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Super-resolution reconstruction
improves multishell diffusion:
using radiomics to predict adult-
type diffuse glioma IDH
and grade
Chi Zhang1†, Peng Wang1†, Jinlong He1, Qiong Wu1,
Shenghui Xie1, Bo Li1, Xiangcheng Hao1, Shaoyu Wang2,
Huapeng Zhang2, Zhiyue Hao1, Weilin Gao1, Yanhao Liu1,
Jiahui Guo1, Mingxue Hu1 and Yang Gao1*

1Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China,
2MR Research Collaboration, Siemens Healthineers, Shanghai, China
Objectives: Multishell diffusion scanning is limited by low spatial resolution. We

sought to improve the resolution of multishell diffusion images through deep

learning-based super-resolution reconstruction (SR) and subsequently develop

and validate a prediction model for adult-type diffuse glioma, isocitrate

dehydrogenase status and grade 2/3 tumors.

Materials and methods: A simple diffusion model (DTI) and three advanced

diffusion models (DKI, MAP, and NODDI) were constructed based on multishell

diffusion scanning. Migration was performed with a generative adversarial

network based on deep residual channel attention networks, after which

images with 2x and 4x resolution improvements were generated. Radiomic

features were used as inputs, and diagnostic models were subsequently

constructed via multiple pipelines.

Results: This prospective study included 90 instances (median age, 54.5 years; 39

men) diagnosed with adult-type diffuse glioma. Images with both 2x- and 4x-

improved resolution were visually superior to the original images, and the 2x-

improved images allowed better predictions than did the 4x-improved images

(P<.001). A comparison of the areas under the curve among the multiple pipeline-

constructed models revealed that the advanced diffusion models did not have

greater diagnostic performance than the simple diffusion model (P>.05). The

NODDI model constructed with 2x-improved images had the best performance

in predicting isocitrate dehydrogenase status (AUC_validation=0.877; Brier

score=0.132). The MAP model constructed with the original images performed

best in classifying grade 2 and grade 3 tumors (AUC_validation=0.806;

Brier score=0.168).
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Conclusion: SR improves the resolution of multishell diffusion images and has

different advantages in achieving different goals and creating different target

diffusion models.
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1 Introduction

Following the identification and clarification of brain tumor

pathogenesis and diagnostic and therapeutic processes, the World

Health Organization released criteria for classifying tumors of the

central nervous system in 2021 (1), which has further increased the

clinical value of the convergence of tumor grade and molecular

genotype. According to this classification system, most individuals

diagnosed with adult-type diffuse glioma (approximately 80%) have

poorer outcomes than patients with other types of glioma (2). The

formulation of clinical decisions and prognosis prediction are

dependent on the mutation status of isocitrate dehydrogenase

(IDH), while an increase in tumor grade implies, to a certain

extent that patients will require frequent radiotherapy and

chemotherapy treatments, accompanied by a greater possibility of

recurrence. MRI, the gold standard for preoperatively diagnosing

glioma (3), may have potential as part of the development of an

accurate method of predicting tumor pathology through imaging

alone; such an approach could potentially optimize surgical

decisions and improve clinical treatment strategies.

Previous studies have shown that, compared with conventional

imaging, diffusion imaging can be used to capture additional brain

tissue microstructural alterations and pathological changes caused by

nuclear heterogeneity (4–6). Theoretically, advanced diffusion

models, such as those based on neurite orientation dispersion and

density imaging (NODDI) (7), itself based on the three-compartment

model, and the mean apparent propagator (MAP) (8), which does

not rely on a priori assumptions, should allow clinicians to better

characterize the complexity and nonuniformity of the tissue

microenvironment (9) and further improve the diffusion

description of brain tissue over simple Gaussian diffusion models

(such as diffusor tensor imaging [DTI]-based models). However, the

findings of some clinical studies do not support these theoretical

advantages (10, 11), reporting that these techniques may be limited by

the spatial resolution of the acquired diffusion images (12). A high

spatial resolutionmitigates the partial volume effect, the phenomenon

by which signal mixing occurs at the interfaces between different

tissues. This enhancement facilitates more precise identification of

boundaries between lesion areas and normal tissues, thereby

improving diagnostic accuracy and reliability.

