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Invasive micropapillary carcinoma of the breast (IMPC) exhibits a unique

micropapillary structure and “inside-out” growth pattern. Despite its extremely

low incidence, IMPC has attracted considerable attention owing to its poor

prognosis. Since Siriaunkgul and Tavassoli first proposed the term IMPC in 1993

to describe its morphological characteristics, with tumor cell clusters arranged in

a pseudopapillary structure within the glandular cavity, its diagnostic rate has

substantially increased. Based on the in-depth study of IMPC, a more

comprehensive understanding of its epidemiology, clinicopathological

features, and diagnostic criteria has been achieved in recent years. The

pathogenesis and specific therapeutic targets of IMPC remain unclear.

However, numerous studies have delved into its high-risk biological behavior.

This review discusses the opportunities and challenges associated with IMPC.
KEYWORDS
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Background

Invasive micropapillary carcinoma (IMPC) is a rare type of breast cancer with distinct

histological and biological features. Morphologically, IMPC is composed of nested, morula-

like, or pseudopapillary structures of neoplastic clusters devoid of fibrovascular cores

surrounded by clear stromal spaces (1). In addition, micropapillary pattern (MP),

associated with aggressive biological behavior and poor prognosis (2–4), has been

reported in several organs, such as the lung (5), bladder (6), pancreas (7), alimentary

tract (8, 9), salivary gland (10), thyroid (11), ovary (12), cervix (13), and kidney (14).

In 1980, Fisher et al. first described “the exfoliative appearance structure” in breast

tissue (15). Later, in 1993, Siriaunkgul and Tavassoli first proposed the term “invasive

micropapillary carcinoma of the breast” and provided a detailed description of its

histological features (16). Until 2003, the World Health Organization (WHO) classified

IMPC as a special histological subtype of breast cancer, a classification still in use today
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(17–19). IMPC accounts for 2%–8% of all breast cancers (4, 19–21).

However, its occurrence is usually associated with lymph node

metastasis (LNM), lymphovascular invasion (LVI), and

locoregional recurrence (LRR) (22, 23). Through the in-depth

study of IMPC, a more comprehensive understanding of its

epidemiology, clinicopathological features, and diagnostic criteria

has been achieved in recent years (Figure 1).

Nevertheless, the high-risk biological behavior of IMPC,

including its biological hallmarks, pathogenesis, and specific

therapeutic targets, remains unclear. Therefore, individualized

treatment for this subtype of breast cancer has not been

improved. This review focuses on the research progress of IMPC

and discusses its opportunities and challenges.
Pathological features of IMPC

Histological features

Cancerous cells typically have serrated edges and granular or

eosinophilic cytoplasm when viewed under an optical microscope.

Within nests, these cells form mulberry-like clusters and

pseudopapillary structures, which are notable for the absence of

endothelial cells and fibrovascular cores. Cancerous cells are

typically enveloped by transparent fibrocollagen stromal space,

resembling a swimming ring floating in the sea (17). Under an

electron microscope, microvilli can be observed on the outer surface

of cancerous cells, exhibiting secretory activity within the

surrounding stroma (24). Furthermore, under a multiphoton

microscope, six different morphologies of IMPC clusters can be

detected: mulberry-like, chrysanthemum-like, tubular glandular,

circular cluster, elliptical cluster, and irregular masses (25).

Invasive mucinous carcinoma or neuroendocrine carcinoma

may also be accompanied by micropapillary (MP) features that are

difficult to distinguish from IMPC. However, compared with pure

invasive mucinous carcinoma or neuroendocrine carcinoma, the

presence of MP features, such as LNM, LVI, and deteriorated

differentiation, increases the probability of poor prognosis (22,

26–29). Pareja et al. reported that there was no significant

genomic difference between IMPC and mucinous carcinoma with
Abbreviations: IMPC, Invasive micropapillary carcinoma of the breast; MP,

micropapillary pattern; LNM, lymph node metastasis; LVI, lymphovascular

invasion; LRR, locoregional recurrence; IDC, invasive ductal carcinoma; EMA,

epithelial membrane antigen; MRI, magnetic resonance imaging; PET-CT,

positron emission tomography-computed tomography; SUVmax, maximum

standardized uptake value; ER, estrogen receptor; PR, progesterone receptor;

OS, overall survival; MUC1, mucin1; sLeX, sialyl Lewis X; DFS, disease-free

survival; PSCA, prostate stem cell antigen; AMFR, autocrine motility factor

receptor; TAM, tumor-associated macrophage; PTM, post-translational

modification; CNV, copy number variation; PKA, protein kinase A; NKT,

killer T cells; KSEA, kinases enrichment analysis; RSK, ribosomal S6 kinase;

PKC, protein kinase C; WES, whole exome sequencing; WGS, whole genome

sequencing; SEER, Surveillance, Epidemiology, and End Results; BCSS, breast

cancer-specific survival.
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MP features. Both carcinomas exhibited recurrent gains in 1q, 6p,

8q, and 10q, along with recurrent losses in 16q, 11q, and 13q.

