
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Chiara Nicolazzo,
Sapienza University of Rome, Italy

REVIEWED BY

Francesco Pepe,
University of Naples Federico II, Italy
Kulbhushan Thakur,
University of Delhi, India

*CORRESPONDENCE

Evi Lianidou

lianidou@chem.uoa.gr

RECEIVED 20 May 2024
ACCEPTED 09 September 2024

PUBLISHED 21 October 2024

CITATION

Ntzifa A, Marras T, Kallergi G, Kotsakis A,
Georgoulias V and Lianidou E (2024)
Comprehensive liquid biopsy analysis for
monitoring NSCLC patients under second-
line osimertinib treatment.
Front. Oncol. 14:1435537.
doi: 10.3389/fonc.2024.1435537

COPYRIGHT

© 2024 Ntzifa, Marras, Kallergi, Kotsakis,
Georgoulias and Lianidou. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 21 October 2024

DOI 10.3389/fonc.2024.1435537
Comprehensive liquid biopsy
analysis for monitoring NSCLC
patients under second-line
osimertinib treatment
Aliki Ntzifa1, Theodoros Marras1, Galatea Kallergi2,
Athanasios Kotsakis3, Vasilis Georgoulias4 and Evi Lianidou1*

1Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry,
National and Kapodistrian University of Athens, Athens, Greece, 2Laboratory of Biochemistry/
Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology,
University of Patras, Patras, Greece, 3Department of Medical Oncology, General University Hospital of
Larissa, Larissa, Greece, 4First Department of Medical Oncology, Metropolitan General Hospital of
Athens, Cholargos, Greece
Background: The heterogeneous and complex genetic landscape of NSCLC

impacts the clinical outcomes of patients who will eventually develop resistance

to osimertinib. Liquid biopsy (LB) analysis as a minimally invasive approach is a key

step to efficiently identify resistance mechanisms and adjust to proper

subsequent treatments.

Materials and methods: In the present study, we combined plasma-cfDNA and

CTC analysis from 30 NSCLC patients in samples collected before treatment and

at the progression of disease (PD). We detected molecular alterations at the DNA

mutation (EGFR, PIK3CA, KRAS G12C, BRAF V600E), DNA methylation (RASSF1A,

BRMS1, FOXA1, SLFN1, SHISA3, RARb,, WIF-1, RASSF10 and APC), gene expression

(CK-19, CK-18, CK-8, AXL, TWIST-1, PD-L1, PIM-1, Vimentin, ALDH-1, and B2M)

and chromosomal level (HER2 and MET amplification) as possible resistance

mechanisms and druggable targets. We also studied the expression of PD-L1 in

single CTCs using immunofluorescence.

Results: In some cases, T790M resistance EGFR mutation was detected at

baseline in CTCs but not in the corresponding plasma cfDNA. PIK3CA

mutations were detected only in plasma-cfDNA but not in corresponding

CTCs. KRAS G12C and BRAF V600E mutations were not detected in the

samples analyzed. MET amplification was detected in the CTCs of two patients

before treatment whereas HER2 amplification was detected in the CTCs of three

patients at baseline and in one patient at PD. DNA methylation analysis revealed

low concordance between CTCs and cfDNA, indicating the complementary

information obtained through parallel LB analysis. Results from gene

expression analysis indicated high rates of vimentin-positive CTCs detected at

all time points during osimertinib. Moreover, there was an increased number of

NSCLC patients at PD harboring CTCs positive in PD-L1. AXL and PIM-1

expression detected in CTCs during treatment suggesting new possible

therapeutic strategies.
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Discussion: Our results reveal that comprehensive liquid biopsy analysis can

efficiently represent the heterogeneous molecular landscape and provide

prominent information on subsequent treatments for NSCLC patients at PD

since druggable molecular alterations were detected in CTCs.
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1 Introduction

During the last twenty years, the emergence of molecular

targeted therapies has significantly changed non-small cell lung

cancer (NSCLC) treatments since it was shown that they are more

effective over chemotherapeutic regimens (1, 2). Several clinical

trials have clearly demonstrated that tyrosine kinase inhibitors

(TKI) of the epidermal growth factor receptor (EGFR) have

achieved improved clinical outcomes for EGFR mutant (EGFRm)

NSCLC patients (3–6). Osimertinib, a third-generation EGFR TKI,

has changed the therapeutic management of NSCLC patients (7, 8).

Initially, only EGFRm NSCLC patients that were previously treated

with first- or second-generation EGFR TKIs (9–12) were subjected

to osimertinib treatment. Still, this drug is now the standard of care

for first-line therapy (13, 14). Recently osimertinib has been

administered as an adjuvant treatment since clinical outcomes are

significantly improved (15–17). The clinical benefit of this drug is

now being investigated in the neoadjuvant setting (18, 19).