Super-resolution reconstruction (SR) is a technology through

which the physical limitations of imaging systems can be overcome
02
by generating high-resolution maps from one or more

corresponding low-resolution images (13). SR methods are

currently used in a variety of computer vision applications

ranging from security and surveillance imaging (14) to object

recognition (15). SR systems have also shown good applicability

in the medical field. For example, they have been employed in the

development of high angular resolution diffusion imaging brain

templates from low angular resolution diffusion data from a single

subject (16). Unlike Varentsova et al., Iglesias et al. (17) used

SynthSR (a type of convolutional neural network) to synthesize

higher spatial resolution images from portable low-field-strength

MR images; notably, the high morphological correlation of different

regions of interest in the brain demonstrated that SR was able to

suitably improve the enhancement in the original image. In another

study, a generative adversarial network (GAN)-based network

architecture was used for quantitative analysis after migration

(18), and the results suggested that the use of SR improved the

diagnostic efficacy of radiomic models (which provide biological

transformations of multiple feature matrices with more varied

attempts for identifying imaging markers). Some scholars have

also overcome the issue of inaccurate automatic glioma

segmentation due to missing sequences or poor image quality

through the combined application of U-Net and transfer learning

(19). The use of SR is likely to increase the potential clinical

applicability of multishell diffusion images through resolution

improvement and facilitate the exploration of imaging markers

for adult-type diffuse gliomas (Supplementary Data Sheet 1).

In this study, we attempted to use a GAN-based SR technique to

improve the resolution of multishell diffusion images. We used a GAN

for the following reasons: 1) Compared with other deep learning models,

GANs perform adversarial training between the generator and

discriminator to generate high-resolution images with richer details

and more realistic textures than the original-resolution images. 2) The

combination of content loss and adversarial loss enables GANs to

consider both pixel-level accuracy and visual realism in performing

super-resolution tasks. 3) The adversarial training mechanism of GANs

easily adapts to highly complex image distributions and reduces the risk

of overfitting. Two tasks (i.e., predicting the IDH status of adult-type

diffuse glioma and predicting whether gliomas would be classified as

grade 2 or 3) were subsequently performed with the constructed models

to determine whether SR could be beneficial to clinical processes and to

determine the practical applications of the diffusion models.
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2 Materials and methods

We conducted a prospective study in accordance with the

Declaration of Helsinki. The study was approved by our ethics

committee (KY2023064), and all instances signed an informed

consent form before enrollment.

We used the CLEAR checklist in the conduction of this study

(20); it is included in this submission as Supplementary Data.
2.1 Instances and clinical data

In this study, we prospectively recruited consecutive instances

who visited our institution between June 2018 and June 2023. Data

from ninety instances (median age, 54.5 years; range, 21-77 years;

39 [43%] males) with a pathological diagnosis of adult-type diffuse

glioma (in accordance with the 2021 WHO Classification of

Tumors of the Central Nervous System) were used for image

reconstruction and model building. Instances who were treated by

methods including radiotherapy, chemotherapy, or concurrent

radiotherapy and chemotherapy prior to pathology sampling and

who had poor image quality were excluded. Previous studies (10)

analyzed cohorts with overlapping data, in contrast to the present

study, in which the scan-to-pathology time (median time of 4.5 days

in this study) and the inclusion of new instances (n=13) were

controlled and SR was employed more frequently.
2.2 Magnetic resonance scanning

All study instances underwent preoperative conventional MRI

and diffusion imaging with a 3T scanner (MAGNETOM Skyra;

Siemens Healthcare, Erlangen, Germany) equipped with a 32-

channel head/neck coil.