Additionally, recurrent 8p12–8p11.2 amplification was observed in

FGFR1 (30).

Previously, the diagnostic criteria for the proportion of IMPC

have not been clearly defined because of its rarity as a pure form,

often accompanied by invasive ductal carcinoma (IDC) component

(31). Thus, three different classification methods of pure IMPC have

been proposed: MP proportion > 50%, MP proportion > 75%, and

MP diameter > 5 mm. Subsequently, studies have shown that the

poor prognosis of IMPC is only related to the presence of MP

features rather than their proportion (32–37). Based on these

findings, Fu et al. proposed that IMPC can be diagnosed as long

as MP features are present in IDC and their proportion should be

noted in the pathological report (38). However, pure IMPC is a rare

phenomenon, found in approximately 1%–2% of breast carcinomas.

The authors suggest a cutoff percentile value of 75% IMPC

component to histologically identify a carcinoma as pure

IMPC (39).

When distributed focally, IMPC mostly exhibits the “inside-

out” growth pattern and reversal of neoplastic cell polarity,

distinguishing it from other breast cancer subtypes (40).

Cytologically, the inside-out growth pattern induces a reversal of

cell polarity, causing the apical surface of cells to face the stroma

instead of the lumen. This alteration confers highly invasive and

metastatic potential (41). Furthermore, the “inside-out” growth

pattern can be confirmed through staining for MUC1/epithelial

membrane antigen (EMA), sialyl Lewis X, p120 catenin, or Annexin

A2 on the cell membrane (42–44). Nonetheless, their staining

emerges almost exclusively on the peripheral membrane, with no

apical staining, also known as “goblet staining” (45).
Immunohistochemical features

Among the molecular subtypes of IMPC, luminal subtypes

account for about 70%−80%, while HER2-overexpressing and

triple-negative subtypes account for only 10%−20% (46, 47).

However, the criteria for evaluating the HER2 status of IMPC are

controversial. According to the 2018 American Society of Clinical

Oncology and College of American Pathology (ASCO/CAP) HER2

testing recommendations, moderate to intense incomplete

membrane staining of HER2 can be scored as 2+ but not as 3+ (48).

Because of the inside-out growth pattern of neoplastic cell

clusters, IMPC often exhibits incomplete membrane staining

intensity of HER2. Stewart et al. and Perron et al. recommended

the incorporation of fluorescence in situ hybridization testing to

confirm HER2 amplification (49). However, Zhou et al.

demonstrated that if the basolateral membrane showed intense,

clear, linear, and incomplete staining of HER2, IMPC should be

classified as HER2 3+ rather than HER2 2+. This approach helps

avoid the need for additional fluorescence in situ hybridization

testing procedures, saving considerable time, manpower, and

economic costs.

Previously, HER2 expression was considered clinically

insignificant in ductal carcinoma in situ; however, Francesk et al.
frontiersin.org
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reported that HER2 over-expression in DCIS is correlated with

poorer clinicopathological parameters (50). Moreover, a clinical

study showed that trastuzumab treatment in high-risk patients with

HER2-positive DCIS reduced the recurrence rate (51). There are no

studies on whether HER2 expression affects the prognosis of

patients with IMPC; thus, this data need to be further explored.
Clinical examination of IMPC

IMPC exhibits distinct characteristics in different radiological

examinations (52–55). On mammography, most lesions are irregular

or lobulated, with vague or spiculated margins and scattered

calcifications. On ultrasonography, lesions mostly demonstrate

longitudinal growth, internal hypoechoic appearance, irregular

shape, lobulated margins, and echogenic posterior features. Lesions

observed on magnetic resonance imaging (MRI) typically have

irregular shapes with spiculated margins. They exhibit

heterogeneity in contrast enhancement and demonstrate a type III
Frontiers in Oncology 03
time-signal intensity curve. On positron emission tomography-

computed tomography (PET-CT), the mean maximum

standardized uptake value (SUVmax) of the lesions is >10, which

distinguishes it from other breast cancer subtypes (Table 1).