Acquisition of new mutations or pre-existing genetic alterations

is linked to disease progression in NSCLC patients with EGFR

mutations (20–23), and the highly heterogeneous and complex

genetic landscape of this type of cancer impacts clinical outcomes.

This is a major reason for the emergence of resistance mechanisms

to this type of therapy in these patients (24–26). The most common

resistance mechanism to first- and second-generation EGFR TKIs is

the T790M EGFR mutation that is now therapeutically targeted

by osimertinib (27). The heterogeneity of resistance mechanisms

is the main reason that it is such a difficult challenge to

overcome resistance to osimertinib (28). These acquired

resistance mechanisms can be either EGFR-dependent or EGFR-

independent (25, 29). We now know that activation of MET or

HER2 amplification, acquisition of mutations in BRAF, PIK3CA,

and KRAS, histological transformation to small cell lung cancer

(SCLC), and epithelial-to-mesenchymal transition (EMT) are major

reasons (30–35). Results from the AURA clinical trials underlined

the use of ctDNA analysis in reflecting tumor heterogeneity,

monitoring the efficacy of EGFR TKIs as well as the early

detection of resistance mechanisms (7, 8, 10, 36).
02
The key step to efficiently overcome resistance mechanisms and

adjust to proper subsequent treatments is to identify the resistance

much earlier than conventional strategies (37). Liquid biopsy (LB)

analysis as a minimally invasive approach to longitudinally and

regularly monitoring NSCLC patients plays a pivotal role in early

tracking tumor evolution and relapse (1, 28, 38). The increasing

number of LB tests that have been cleared by the US Food and Drug

Administration (FDA) has led to the application of circulating

tumor DNA (ctDNA) analysis in clinical routine testing in NSCLC)

(39), and recent recommendations suggest these tests for patients

with advanced or metastatic NSCLC especially when tissue

sampling cannot be performed (40–46). A recent comprehensive

genomic profiling (CGP) of osimertinib resistance mechanisms

performed in primary tumors or peripheral blood of NSCLC

patients concluded that this type of analysis could help select

therapies (47). Conversely, many studies have shown that

circulating tumor cell (CTC) analysis in EGFRm NSCLC could

contribute to the management of patients in a complementary way

(48–52). It has been clearly shown that CTC analysis gives

significant information on tumor heterogeneity and clonal

evolution occurring under treatment (48–51, 53). Thus, CTC

analysis would aid in adjusting targeted therapy for EGFRm

NSCLC patients based on the resistance mechanisms identified.

It is now evident that CTCs when compared to ctDNA provide

complementary information, thus comprehensive LB analysis is

highly essential for the management of cancer patients. Moreover,

CTCs better depict tumor heterogeneity and provide unique

information derived from many different cellular components

that cannot be revealed by ctDNA analysis (54). Lately, few but

still important studies have shown the clinical significance of

combining the information derived from different LB analytes in

various types of cancer, such as breast (55–61), NSCLC (49, 62, 63),

prostate (64), and very recently in melanoma (65). Regarding the

treatment monitoring of NSCLC patients, a comprehensive analysis

of EGFRmutations in cfDNA and CTCs could be more informative

as this was recently demonstrated in studies that included both LB

analytes (66, 67). Besides, it has already been demonstrated that

several distinct molecular features contribute to the heterogeneity of
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NSCLC apart from EGFR tumor clonality that arises during cancer

development and treatment (21). Tumor clonality in conjunction

with the highly heterogeneous landscape of resistance in NSCLC

patients under osimertinib claims for the identification of new

molecular biomarkers that could be potential therapeutic targets

(23, 28, 68). Therefore, analyzing more than one LB analytes in

patients’ samples as an integrated approach could be more

beneficial for the early detection of resistance and efficient

treatment management. Our group has extensively studied the

combination of ctDNA and CTC analysis in NSCLC patients

during osimertinib therapy (69–72).

In the current study, we performed a comprehensive LB analysis

for monitoring NSCLC patients under second-line osimertinib

treatment, by combining plasma-cfDNA and matched CTC to

identify molecular alterations (DNA mutations, DNA methylation,

and gene expression) as well as chromosomal alterations that could

be early indicators of resistance and provide potential targets for

subsequent treatments.
2 Materials and methods

2.1 Patients

Thirty patients, recruited through a multicenter Phase II clinical

study [ClinicalTrials.gov number: NCT02771314], all diagnosed

with EGFR mutated lung adenocarcinomas, and treated with

osimertinib (AZD9291; Astra Zeneca, UK) were included.