The conventional MRI (cMRI) sequences included axial T1-

weighted, axial T2-weighted, axial T2-weighted fluid-attenuated

inversion-recovery (FLAIR), and 3D contrast-enhanced T1-

weighted imaging, the last of which was performed after

intravenous administration of 0.1 mmol/kg gadobutrol (Gadovist,

Bayer AG, Berlin, Germany). The diffusion imaging sequences

included axial diffusion-weighted imaging (DWI) and diffusion

spectrum magnetic resonance imaging. The diffusion spectrum

imaging scheme included the acquisition of a total of 128 diffusion

samples, consisting of 16 b-values (200, 350, 400, 550, 750, 950, 1150,

1500, 1700, 1850, 1900, 2050, 2250, 2450, 2650 and 3000 s/mm2). The

in-plane resolution was 2.65 mm. Detailed information on the

parameters is provided in Supplementary Table S1.
2.3 Preprocessing

The diffusion parameters were calculated with Neuro-Diffusion

Lab (NeuDiLab, Chengdu ZhongYing Medical Technology Co.,

Ltd., Chengdu, China), software developed in-house with Python
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based on the open-source tool DIPY (Diffusion Imaging in Python,

https://dipy.org). The software is equipped with FSL-based brain

extraction, eddy current and head motion correction, and

smoothing functions and allowed acquisition of the final

quantitative parametric maps for 25 features from the 4 diffusion

models (listed below) and B0 maps. Three advanced models

(diffusional kurtosis imaging (DKI), NODDI and MAP-MRI) and

1 simple model (DTI)) were constructed. The cMRI data were bias

corrected with the N4ITK MRT bias correction module in 3D-

Slicer. Coregistration of the cMRI data and diffusion parameter

maps was performed with ANTs in 3D-Slicer. Default parameters

were used for bias field correction and image registration.
2.4 Image SR and effect assessment

We performed SR on the original images with a pretrained

GAN (https://github.com/OnekeyAI-Platform/onekey). The core of

the migration model is a deep residual channel attention network

(21) (https://github.com/XPixelGroup/BasicSR/blob/master/

README_CN.md and https://github.com/yulunzhang/RCAN).

Before training the GAN model, the input images underwent

preprocessing to remove noise and artifacts, followed by

normalization of the intensity values. The depth of the network is

increased by the residual, which consists of several residual clusters

with long jump connections. Each residual cluster contains several

channel residual blocks with short jump connections. Each channel

attention residual block consists of a simple residual block and a

channel attention mechanism. Moreover, residual information

allows rich low-frequency information to be bypassed via multiple

jump connections so that the main network focuses on learning

high-frequency information. The channel attention mechanism

performs adaptive rescaling of channel features by accounting for

the interdependence between channels to change the influence

weights of different channel features on the reconstructed image.

Finally, diffusion parameter maps with 2-fold and 4-fold spatial

resolution enhancements are obtained. The flowchart of this study

is shown in Figure 1.

The effect of SR was analyzed with visual characterization and

image loss quantification. A physician (JL.H.) with 13 years of

experience in neuroradiology and blinded to the clinical and

pathological details of the instance but otherwise aware of the

tumor diagnosis evaluated the SR-enhanced images by eye.

Forced-choice pairwise comparisons were used to evaluate all

samples, in which the sharpness, contrast, and both noise and

artifacts were compared among the original, 2x resolution, and 4x

resolution images. The images were quantitatively evaluated in

three steps. First, we downsampled the original images 2x and 4x.

Gaussian noise was subsequently introduced into the images.