Kubota et al. demonstrated that IMPC is particularly specific

in MRI examination and is easy to identify and that ultrasound

examination has high sensitivity for LNM of IMPC (56). However,

the mammographic and ultrasound imaging characteristics of

IMPC are reported to be difficult to distinguish from those of

other breast cancer subtypes (57). Moreover, among the 29 cases

enrolled in Akgun et al.’s study (58), 13 (13/29,44.82%) had MP

component <75% and 16 (16/29,55.18%) had MP component

>75%. The data revealed no significant correlation between the

SUVmax of PET-CT and the proportion of MP component.

Although IMPC is highly invasive, sentinel lymph node biopsy

(SLNB) remains the gold standard for determining the need for

axillary lymph node dissection. To date, indocyanine green (ICG) is

considered to have a good application prospect in SLNB for

IMPC (59).
TABLE 1 Imaging features of invasive micropapillary carcinoma.

Feature Mammography Ultrasonograpgy MRI PET-CT

Shape Irregular/Lobulated Hypoechoic Irregular –

Margin Vague/Spiculated Lobulated Spiculated –

Calcification Scattered – – –

Posterior feature – Hypoechoic – –

Enhancement – – Heterogeneous –

TIC – – Type III –

SUVmax – – – >10
TIC, time-signal intensity curve; SUVmax, maximum standardized uptake value; MRI, magnetic resonance imaging; PET-CT, positron emission tomography-computed tomography.
FIGURE 1

Pathological diagnostic procedure of invasive micropapillary carcinoma. IMPC, invasive micropapillary carcinoma of the breast.
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Clinical features of IMPC

The median age at IMPC onset is 48.0–61.4 years, with a

median diameter of approximately 2.0–5.0 cm (60–62), consistent

with the previous findings of Fu et al. (38). However, another study

suggests that IMPC tends to be larger than IDC (63).

Liu et al. reported that IMPC had a significantly higher rate of

estrogen receptor (ER) positivity (P = 0.037) and LVI (P = 0.005)

than matched IDC (64). Mercogliano et al. further explained that

ER expression in IMPC was positively correlated with tumor size

but inversely correlated with patient age (65). Yu et al. found that

IMPC had a higher nuclear grade III ratio than IDC by comparing

the clinicopathological features between 267 IDC and 267 IMPC

cases (P < 0.001) (66). Aker et al. reported that IMPC is more likely

to have LNM than IDC (67). The presence of MP features increases

the probability of LNM, LVI, and poor nuclear differentiation. This

is closely related to the disordered arrangement and polarity

reversal of neoplastic cell clusters (Table 2).

Eren et al. found that the positive rate of progesterone receptor

(PR) in the pure IMPC group was significantly lower than that in

the mixed IMPC group (66.7% vs. 83.3%, P = 0.024) (31). Further

analysis by Wang et al. revealed a significantly higher proportion of

stage IIIc cases in the pure IMPC group than in the mixed IMPC

group (38.3% vs. 17.8%, P = 0.003) (68). However, Kaya et al.

reported no significant difference between pure and mixed IMPC in

terms of PR status, tumor size, LNM, LVI, and histological grade

(69). Combined with the relevant literature, the incidence of pure

IMPC was only 1%–2% (62, 70). The variation in the results among

the aforementioned studies may be attributed to the relatively small

number of pure IMPC cases, potentially introducing bias (Table 3).

In their retrospective analysis, Verras et al. found that genomic

sequencing was more likely to detect the luminal B subtype in IMPC

than the immunohistochemical method (71). Furthermore,

although the triple-negative subtype is less common in IMPC, it

is associated with higher histological grade and more advanced

disease stage in pathological diagnosis (72–74), indicating that the

triple-negative subtype of IMPC is more aggressive. Upon

diagnosis, surgery or neoadjuvant therapy is necessary to prevent

rapid disease progression.
Biological hallmark of IMPC

Biological hallmarks are important for diagnosis, treatment

information, and predicting the prognosis of IMPC of the breast.

Nassar et al. found that mucin1 (MUC1), a glycoprotein encoded by

MUC1 on chromosome 1q21, also known as EMA, is normally

expressed on the apical surface of glandular epithelial cells. It is

crucial for maintaining lumen formation (75). In IDC, MUC1 was

mainly expressed in the cytoplasm, intercellular space, and apical

regions. However, in IMPC, MUC1 was predominantly expressed

on the basal surface of the cells, forming a prominent linear staining

band. This band highlighted the outline of the micropapillary

structure, providing a basis for diagnosis. MUC1 has antiadhesive

and immunosuppressive properties and can protect against
Frontiers in Oncology 04
infections. These attributes also position MUC1 as a potential

therapeutic target for IMPC (76).