Peripheral blood from ten healthy donors (HD) was used as a
Frontiers in Oncology 03
control group. The study was conducted following the Declaration

of Helsinki, and all patients and HD gave their written informed

consent. The study was approved by the National Drug

Administration of Greece (EOF), the National Ethics Committee

(35/00-03/16, 35/03-11/16) and the Institutional Ethical

Committees of the HORG’s participating centers.
2.2 Collection of peripheral blood samples

Peripheral blood (PB) was collected at baseline before treatment

initiation and at disease progression (PD). PB (30mL) was collected

in EDTA tubes and the first 5mL of blood was discarded to avoid

contamination of skin epithelial cells. Plasma separation from buffy

coat and erythrocytes was performed as previously described (69,

70, 73) (Figure 1).
2.3 Plasma-cfDNA extraction and
CTC enrichment

For each blood draw, plasma samples were aliquoted; 2.00 mL

plasma was used for cfDNA isolation, using silica-based membrane

extraction kits: cobas® cfDNA Sample Preparation Kit (Roche

Molecular Systems, Inc.) for downstream EGFR mutation

analysis. Another aliquot of 2.00 mL plasma was used for cfDNA

isolation for downstream Crystal Digital PCR analysis with the

naica® system (Stilla Technologies, Villejuif, France) (70). Another

identical plasma aliquot was used for cfDNA extraction for
FIGURE 1

A schematic flowchart of the study.
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downstream mutation analysis of PIK3CA, KRAS, and BRAF, as

reported below, using the QIAamp Circulating Nucleic Acid Kit

(Qiagen®, Hilden, Germany) was used.

Following plasma separation, CTC enrichment was performed,

using the FDA-cleared Parsortix™ (ANGLE plc, UK) device (73),

and the CTC-enriched fraction was collected in 200 mL of PBS.

Total RNA was extracted from the CTC-enriched fraction using

TRIZOL followed by cDNA synthesis (73). Genomic DNA (gDNA)

was extracted from the CTC-enriched fraction using TRIZOL as

previously described (70). Ten mL of peripheral blood in EDTA

using identical blood draws was used for CTC enrichment with

ISET (Rarecells Diagnostics, France, and downstream molecular

characterization by triple immunofluorescence.
2.4 Whole genome amplification

Whole genome amplification of gDNA extracted from the enriched

CTCs was performed using a commercially available kit (Ampli1™

Whole Genome Amplification, Menarini Silicon Biosystems, Italy) (70).
2.5 Plasma-cfDNA and paired CTC analysis:
DNA mutations

2.5.1 EGFR mutations
All plasma-cfDNA samples were analyzed by the FDA-cleared

cobas® EGFR Mutation Test v2 in the cobas® z 480 analyzer

(Roche) (70), a test for which our lab has an ISO-15189

accreditation (74). Plasma-cfDNA isolated from identical plasma

aliquots and paired CTC-derived gDNA were further analyzed by

Crystal digital PCR™ as previously described (70).

2.5.2 PIK3CA mutations
All plasma-cfDNA samples and paired CTC-derived gDNA samples

were analyzed for the presence of three PIK3CA hotspot mutations

(p.E545K exon 9, p.E542K exon 9 and p.H1047R exon 20) using our

previously described ultrasensitive real-time PCR methodology (75).

2.5.3 KRAS G12C and BRAF V600E
Droplet digital PCR (ddPCR) was used for the analysis of

cfDNA and paired CTC-derived gDNA samples for KRAS G12C

and BRAF V600E mutations in a BioRad QX200 ddPCR System

using a commercially available ddPCR reaction mix and specific

primers and probes (Bio-Rad Laboratories).
2.6 DNA methylation analysis in plasma-
cfDNA and paired CTC-derived gDNA

All cfDNA samples and paired CTC-derived gDNA samples

were subjected to Sodium Bisulfite (SB) treatment as previously

described (69). SB-treated samples were subsequently analyzed for

the DNA methylation of RASSF10, WIF-1, APC, RARb, RASSF1A,
BRMS1, FOXA1, SLFN1, SHISA3 genes with our previously
Frontiers in Oncology 04
developed and analytically validated real-time methylation-

specific PCR (MSP) assays (69).
2.7 CTC analysis: gene expression

Gene expression was studied in CTC-derived total RNA by RT-

qPCR for the following genes: CK-8, CK-18, CK-19,Vimentin, TWIST-

1, AXL, ALDH-1, PD-L1, PIM-1 and B2M as previously reported (73).
2.8 CTC analysis:
triple immunofluorescence

CTCs captured in the ISET filters were subsequently analyzed by

triple immunofluorescence for CK/VIM/CD45 using the Confocal laser

Scanning microscopy (LEICA), as previously described (73). For CK/

PD-L1/CD45, the process was according to our previous report (71).
2.9 CTC analysis: fluorescent
in situ hybridization

2.9.1 Detection of HER2
Amplification by FISH was performed on enriched CTCs, using

PathVysion HER2 DNA Probe Kit (Abbott Molecular, Inc). FISH

signal patterns were determined for the HER2 gene and the

centromere of chromosome 17 in a fluorescent microscope

(Axioplan 2, Zeiss, and Leica GSL120) equipped with Cytovision

Image Analysis Software. The ratio of the total number of HER-2/

neu (red signals) as compared to the total number of CEP 17 (green

signals) was calculated for every nucleus. When the HER2/CEP17

ratio was ≥2 a cell was considered as HER2-amplified according to

the manufacturer and previous reports (76, 77).