Finally, the image resolution was increased with a GAN-based

transfer model, after which the loss between the original image

and the newly generated images was calculated. We measured both

structural similarity (SSIM) and the normalized root-mean-square

error (NRMSE) for the whole brain and the tumor level (i.e., the

solid tumor and peritumor edema regions).
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2.5 Region of interest segmentation and
feature extraction

Two physicians (P.W. and C.Z., with 4 and 3 years of

neuroimaging experience, respectively) independently delineated

regions of interest (ROIs) from the original images via a

semiautomatic process in 3D-Slicer. Both radiologists were aware

of the tumor diagnosis of the instance but were blinded to the

clinical and pathological details. The ROIs were outlined on the B0

map while referring to the cMRI images. The solid tumor and

peritumoral edema regions at all levels were selected as the ROIs;

these regions are typically depicted radiologically as areas

surrounded by T2-FLAIR abnormalities/high signals. For

multicentric lesions, all regions were included in the ROIs. The

ROIs for the 2x and 4x resolution images were obtained by

upsampling the ROIs of the original images with the

corresponding multiples, and then all the samples were examined

to ensure that the extracted features corresponded to the same

region as that in the original image. The Dice coefficient between the

two physicians was 0.804; then the ROIs delineated by the more

experienced physician was used for further feature extraction after

review by another physician (Y.G.) with 28 years of experience

in neuroradiology.

FeAture Explorer (FAE v0.5.8, https://github.com/salan668/

FAE) (22) was used to extract radiomic parameters from the 3D-

ROIs. Feature extraction was performed via PyRadiomics (version

3.0). In total, 107 features were extracted from the original images

(Supplementary Table S2), including first-order features [n=18],

shape-based features [n=14], gray level co-occurrence matrix

features [n=24], gray level dependence matrix features [n=14],
Frontiers in Oncology 04
gray level run-length matrix features [n=16], gray level size-zone

matrix features [n=16], and neighboring gray-tone difference

matrix features [n=5]. The features were discretized by fixing the

bin count (16 gray levels), and the remaining parameters were

assigned the default configurations. Twenty-five sets of diffusion

parameters were used for feature extraction; thus, 2675 features

were extracted from the images at each resolution, for a total of

8025 features.
2.6 Model construction

Data were included in the training and internal test sets

according to the instances’ enrollment time (23). Multiple

pipeline combinations were then considered during model

development, including 1 data balancing method (random

upsampling), 3 feature normalization methods (mean, min–max

and Z score normalization), 2 data dimensionality reduction

methods (principal component analysis and Pearson correlation

coefficients (cutoff = 0.85)), 4 feature selection methods (analysis of

variance, recursive feature elimination, Kruskal-Wallis, and Relief),

and 10 classifier methods (linear [logistic regression, logistic

regression via least absolute shrinkage and selection operator,

linear discriminant analysis, and support vector machine] and

nonlinear [autoencoder, decision tree, random forest, AdaBoost,

Gaussian process, and naïve Bayes]) (Scikit-Learn (version 0.24.2))

for a total of 240 basic pipelines. For pipelining, data balancing was

used only for the training set, and feature scaling was independently

applied to the validation and test sets. Ultimately, the number of

features included in the model was restricted according to a rule of
FIGURE 1

Workflow of the study. A GAN-based migration model was used for SR 25 parameter maps of the 4 diffusion models at two magnifications. After the
reconstruction effect was evaluated, the actual clinical significance of the SR was judged via machine learning models constructed through multiple
pipelines. ROC curve, decision curve and calibration curve analyses were used to evaluate and compare the performance of the models. DTI,
diffusion tensor imaging; DKI, diffusion kurtosis imaging; NODDI, neurite orientation dispersion and density imaging; MAP, mean apparent
propagation diffusion; GAN, generative adversarial network; SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; SSIM,
structural similarity; NRMSE, normalized root-mean-square error; ROI, region of interest; IDH-w, isocitrate dehydrogenase wild-type; IDH-m,
isocitrate dehydrogenase mutant.
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thumb; specifically, the maximum number of features was the

number of instances in the training set divided by 10). The

selection of the number of model features and hyperparameter

tuning were performed via leave-one-out cross-validation. A time-

independent internal test set that was not involved in the model

selection was then used for model testing. Note that the division of

the dataset was fixed, even for different pipelines.