Notably, the staining patterns of sialyl Lewis X (sLeX), MUC4,

b1 integrin, and RAC1 reflect the polarity reversal characteristic of

IMPC and serve as diagnostic markers for IMPC. Their positive

expression is closely related to poor prognosis among patients with

IMPC (42, 65). However, Sozzani et al. reported that sLex

expression was not a prognostic factor of IMPC (77). Song et al.

reported that high sLex expression on the tumor cell membrane in

IMPC was associated with shorter overall survival (OS) and disease-

free survival (DFS) (P = 0.030, P < 0.001, respectively) (42).

Mercogliano et al. demonstrated that high MUC4 expression was

associated with shorter DFS in patients with HER2-overexpressing

IMPC (P = 0.019) (65). Liu et al. showed that overexpression of b1
TABLE 2 Pathological characteristics between IMPC and IDC.

Author Characteristic Relevance P-
value

Liu et al. (61) ER
Positively correlated
with IMPC

P=0.037

LVI
Positively correlated
with IMPC

P=0.005

Mercogliano
et al. (62)

ER
Positively correlated with
IMPC SIZE

P=0.014

Yu et al. (63) Nuclear grade III
Positively correlated
with IMPC

P<0.001

Aker et al. (64) LNM
Positively correlated
with IMPC

P<0.001
front
IMPC, invasive micropapillary carcinoma of the breast; IDC, invasive ductal carcinoma of the
breast; ER, Estrogen Receptor; LVI, Lymphovascular Invasion; LNM, Lymph Node Metastasis.
TABLE 3 Pathological characteristics between Pure and Mixed IMPC.

Author Characteristic pIMPC,
n (%)

mIMPC,
n (%)

P-
value

Eren
et al. (42)

PR 30 (66.7) 85 (83.3) P=0.024

Wang
et al. (65)

IIIc 18 (38.3) 16 (17.8) P=0.003

Kaya
et al. (66)

PR 17(89.50) 17(60.70) P=0.188

Tumor size

<2 cm 4(14.3) 2(10.5)

P=0.542~5 cm 20(70.4) 16(84.2)

>5 cm 1(5.3) 4(17.3)

histological grade

I 1(3.6) 2(10.5%)

P=0.466II 18(64.3) 8(42.1%)

III 8(28.6) 9(42.1%)
IMPC, invasive micropapillary carcinoma of the breast; pIMPC, pure invasive micropapillary
carcinoma of the breast; mIMPC, mixed invasive micropapillary carcinoma of the breast; PR,
progesterone receptor.
iersin.org
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integrin and RAC1 was associated with LNM and shorter DFS in

IMPC (78).

CD44, a cell surface transmembrane glycoprotein, is involved in

tumor cell differentiation, invasion, and metastasis. Badyal et al.

showed that the loss of CD44 in IMPC is correlated with LNM,

indicating its potential as a marker to predict LNM. This

phenomenon is attributed to the re-expression of CD44 in lymph

nodes, which guides the homing of tumor cells to lymph nodes.

Umeda et al. validated this finding (79, 80).

Meng et al. (81) reported that high expression of prostate stem

cell antigen (PSCA), located on chromosome 8q24 and a

glycosylphosphatidylinositol-anchored cell surface protein, was

significantly associated with shorter DFS among patients with

IMPC (P = 0.0003). Liu et al. subsequently reported that Jagged1

expression in IMPC was linked to large tumor size, LVI, and Ki67,

and it emerged as an independent prognostic factor for DFS and

OS (63).

AT-rich interaction domain 1A (ARID1A), a novel tumor

suppressor gene, is a part of the multiprotein SWI/SNF

chromatin remodeling complex and plays an important role in

inhibiting the proliferation, differentiation, and invasion of tumor

cells. Onder et al. reported that low ARID1A expression was a
Frontiers in Oncology 05
predictor of shorter OS and DFS in IMPC (HR = 15.9, 95% CI: 3.5–

71.5, P < 0.0001; HR = 7.2, 95% CI: 2–25.4, P = 0.002). Additionally,

ARID1A expression exhibits a similar trend in both pure and mixed

IMPC (82).