2.9.2 C-MET amplification
FISH analysis for the detection of c-MET amplification was

performed on enriched CTCs, using c-MET (MET) Amplification

Probe (Cytocell). The evaluation of MET amplification is based on

the determination of FISH signal patterns for MET and the

centromere of chromosome 7, in a fluorescent microscope

(Axioplan 2, Zeiss and Leica GSL120) equipped with Cytovision

Image Analysis Software. When the C-MET/CEP7 ratio was ≥2 the

cell was considered as c-MET-amplified according to the

manufacturer and previous reports (78).
3 Results

3.1 Plasma-cfDNA and paired CTC analysis:
DNA gene mutations

We have previously analyzed plasma-cfDNA samples for the

detection of EGFR mutations both with crystal dPCR and with the

FDA-cleared assay cobas EGFR mutation test v2 (70) and reported
frontiersin.org
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high concordance rates between the two methodologies.

By combining the results for the subgroup of patients included in

the current study, T790M mutation was detected in 10/30 (33.3%),

exon19 deletions in 13/30 (44.3%), L858R in 6/30 (20%), S768I and

G719X in 2/30 (6.7%) patients, at baseline. At PD, T790M was

detected in 2/27 (7.4%), exon19 deletions in 8/27 (29.6%), L858R in

6/27 (22.2%), S768I in 1/27 (3.7%) and G719X in 2/27 (7.4%)

(Figure 2). In addition, C797S was found in trans configuration with

T790M in patient #1 (P#1) at PD. In parallel, we have also analyzed

CTC-gDNA samples for EGFR mutations using crystal dPCR. In

baseline, one patient was found positive for T790M and 4/21 (19%)

patients for L858R. P#10 was found positive for S768I and G719X

mutations both in baseline and PD samples. T790M was detected

only in 3/19 (15.8%) CTC-gDNA samples at PD (Figure 2).

In this study, we have analyzed plasma-cfDNA samples (n=50)

and paired CTC-gDNA samples (n=53) for the detection of

PIK3CA mutations (H1047R, E542K, E545K). at two time points.

PIK3CAmutations were detected in 4/26 (15.4%) cfDNA samples at
Frontiers in Oncology 05
baseline, and 4/24 (16.7%) at PD. More precisely, H1047R was

found only in the baseline samples of three patients (P#3, P#23,

P#27), E545K was found concomitantly with H1047R in patient

P#27, and E542K was found in P#21 (Figure 2). At PD, H1047R has

emerged in three patients (P#16, P#29, P#30), E542K was found

only in P#5, and E545K was not detected in any sample. In CTC-

gDNA samples, no PIK3CA mutations were detected at any time

point (Figure 2). When these 50 plasma-cfDNA and 53 paired

CTC-derived gDNA samples were analyzed for the detection of

KRASG12C and BRAF V600E mutations with ddPCR, they were all

found negative for both mutations.
3.2 Plasma-cfDNA and paired CTC analysis:
DNA methylation

At baseline one methylation marker was detected at least in 6/27

(22.2%) patients at PD in 13/26 (50%). Even if methylation for these
FIGURE 2

Comprehensive analysis in cfDNA and CTCs of NSCLC patients before treatment with osimertinib and at progression of disease.
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markers was detected in more samples at PD in respect to baseline

there was no statistically significant difference (Figure 2). CTC

analysis also revealed an overall increase in the detection of DNA

methylation markers at PD. More specifically, at baseline, 5/30

(16.7%) samples and at PD 10/27 (37%) were found positive for at

least one methylation marker (Figure 2).
3.3 CTC analysis: gene expression

In CTC-enriched fractions before treatment, 9/30 (30%)

patients were positive for at least one epithelial marker in CTCs

(CK-8, and/or CK-18, and/or CK-19) whereas at PD more samples

were positive for the expression of epithelial markers (Figure 2), but

there was no statistically significant difference between these two

time points. The same was seen for the mesenchymal/EMT markers

tested (VIM, AXL, and TWIST-1) [18/30 (60%) versus 15/26

(57.7%)], for ALDH-1, that was detected in 9/30 (30%) samples at

baseline and 10/26 (38.5%) at PD and for PIM-1 overexpression

that was detected in 14/30 (46.7%) baseline samples and 9/26

(34.6%) at PD. PD-L1 expression levels were significantly different

between baseline and disease progression [3/30(10%) patients
Frontiers in Oncology 06
versus 9/26 (34.6%), McNemar test, p = 0.016], as this was

previously described (73), (Figure 2).
3.4 CTC analysis: characterization of ISET-
enriched CTCs by triple IF

CTC molecular characterization at the single-cell level was

performed by using a combination of the size-based isolation

platform, ISET, and confocal microscopy in 31 CTC samples, at

baseline and PD. A direct comparison between RT-qPCR and IF

staining for the presence of CTC positive for CK (CK-8, CK-18, CK-

19) and/or VIM revealed an agreement of 54.8% (17/31

samples) (Figure 2).

