.861 0.952 0.9230 - 0.9801 0.859 0.863 0.870 0.851 Train

Whole 0.854 0.940 0.9057 - 0.9745 0.795 0.918 0.912 0.807 Train

Habitat1 0.773 0.852 0.7553 - 0.9484 0.730 0.828 0.844 0.706 Test

Habitat2 0.727 0.802 0.6975 - 0.9064 0.757 0.690 0.757 0.690 Test

Habitat3 0.788 0.871 0.7845 - 0.9583 0.784 0.793 0.829 0.742 Test

Whole 0.727 0.816 0.7061 - 0.9258 0.676 0.793 0.806 0.657 Test
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survival of the fittest, growing and increasing under various

pressures, closely related to the progression and prognosis of the

tumor. Based on radiomics principles and differences in pathology

and biology, Habitat imaging uses quantitative imaging markers to

comprehensively and non-invasively characterize the tumor

environment, visualizing and quantifying the tumor’s internal

heterogeneity. We obtained 1197 high-dimensional features from

each sub region for STAS based on CT images. Therefore, feature

selection is a critical step before constructing a radiomics model.

Our study employed a three-step method for feature selection from

different aspects. To describe tumor heterogeneity, we identified the

best features from each sub region and the overall combined

regions. We obtained 15 features in habitat1, 23 in habitat2, and

15 in habitat3, with 20 features in the whole area. The obtained

features primarily focused on filtered image intensity and texture

characteristics, exploring deeper correlations with tumor biological

changes through filtering transformations.

We used the AdaBoost and MLP classifiers to predict rad

feature models for each habitat and the whole. Among these, the

test set for habitat3 had the highest AUC with the AdaBoost

classifier (0.871) and the MLP classifier (0.879). Thus, habitat3
Frontiers in Oncology 09
demonstrated high efficacy with both classifiers, with the MLP

classifier showing higher model performance. AdaBoost’s main

advantage lies in its ability to enhance difficult-to-classify samples,

improving the overall accuracy of the model, and compared to some

complex classifiers, it is more efficient in implementation and

operation, making it a powerful and practical tool for various

classification challenges. MLP, a type of feedforward artificial

neural network, consists of multiple layers, including input, one

or more hidden layers, and an output layer, with each layer

composed of numerous neurons interconnected by learnable

weights. Its main advantages are its strong non-linear learning

capabilities and complex pattern representation ability, making it

highly effective in many modern AI applications such as image

recognition, speech processing, and complex classification tasks.

The results obtained using these two classifiers established a more

robust and resilient model.

This study concludes that the model constructed by habitat3

exhibits the highest efficacy, surpassing that of the whole model,

indicating that intra-tumoral subregions are more indicative of

STAS status than the tumor as a whole. This also suggests that

habitat analysis reflects tumor heterogeneity more than traditional
FIGURE 6

Habitat 3D visualization. Each habitat is represented by a different color: green for habitat 1, blue for habitat 2, and yellow for habitat 3.
FIGURE 5

Barplots depicting the classification performance of radiomic features of habitat 3 in the MLP model. The yellow bar with a prediction value > 0
indicates that the signature successfully classifies the STAS patients; the red bar with a prediction value< 0 indicates that the signature fails to classify
the STAS patients. For the blue bar, the contrary applies.
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radiomics (22). Habitat3 represents the peripheral ground-glass