Moreover, cyclooxygenase-2 (COX-2), lymphoid enhancer-

binding factor 1 (LEF1), b-catenin, galectin-3, interleukin-1beta
(IL-1b), and autocrine motility factor receptor (AMFR) were

associated with poor prognosis in IMPC (46, 83–87) (Table 4

and Figure 2).
Underlying pathogenesis of IMPC

The key to reducing the high-risk biological behavior of IMPC

lies in obtaining a thorough understanding of its pathogenesis and

developing individualized treatment approaches for patients with

IMPC. In recent years, with advances in research, the onset of IMPC

is linked to tumor cell polarity and the tumor-immune

microenvironment, including tumor-associated macrophages

(TAMs), metabolic reprograming, post-translational modification

(PTMs), related signaling pathways, genomic mutations, and copy

number variations (CNV) (Figure 3).
TABLE 4 Biological hallmarks associated with IMPC.

Hallmark Role Function Significance Ref

MUC1 Diagnostic
Maintain lumen integrity in
normal glandular tissues

Identify “inside-out” growth pattern (72)

sLex
Diagnostic
Prognostic

Associat with the reversal of cell polarity
Identify “inside-out” growth pattern; Shorter OS
and DFS

(41)

MUC4
Diagnostic
Prognostic

confer antiadhesive properties
Identify “inside-out” growth pattern;
Shorter DFS

(62)

b1integrin
Diagnostic
Prognostic maintain polarity

of normal epithelial cells

Identify “inside-out” growth pattern; Shorter OS
and
LNM

(75)

Rac 1
Diagnostic
Prognostic

CD44 Prognostic
Reduce adhesion between cell-cell, and cell-
basement membrane

LNM (76, 77)

PSCA Prognostic Associat with cell adhesion molecules Shorter OS (78)

Jagged1 Prognostic Modulate TAMs differentiation Tumor Size, LVI, and Ki67 (60)

ARID1A Prognostic Tumor suppressor Shorter OS and DFS (79)

COX-2 Prognostic Proliferation, mutagenesis, angiogenesis, etc

Higher histological grade, PR negative, high KI67
expression, and LNM

(45, 80–84)

LEF1 Prognostic Wnt pathway activator

b-catenin Prognostic Wnt pathway receptor

Galectin-3 Prognostic
Influence tumor progression and
cell polarity

IL-1b Prognostic Increase microvessel density

AMFR Prognostic
Alter cellular adhesion, proliferation,
motility, and apoptosis
TAMs, Tumor-associated macrophages; OS, Overall Survival; DFS, Disease-Free Survival; LNM, Lymph Node Metastasis; LVI, Lymph Node Metastasis.
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FIGURE 3

Potential pathogenesis of IMPC.
FIGURE 2

Profiles of biological hallmarks associated with IMPC.
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Tumor cell polarity of IMPC

The cell polarity reversal pattern is a unique morphological

feature of IMPC and is associated with poor prognosis. Uncovering

its underlying molecular biological mechanism has become a topic

of interest. According to Gruel et al. (88), LIN7A was identified as

one of the most differentially expressed genes in IDC and IMPC via

genome sequencing. LIN7A overexpression in IMPC was further

confirmed at the mRNA and protein levels. Meanwhile, LIN7A

overexpression caused cell polarity reversal and tube formation in

MCF-10A and MDA-MB-231 3D cell culture models. Additionally,

the experimental results demonstrated that tumor cells exhibiting

reversed cell polarity displayed stronger proliferation, invasion, and

metastatic abilities than those with normal polarity. To our

knowledge, this is the first report highlighting the significant role

of LIN7A in the regulation of tumor cell polarity. However, its

upstream and downstream regulatory mechanisms are yet to

be explored.

In the study by Liu et al. (78), RAC1 overexpression induced the

reversal of tumor cell polarity and affected the prognosis of patients

with IMPC. Following the silencing of the b1 integrin gene via RNA

interference (RNAi), there was a significant downregulation in b1
integrin expression and RAC1 expression. In contrast, inhibition of

RAC1 expression by RNAi did not downregulate b1 integrin

expression, leading to the speculation that b1 integrin positively

regulates RAC1. Furthermore, AIIB2, a b1 integrin inhibitor,

abrogated the reversal of tumor cell polarity induced by RAC1

overexpression. Therefore, b1 integrin induces the reversal of tumor

cell polarity by positively regulating RAC1 expression, thereby

influencing IMPC prognosis.