The same ISET filters were analyzed for the phenotype CK+PD-

L1+CD45− in 16 baseline samples and 11 PD samples matched with

those analyzed for the mRNA expression of PD-L1 with RT-qPCR.

A representative image from PD-L1 positive CTCs enriched with

the ISET is shown in Figure 3. Combining the results from RT-

qPCR and IF for the presence of PD-L1 in CTCs, we found 5/11

(45.4%) patients at baseline and 8/17 (47%) patients at PD with

CTCs and/or CTC-gDNA positive for PD-L1 (Figure 2).
FIGURE 3

Representative IF image of PD-L1 expression in ISET-enriched CTCs. CTCs stained with CK (red), PD-L1 (green) and CD45 (purple). Nuclei (blue)
were stained with DAPI.
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3.5 CTC analysis: fluorescence
in situ hybridization

FISH analysis was performed on enriched CTCs from these 30

NSCLC patients for the detection ofHER2 amplification at two time

points: a) baseline (n=26) and b) PD (n=15) (Figure 4). HER2

amplification was found in 3/26 (11.5%) patients at baseline and

1/15 (6.7%) at PD. For the detection of MET amplification, FISH

analysis was performed on enriched CTCs also at two time points:

a) baseline (n=27) and b) PD (n=12).MET amplification was found

in 2/27 (7.4%) patients at baseline whereas there was no positive

sample at PD. Patient#8 (P#8) and P#25 had concomitant HER2

and MET amplification in their enriched CTCs at baseline.
3.6 Molecular alterations at PD

Molecular alterations detected at PD either in plasma-cfDNA

samples or in paired CTCs of NSCLC patients (n=27) treated with

osimertinib and who finally progressed during this analysis in DNA

mutation, DNA methylation, gene expression, and chromosomal

level are summarized in detail in Table 1. Figure 5 depicts the

presence of the molecular alterations in correlation with their time

to progression.
4 Discussion

Comprehensive analysis including alternative molecular

alterations that may occur at resistance to osimertinib is

important for guiding subsequent treatments, especially for those

patients who relapse early. The present study highlights the

potential of combining liquid biopsy analytes to elucidate NSCLC

molecular heterogeneity in patients under osimertinib treatment.

Comprehensive liquid biopsy analysis for DNA mutations, DNA

methylation markers, gene expression and chromosomal level in

both plasma-cfDNA and CTCs revealed druggable molecular

alterations and resistance mechanisms that may occur under

selective therapy pressure. Discrepancies observed between

plasma-cfDNA and paired CTCs are representing tumor

heterogeneity, a well-known characteristic of NSCLC. Our results

indicate that complementary information derived from plasma-

cfDNA and CTC analysis proved to be very informative for

treatment monitoring of NSCLC patients.

There are only a few direct comparison studies between CTC

and plasma-cfDNA up to now, that use identical same blood draws

and identical methodologies to detect mutations, DNA methylation

markers, or gene expression not only in NSCLC (49, 69, 70, 79) but

also in other types of cancer (59–61, 64). These few studies have

shown that there are significant discrepancies in information

derived from CTC and plasma-cfDNA material, especially when

very low target concentrations are present in the sample. Currently,

ongoing clinical trials include parallel analysis of CTCs and ctDNA

in many types of cancer to test if this dual analysis is more sensitive

for disease monitoring (80).
Frontiers in Oncology 07
EGFR mutation analysis in the context of the current

comprehensive study confirmed the significance of combined

liquid biopsy analysis. Our previous results (70), have shown that

T790M resistance mutation was detected at baseline in gDNA

isolated from CTC but not in the corresponding plasma cfDNA

(P#11) indicating that this may be a case of subclonal T790M, that is

potent to lead to early PD. This finding is consistent with data from

the AURA3 phase III trial (22). EGFR T790M mutation was

detected at PD only in gDNA samples isolated from the CTCs of

three patients but not in the corresponding plasma-cfDNA.

There was only one case (P#1) of acquired resistance that was

due to EGFR p.C797S mutation, which is one of the most frequent

resistance mechanisms to second-line osimertinib treatment (81).