opacity (GGO) components of the tumor, possibly due to tumor

cells in the GGO area enhancing their migration and invasion

capabilities by altering cell adhesion mechanisms and signaling

pathways, leading to the occurrence of STAS (34). The GGO area

typically reflects changes in the tumor microenvironment, including

inflammatory responses and extracellular matrix remodeling, which

may also promote the occurrence of STAS (35, 36). Habitat3

manifests radiologically as the range inward or outward from the

tumor edge, corresponding to the radiological tumor margin, which

aligns with the pathological tumor margin. It is also possible that

tumor growth gradually expands outward, with central tumor cells

gradually hypoxic and necrotic due to aggregation, resulting in the

richest blood supply at the tumor’s edge, thus reflecting tumor

heterogeneity most prominently. However, habitat2, representing

the area surrounding the tumor, exhibits lower model efficacy than

Habitat3, possibly due to interference from normal lung tissue in

the peritumoral region. Previous studies (33) extracting peritumoral

areas at 5mm, 10mm, and 15mm have yielded good predictive

model performance but with deviations from the ideal curve in

calibration. This suggests that predictive models based on radiomic

parameters within lung tumors outperform those based on

radiomic parameters from the peritumoral region, possibly due to

greater interference from normal lung tissue surrounding the

tumor. Some studies separately extracted radiomic features from

the tumor and peritumoral regions at 3mm, 6mm, and 9mm,

constructed models, and found that radiomic features from the

tumor and peritumoral regions at 3mm can enhance the impact on

the overall survival rate of patients with non-small cell lung cancer

after surgery, and radiomic features from the peritumoral region at

3mm are associated with STAS (37). This study only extracted 3mm

around the tumor for this reason. Previous methods of automatic

expansion of peritumoral areas have been rigid and prone to

interference, unable to reflect the true characteristics of the tumor

surroundings accurately. This study utilizes unsupervised K-means

clustering to categorize identical components within the tumor and
Frontiers in Oncology 10
peritumoral regions into the same subregion, resulting in a higher

efficacy in predicting STAS status. Research indicates (38) that a

5mm expansion or contraction within the tumor edge yields higher

predictive efficacy for STAS, similar to the results of this study,

although with a lower AUC of 0.79 compared to our findings. This

may be due to the automatic expansion of the previous study’s

contraction area, whereas our study is based on clustering of

identical components, resulting in slightly more precise results.

This study has several limitations: firstly, as a retrospective

study with a small sample size from a single center, there may be

potential bias. It is recommended that future studies be multi-

centered to increase the number of cases and validate the model

across different patient populations, thereby enhancing its

generalizability and practicality. Secondly, this study utilized

manual segmentation for ROI delineation, which may introduce

subjective variability. Future research should employ automated

segmentation techniques to mitigate these limitations and enhance

segmentation consistency and accuracy. Additionally, this study

only used conventional CT scans for subregion segmentation, not

accurately representing the tumor’s information. Energy spectrum

CT enhancement, containing more material energy and blood

supply information, will be included in future research. Besides

machine learning, deep learning is also becoming increasingly

popular, and this aspect can also be explored in LUAD STAS

habitat analysis.

In conclusion, this study constructed a CT habitat subregion

radiomics model that non-invasively predicts the STAS status of

T1-stage invasive lung adenocarcinoma preoperatively. The model

has improved the robustness of predictive performance, providing a

basis for distinguishing the benign or malignant nature of lung

nodules and has auxiliary diagnostic value in assessing malignancy

severity. The results offer a quantitative reference for preoperative

surgical planning and postoperative chemotherapy selection in

patients with T1-stage invasive lung adenocarcinoma, suggesting

its potential as a non-invasive biomarker for preoperative STAS in

lung adenocarcinoma patients.
FIGURE 7

Illustrates an example of a patient with infiltrative pulmonary adenocarcinoma. An 80-year-old female presented with positive STAS associated with
lung adenocarcinoma. (A) The axial CT image (width, 1300 HU; level, -300 HU) shows a mixed nodule in the right middle lobe, with ground-glass
components indicated by the red arrow. (B) The habitat analysis image divides the lung nodule into three habitats, with the blue area representing
Habitat 3 (indicated by the red arrow). (C) Microscopic photograph (Hematoxylin-Eosin staining, magnification 40x) reveals clusters of isolated small
papillary tumor cells (within the green circle) present in the alveoli beyond the margins of the primary tumor.
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