Although MUC1, MUC4, and sLex are also considered to be

associated with tumor cell polarity reversal and poor prognosis,

further in-depth molecular mechanisms have not been reported (42,

65, 75).
Tumor microenvironment of IMPC

TAMs
TAMs, important mediators of tumor growth, are functionally

categorized into two contrasting subtypes, classical activated M1

macrophages and alternatively activated M2 macrophages (89). The

former typically exerts antitumor effects, whereas the latter can

promote the occurrence and metastasis of tumor cells. The

distinctive feature of M2 macrophages is the expression of the

scavenger receptor CD163 (90).

TAM differentiation is reported to depend on Notch signaling

modulation (91). Upregulation of Notch-1 and its signaling

following macrophage activation modulate gene expression

patterns, affecting antigen-presenting capacity and cytotoxic

activity. Jagged1, a Notch receptor ligand, is also important in the

regulation of tumor occurrence and development of tumors (92).

Liu et al. (63) reported that Jagged1 was highly expressed in

IMPC compared with IDC and served as an independent prognostic
Frontiers in Oncology 07
factor for DFS. Jagged1 expression was positively correlated with

the infiltration of CD163+ M2 macrophages in the tumor stroma.

Moreover, PJA2, which regulates the intensity and duration of cAMP

signaling via protein kinase A (PKA), enhances the accumulation of

ubiquitinated malignant fibrous histiocytoma amplified sequence 1,

thereby promoting M1 macrophage polarization and M2 to M1

macrophage transformation (93, 94). Aberrant expression of PJA2 in

IMPC promotes tumor invasion via M2 macrophage polarization (95).

TAMs are hypothesized to be influenced by various factors in

the IMPC environment, causing a decrease in M1 macrophages and

an increase in the number of M2 macrophages, thereby promoting

tumor invasion. Hence, targeting jagged1 and PJA2 to reduce the

formation of M2 macrophages could represent a potential

therapeutic approach for IMPC.

Natural killer T cells
Kanomata et al. demonstrated that CD1d was expressed at

abnormally low levels in IMPC (95). CD1d is a lipid antigen that

activates natural killer T cells (NKT) by interacting with T-cell

receptors on the cell membrane (96). Hix et al. found that low

expression of CD1d compromised the immune function of NKT

toward tumor cells and promoted the metastasis of breast cancer in

vitro and in vivo (97). The decreased expression of CD1d in IMPCmay

enable tumor cells to evade immune system regulation and enhance the

metastatic potential of IMPC. Improving the immune surveillance

function of NTK may be another effective treatment for IMPC.
Metabolic reprograming of IMPC

Using spatial transcriptome sequencing, Lv et al. (98) mapped the

transcriptional profile of IMPC for the first time. IMPC heterogeneity is

associated with metabolic reprograming involving unsaturated fatty

acid metabolism, long-chain fatty acid metabolism, amino acid

metabolism, carbohydrate metabolism, and glycolysis.

Furthermore, their data revealed that SREBF1 expression was

significantly higher in IMPC clusters than in IDC clusters.

Interestingly, FASN, a target gene of SREBF1, was also highly

expressed in IMPC clusters. Increased expression of SREBF1 and

FASN is closely related to IMPC survival. SREBF1 is a key

transcription factor regulating FASN in lipid metabolism. FASN is a

key enzyme involved in the de novo synthesis of long-chain fatty

acids (99).

SREBF1/FASN affects the heterogeneity of IMPC through lipid

metabolism and may be a potential therapeutic target of IMPC.
Post-translational modifications of IMPC

PTMs induce structural changes in existing proteins to

participate in multiple biological processes, including tumor

initiation, progression, and invasion (100). There are up to 600

types of post-translational modifications of human proteins (101),

with common types including acetylation, methylation,
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phosphorylation, propionylation, butyrylation, crotonylation, 2-

hydroxyisobutyrylation, malonylation, and succinylation.

Methylation
Protein arginine methyl-transferases play an important role in

arginine methylation and are involved in metabolic reprograming

during tumorigenesis (102, 103).

Zhi et al. (104), through a comparison of metabolomic

differences between IMPC and IDC, identified aberrant arginine

methylation and overexpression of protein arginine methyl-

transferases 3 (PRMT3) in IMPC. PRMT3, a methylation

“writer,” is closely related to arginine methylation. Subsequently,

FLAG-tag, CO-IP, and bioinformatics analyses revealed that

PRMT3 interacts with histone H4 to increase H4R3me2a levels

and mediates the expression of ER stress-related genes. Meanwhile,

PRMT3 overexpression promoted tumor proliferation, whereas

PRMT3 knockdown inhibited tumor growth in vitro and in vivo.