Importantly, C797S mutation was detected in cis configuration with

T790M, suggesting that the administration of brigatinib with an

anti-EGFR antibody would be beneficial to the patient (82, 83) or

fourth-generation EGFR TKIs (26). BLU-945 is another EGFR

inhibitor, and the benefits when combined with osimertinib are

being investigated in the phase I clinical trial SYMPHONY

(NCT04862780). The rechallenge with first or second EGFR TKIs

to NSCLC patients who acquired the C797S resistance mutation

during osimertinib treatment has also been proposed, delaying the

use of platinum-based chemotherapy since there is no approved

targeted therapeutic strategies in this setting, so far (84).

The presence of the BRAF V600E mutation may limit the

activity of EGFR TKIs in EGFRm NSCLC, as this was previously

shown (85). BRAF V600E mutation as a resistance mechanism to

osimertinib has been identified in 3% of NSCLC patients positive

for EGFR mutations, irrelevant of the presence of a T790M

mutation (25, 29, 86). Concomitant detection of BRAF and EGFR

mutations has been reported in a few cases (87, 88), and in these

cases, patients progressed more rapidly upon EGFR TKIs (89, 90).

For this reason, different combination therapies have been proposed

for patients carrying mutations in BRAF in EGFRm lung cancer

(91–94). In this study, we did not detect any sample positive for

BRAF V600E.

KRAS G12C was not detected in the samples analyzed.

Although alterations in the RAS-MAPK pathway have been

shown to lead to osimertinib resistance, cases reporting the

presence of KRAS G12C mutation are limited (26). However,

there is only a recent case report study of acquired KRAS G12C

mutations during first-line osimertinib resistance which showed the

effective and well-tolerated combination of osimertinib and

sotorasib (95). Sotorasib which has been recently approved by the

FDA for patients with locally advanced or metastatic NSCLC,

carrying KRAS G12C mutations could be an option for those who

progress to osimertinib.

PIK3CA mutations were detected only in plasma-cfDNA but

not in corresponding CTCs. PIK3CA mutations have been detected

in a frequency of 4%-14%, as a resistance mechanism against

second-line osimertinib treatment. The most common are the

PIK3CA hotspot mutations H1047R, E545K, and E542K (81, 96,

97). Results from the AURA3 trial have shown that PIK3CA

alterations were detected more frequently in the T790M positive

NSCLC patients (98). PIK3CA concurrent mutations confer
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TABLE 1 EGFR-dependent and independent molecular alterations detected in cfDNA and/or CTCs of NSCLC patients treated with osimertinib at PD,
ranked according to reducing the time of PD.

Patient
ID

EGFR dependent EGFR independent

PD
(months)

DNA mutations

DNA mutations
PIK3CA,

KRAS G12C,
BRAF V600E

DNA methylation Gene
expression

IF
FISH

analysis

cfDNA CTCs cfDNA cfDNA CTCs CTCs CTCs CTCs

#9 L858R nd nd
RASSF1A, APC,

WIF-1
APC nd nd nd 36.1

#8 nd nd nd nd nd PIM-1* nd nd 31.3

#24 nd nd nd nd nd PD-L1* nd nd 17.9

#14 nd nd nd nd nd nd nd nd 15.9

#2 nd nd nd nd nd nd nd nd 14.7

#5 nd nd nd BRMS1, SLFN11 SLFN11 nd nd nd 13.8

#12 G719X T790M nd
BRMS1, WIF-
1, FOXA1

RASSF10,
WIF-1

PD-L1*
PIM-1*

nd nd 12.8

#16 nd nd PIK3CA* (H1047R) WIF-1 nd PD-L1*, AXL* nd nd 12.4

#1
T790M,

del19, C797S
nd PIK3CA* (E545K)

RASSF1A,
APC, RARb

nd nd nd nd 9.3

#25 nd nd nd nd SLFN11
PD-L1*,
PIM-1*

nd nd 9.2

#23 nd nd nd nd APC PD-L1*, AXL* nd nd 8.9

(Continued)
F
rontiers in O
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FIGURE 4

(A) Representative FISH image of CTC with HER2 amplification. Red and green signals within nuclei indicate the HER2 gene and the centromere 17
(CEP17), respectively, (B) Representative FISH image of CTC with cMET amplification. Red and green signals within nuclei indicate the cMET gene
and the centromere 7 (CEP7), respectively, (C) FISH analysis of enriched CTCs of NSCLC patients under osimertinib treatment at baseline and at PD.
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resistance to osimertinib as confirmed with in vitro experiments

(22). Based on previously reported evidence, these patients could

have been treated with appropriate combination therapies against

the PIK3/AKT/mTOR pathway (22, 99). Han et al. reported that

both PIK3CG (L468M) and PIK3CA (H1047R) mutations could

induce osimertinib resistance through PI3K/Akt/mTOR pathway-

dependent mechanisms. They proposed the administration of

aspirin which could effectively reverse in vitro and in vivo

osimertinib resistance as a treatment strategy for NSCLC patients

who develop these mutations (100).