Wu et al. (23) found that high expression of protein arginine

methyl-transferases 1 (PRMT1) was associated with shorter DFS in

IMPC. In cellular experiments, PRMT1 also upregulated H4R3me2a

to induce tumor cell proliferation and promote tumor cell

metastasis via the tumor necrosis factor signaling pathway.

Phosphorylation
Protein phosphorylation, a crucial PTM, occurs mainly on serine,

threonine, and tyrosine residues and is a reversible process regulated by

kinases and phosphatases. Kinases play a significant role in the growth,

migration, and invasion of malignant tumors (105, 106).

Chen et al. (107) analyzed the proteomic and phosphoproteomic

characteristics of IMPC by LC–MS/MS. Sequencing data revealed that

589 phosphosites on 479 phosphoproteins were considered to be highly

phosphorylated in IMPC, whereas 267 phosphosites on 176

phosphoproteins were down-regulated. Enrichment analysis of

differentially phosphorylated proteins through GO and KEGG

revealed that upregulated phosphoproteins were primarily associated

with enzyme activator activity. Kinase enrichment analysis (KSEA)

indicated that cyclin-dependent kinases and p90 ribosomal S6 kinases

(RSKs) were highly activated, whereas protein kinase A (PKA) and

protein kinase C (PKC) families were significantly inhibited in IMPC.

Simultaneously, the tumor-specific mTORC1/S6K2 signaling pathway

was significantly activated in IMPC. Unfortunately, despite significant

attention to the proteome and phosphoproteome profiles of IMPC, the

phosphorylation sites of specific proteins associated with IMPC have

not been validated by in vitro and in vivo experiments.

This is the first in-depth proteomic and phosphoproteomic

study to explore the pathogenesis of IMPC. The findings of this

study suggest that IMPC mediates the activation of proto-

oncogenes or the repression of tumor suppressor genes through

protein phosphorylation. This process can influence cell cycle

regulation and enhance proliferative growth signals to promote

tumorigenesis and rapid progression.

Other modifications
PTMs are considered closely related to breast cancer. In triple-

negative breast cancer, Krug et al. reported (108) that dysregulation
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of SIRT3 protein extensively affected mitochondrial acetylation in

BRCA, leading to increased aerobic glycolysis and impaired

tricarboxylic acid cycle. Ding et al. demonstrated that GPX4

ubiquitination upregulates EGR1 to induce mitochondrial-

mediated apoptosis in triple-negative breast cancer cells (109).

Pandkar et al. (110) reported that increased lactate production

leads to histone H3 lysine 18 lactylation (H3K18la)-mediated

upregulation of c-Myc expression, enhancing the invasion of

hormone receptor-positive breast cancer. While the modification

omics of acetylation, ubiquitination, and lactacylation of IMPC

have not been reported, these modifications may play crucial roles

in the heterogeneity of IMPC and serve as potential therapeutic

targets for IMPC.
Genomic mutations and copy
number variation

Genomic mutations and CNV are considered to drive

tumorigenesis and initiate intratumor heterogeneity (111, 112).

As reported by Shi et al. (113), CNV in IMPC were positively

correlated with LNM by whole exome sequencing and whole

genome sequencing of IMPC samples and paired normal tissues,

along with cell cluster sequencing of primary IMPC lesions and

paired lymph nodes. PRDM16 and IGSF9 copy number losses and

ALDH2 copy number gains were observed in IMPC. Furthermore,

COX regression analysis confirmed that low expression of PRDM16

and IGSF9 and high expression of ALDH2 were associated with

LNM and poor survival in patients with IMPC.
Related signaling pathways of IMPC

PI3K/Akt/Bcl-2 axis
Plakoglobin, a member of the armadillo protein family, is an

important component of adhesion junctions and delaminating

bodies and can promote tumor cell aggregation and metastasis

(114, 115). Huang et al. (116) found that in vivo and in vitro data

showed that plakoglobin was overexpressed in the cell membrane

and cytoplasm of IMPC. Plakoglobin knockout resulted in cluster

depolymerization, whereas plakoglobin overexpression activated

the PI3K/Akt/Bcl-2 signaling pathway and reduced cluster

apoptosis in cell models. Furthermore, plakoglobin knockout

inhibited tumor proliferation in animal models.
Wnt/b-catenin Axis
Dolezal et al. (46) reported that lymphoid enhancer-binding

factor 1 (LEF1) and b-catenin expression were significantly

increased in lymph node lesions compared with primary lesions

in IMPC. Wnt/b-catenin plays a crucial role in the invasion of

malignant tumors, and LEF1 is a specific marker of this signaling

pathway (117, 118). Therefore, LEF1 overexpression may activate

the Wnt/b-catenin pathway and contribute to lymph node tropism

in IMPC. However, further basic experiments are required to

validate this finding.
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Survival prediction models
and prognosis

The survival prediction model integrates the information of

clinical, imaging, and pathological characteristics of the disease to

establish an evaluation system for predicting the individual

prognosis of patients. This model helps clinicians develop

individualized treatment measures (119).

Meng et al. enrolled 388 patients diagnosed with IMPC and who

underwent surgery between 2013 and 2017. A nomogram revealed that

factors such as age, LNM, hormone receptor status, adjuvant

radiotherapy, vascular invasion of lymph nodes, and postoperative

radiotherapy significantly influenced LRR (120). Chen et al. used the

Surveillance, Epidemiology, and End Results (SEER) database to

construct a nomogram from 1,885 surgically treated patients with

IMPC. They discovered that age ≥62 years at diagnosis, estrogen

receptor negativity, and tumor stage were adverse independent factors

for OS. Conversely, married patients and those treated with

chemotherapy or radiotherapy had longer postoperative survival

(121). In the retrospective study by Wang et al. (122), patients with

IMPC who underwent breast-conserving surgery had better OS and

breast cancer-specific survival (BCSS) than those in the mastectomy

group. However, patients in the breast-conserving group had a smaller

tumor diameter, fewer LNMs, and higher ER- and PR-receptor

positivity. In the retrospective study by Wang et al. (122), breast-

conserving surgery demonstrated better OS and BCSS thanmastectomy

for IMPC.However, patients in the breast-conserving group had smaller

tumor diameters, fewer LNMs, and higher hormone receptor positivity.

Additionally, Lewis et al. screened 2,660 patients from the US National

Cancer Database to construct a COX model. They discovered that the

survival time of patients with ≥4 positive lymph nodes was significantly

shorter than that of patients with negative lymph nodes (P < 0.001).

However, the survival time of patients with 1–3 positive lymph

nodes was similar to that of patients with negative lymph nodes (P =

0.883), indicating that N2 is an independent prognostic factor for

IMPC (123). These studies guide patients with IMPC who exhibit

the aforementioned high-risk factors before and after surgery. This

approach may include expanding the scope of surgery, intensifying

systemic therapy, and increasing the dose of radiotherapy.

The presence of MP component within no special type tumors is a

more frequent occurrence, and much deliberation has been made on its

clinical significance. Multiple studies have reported an association

between the presence of a MP element within a tumor and a poorer

prognosis, along with a recurring lymphotropic pattern (39). Chen et al.

retrospectively analyzed 100 patients with IMPC and found lower 5-

and 10-year OS than those with IDC; however, the reliability of their

findings was questionable because of the small number of patients

enrolled (34). Li et al. (124) used propensity score matching to eliminate

the difference between IMPC and IDC during the screening period and

revealed that MP was a favorable prognostic factor. However, more

studies have suggested that compared with IDC, IMPC has significantly

higher relapse-free and local-regional recurrence-free survival rates, with

no difference in OS. The varying outcomes of the aforementioned

studiesmay be attributed to a lack of understanding of IMPC in the past,

with numerous cases beingmisdiagnosed, leading to an underestimation
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of the disease’s impact. However, as the understanding of IMPC

improves, its diagnostic rate is gradually increasing. This enables more

cases to be treated effectively at an early stage.
Conclusions

While most current studies suggest that IMPC does not affect OS,

its highly aggressive behavior increases the risk of LNM and local

recurrence, significantly affecting patients’ quality of life. Moreover,

most of the current studies on IMPC are retrospective analyses, making

it challenging to correct biases related to tumor stage, surgical methods,

and systemic treatments. As a result, there are significant differences

between the findings of these studies. Hence, assessing whether IMPC

affects OS requires extensive large-scale prospective studies. From a

histological perspective, the “inside-out” growth pattern reflects the

external manifestation of IMPC’s high invasiveness. However, from a

pathogenesis perspective, IMPC heterogeneity is driven by multiple

factors, such as tumor-immune microenvironment, TAMs, and

metabolic reprogramming. In this review, we focused on recent

advances in the biomarkers, pathogenesis, and survival prediction

models of IMPC. Additionally, we aimed to deepen our

understanding of tumor heterogeneity, provide valuable insights into

potential treatment targets, and identify the underlying mechanisms of

IMPC to improve treatment strategies.
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