In our comprehensive analysis, we used FISH analysis to assess

the presence of cMET and HER2 amplification in CTCs enriched

with the microfluidic platform Parsortix. To the best of our

knowledge, this is the first study that detects these two gene

alterations in NSCLC patients before and after osimertinib
Frontiers in Oncology 09
treatment using FISH. In our study, MET amplification was

detected in the CTCs of two patients (P#8, P#25) before

treatment with osimertinib. MET amplification in NSCLC may be

a primary oncogenic alteration or may arise as a secondary driver

resistance mechanism to EGFR TKI treatment through the

activation of downstream signaling pathways, like MAPK or

PI3K-Akt (98, 101). Up to date, the standard of care for EGFRm

patients with MET alterations is platinum-based chemotherapy

with limited efficacy. However, recent data from the TATTON

trial have shown that combination therapy of osimertinib with the

MET inhibitor, savolitinib, presented acceptable tolerability and

clinical activity (102). Consequently, patients in our study positive

forMET amplification at baseline could have benefited from such a

combinatorial therapeutic strategy. Currently, the ongoing

SAVANNAH study aims to examine the efficacy of this treatment
TABLE 1 Continued

Patient
ID

EGFR dependent EGFR independent

PD
(months)

DNA mutations

DNA mutations
PIK3CA,

KRAS G12C,
BRAF V600E

DNA methylation Gene
expression

IF
FISH

analysis

cfDNA CTCs cfDNA cfDNA CTCs CTCs CTCs CTCs

#21 nd nd nd nd nd PD-L1* PD-L1* nd 7.7

#17 del19 T790M nd nd SLFN11
PD-L1*, AXL*,

PIM-1*
PD-L1* nd 7.4

#29 del19 nd PIK3CA* (H1047R) WIF-1 nd nd nd nd 7

#26 nd nd nd nd nd nd nd nd 6

#18 L858R T790M nd
RASSF1A, BRMS1,

APC, FOXA1
nd PD-L1* nd nd 5.9

#7 L858R nd nd WIF-1 APC nd nd nd 5.3

#4 nd nd nd nd nd nd PD-L1* nd 3

#30 L858R nd PIK3CA* (H1047R) nd SLFN11
PD-L1*,
PIM-1*

nd nd 2.9

#27 L858R nd nd nd nd nd nd nd 2.8

#19 del19 nd nd APC nd nd nd nd 2.8

#15 del19 nd nd nd nd PIM-1* nd nd 2.8

#6
T790M,
L858R

nd nd RASSF1A, APC APC PIM-1* nd
HER2

amplification*
2.6

#11 nd nd nd nd nd
PD-L1*,
PIM-1*

nd nd 2.5

#20 del19 nd nd
RASSF1A,
APC, RARb

SLFN11 PIM-1* nd nd 2.3

#10 G719X, S768I
G719X,
S768I

nd RASSF1A nd AXL* PD-L1* nd 1.6

#28 del19 nd nd
BRMS1,

SLFN11, APC
nd nd nd nd 1.4
f

nd, not detected.
*: Therapeutic targets.
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combination in patients with MET-mediated who progressed

following treatment with osimertinib whereas the SAFFRON study

(NCT05261399) is designed to assess savolitinib in combination with

osimertinib versus platinum-based chemotherapy in the same group

of patients (26).

Based on our results, HER2 amplification was detected in the

CTCs of three patients before treatment with osimertinib (P#1, #8,

#25) and in one patient at PD (P#6). HER2 gene amplification is

another common osimertinib resistance mechanism that leads to the

activation of HER2 signaling followed by the downstream activation

of the PI3K-Akt pathway. Results from the AURA3 trial

demonstrated that 5% of patients who progressed on second-line

osimertinib treatment had HER2 amplification (98). TRAEMOS is

the first trial testing the combination of trastuzumab-emtansine and

osimertinib to target HER2-mediated resistance in patients with

EGFRm NSCLC. Despite the favorable safety profile, this

combination revealed limited efficacy to patients (103).

It is now well known that dominant tumor cancer cells are

subjected to epigenetic modifications and switch to drug-resistant

cancer cells in various types of cancer (104–106). DNA methylation

provides useful insights into lung cancer development and is correlated

with early detection, prognosis, and prediction of response to specific

treatments (107). Liquid biopsy is a very powerful tool for identifying

circulating DNA methylation markers that could be of clinical

importance (107, 108). Concerning the role of methylation in

resistance to EGFR ΤΚΙ therapy, there are now studies performed in

lung cancer cell lines or primary tissues showing that epigenetic

modifications negatively affect EGFR TKI treatment outcome and

that their combination with epigenetic drugs could be very
Frontiers in Oncology 10
promising (109–115). Intriguingly, a methylation-associated

mechanism behind the acquisition of T790M mutation was

previously described (113). Recent advances in DNA methylation

modifications linked to TKI resistance mechanisms in EGFRm

patients have been previously reported (108). However, only a few

studies focused on DNA methylation in ctDNA or CTCs of NSCLC

patients receiving osimertinib (69, 116, 117).

We have previously reported results on DNA methylation of

RASSF1A, RASSF10, APC, WIF-1, BRMS1, SLFN11, RARb, SHISA3,
and FOXA1 in plasma-cfDNA and paired CTCs of NSCLC patients

during osimertinib therapy. There was a low concordance of DNA

methylation markers in CTCs and cfDNA, indicating the importance

of complementary information obtained through parallel CTCs and

cfDNA analysis. A predictive role of DNA methylation as a potential

resistance mechanism was shown in this study where patients with at

least one methylated marker in liquid biopsy samples at PD eventually

progressed earlier than those negative for methylation (69).

CTC analysis at the gene expression level provides important

information on tumor heterogeneity and can reveal differential gene

expressions related to metastasis or treatment sensitivity and

resistance (72). The first gene expression study in CTCs of NSCLC

patients during osimertinib treatment revealed heterogeneous

patterns of gene expression of epithelial, mesenchymal/EMT, and

stem cell markers among patients. A potential role of EMT was

shown based on the high rates of vimentin-positive CTCs detected at

all time points during osimertinib treatment (118).

The increased number of NSCLC patients at PD harboring CTCs

positive in PD-L1 suggests a theoretical background for immune

checkpoint inhibition (ICI) therapy in EGFRm NSCLC patients
FIGURE 5

Molecular alterations detected in plasma-cfDNA and/or paired CTCs of NSCLC patients under osimertinib treatment in correlation with time
to progression.
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resistant to osimertinib (73). However, the combination of data from IF

and RT-qPCR for the presence of PD-L1 positive CTCs in matched

samples revealed high detection rates both at baseline and at PD.

Immunotherapy treatments for EGFRm NSCLC are still a big

challenge since to date numerous studies have shown the confined

efficacy of immunotherapy either as monotherapy or in combination

with chemotherapy (118).

Our study was the first to evaluate AXL gene expression levels in

CTCs of patients during osimertinib therapy (73). Several

preclinical studies on AXL inhibition suggest this approach as a

new additional tool for personalized therapy of NSCLC patients

with EGFR mutations, since these patients may benefit from AXL

inhibitors (119–122). EGFRm NSCLC patients harboring high

levels of AXL expression had significantly shorter PFS and OS

after ICI-based therapy (123).

Herein, we detected PIM-1 expression in CTCs of EGFRm

NSCLC patients before osimertinib and at PD, suggesting that

concurrent use of PIM-1 inhibitors with osimertinib could be a

possible therapeutic strategy. The synergistic effects of PIM inhibitor

in combination with osimertinib acting through the inhibition of

oncogenic signaling pathways have previously been reported (124,

125). EGFR signaling is indirectly affected by PIM-1 suggesting that

PIM-1 inhibition can improve patient’s outcomes (124, 126).

The current study highlights the potential of analyzing both

CTC and ctDNA derived from a single blood draw to identify

molecular biomarkers clinically significant for the patient’s outcome

or alternative treatment approaches upon osimertinib treatment.

We would like to point out that in our study we have included

different methodologies for the identification of molecular

alterations at the DNA, RNA, and epigenetic level. According to

recent guidelines for NSCLC, NGS approaches are the most suitable

for the identification of multiple molecular alterations in LB

samples but only at the DNA level (41, 127, 128). Commercially

available technologies such as nanopore DNA sequencing offer now

analysis of whole genome sequencing and the identification of DNA

methylation aberrations, simultaneously (129–131). However, such

a commercially available integrated approach before and after

treatment with osimertinib has not been performed so far.

Treatment of NSCLC patients with osimertinib is very challenging if

we consider the highmolecular heterogeneity of this disease and also the

clonal evolution that arises through selective therapy pressure. These

two significant factors compose the wide spectrum of resistance

mechanisms that claim early identification and proper therapeutic

interventions. In the present study, it was clearly highlighted the

potential of comprehensive liquid biopsy analysis to efficiently

represent the heterogeneous molecular landscape and provide

prominent information on subsequent treatments for NSCLC patients

based on the druggable molecular alterations found at PD. Epigenetic

alterations give additional information to DNA mutation analysis to

identify patients who are unlikely to benefit from EGFR TKI therapy.

Studies have shown that targeting epigenetic alterations might be a

therapeutic intervention to reverse EGFR TKI resistance.

Complementary information obtained from cfDNA and CTC analysis

is of utmost importance during the management of NSCLC patients.
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