For each imaging resolution for each task, 5 diagnostic models

were selected from among the multiple pipelines, including 4 single-

modal prediction models based on a single diffusion technique

(DTI, DKI, MAP, and NODDI) and 1 fusion prediction model

incorporating all the diffusion techniques; in this way, a total of 30

models (2 tasks × 3 image resolutions × 5 models) were selected

for assessment.
2.7 Statistical analysis

Model performance was evaluated with receiver operating

characteristic curve analysis. The output of the prediction models

corresponds to the predicted probability of the task (ranging from 0

to 1). The results were then converted into binary predictions,

where the threshold depends on the maximum Youden index.

Model performance was compared in the cross-validation set

through the integrated discrimination improvement metric; small

sample sizes and an overreliance on the choice of p value and cutoff

points limited the use of the DeLong test and net reclassification

index (24). Calibration curves and Brier scores were used to assess

deviations between the model results in the training set and the

actual results. Decision curve analysis was used to assess the net

clinical benefits of the different models under different threshold

probabilities. The sample size calculations are presented in

Supplementary Data Sheet 1.

Quantitative data are expressed as the means ± standard

deviations. Student’s t test was used to compare instance ages,

and the c2 test, Fisher’s exact test or Mann-Whitney U test was used

to compare categorical variables between groups. Comparisons

between multiple groups were performed with one-way ANOVA,

and the Bonferroni correction was used for p value adjustment for

multiple comparisons. All the statistical analyses were two-sided,

and P<.05 was used to indicate statistical significance. All the

statistical analyses were performed with SPSS (version 24.0), R

(version 4.3.1), and Python (version 3.9.18).
3 Results

3.1 Instance characteristics

In Task 1, seventy-two instances diagnosed between June 2018

and November 2021 were assigned to the training set; 28 had IDH-

mutant glioma, and 44 had IDH-wild type glioma. Eighteen

instances diagnosed between December 2021 and June 2023 were

assigned to the internal test set, which included 6 with IDH-mutant

glioma and 12 with IDH-wild type glioma (Table 1; Supplementary

Table S4). Note that owing to sample size limitations, the dataset for
Frontiers in Oncology 05
Task 2 did not include the internal test set; rather, the data for all

Grade 2 (n=12) and 3 (n=21) instances were used as the training set

(Supplementary Table S4).

Nine morphologic features (necrosis, cysticity, calcification,

hemorrhage, tumor enhancement pattern, location, side, solid

tumor border clarity, and edema) (10) were extracted from the

imaging reports to be used as baseline features for within-set

description and comparison. For the IDH predictions, only age

(P=.001), necrosis (<.001), tumor location (<.001), and mode of

enhancement (<.001) within the training set differed between the

groups. For classifying grade 2 and grade 3 tumors, only tumor

laterality (P=.032) within the training set differed between the

groups. Because only a small number of baseline and

morphological characteristics differed between the groups, no

additional confounders were considered.
3.2 Image visualization and
loss assessment

SR4 had the highest sharpness and contrast, followed by SR2

and the original image. SR4 also had the most amount of noise and

highest number of artifacts; however, the patterns of noise and

artifacts were not identical among the three sets of images.

The effects of image reconstruction were determined for both

positive and negative SSIMs and NRMSEs. At both the whole-brain

and the tumor region levels, the image loss in the 4 diffusion models

constructed from the 2x-resolution images was less than that of the

models constructed from the 4x-resolution images (P<.001)

(Figure 2; Supplementary Figure S1). At the whole-brain level,

SR2 corresponded to mean SSIM and NRMSE values of 0.827
TABLE 1 Instance characteristics.

Variable Full set

Total number of instances 90

2021 WHO Integrated Diagnosis (CNS WHO grade)

Astrocytoma, IDH-mutant (2) 7

Astrocytoma, IDH-mutant (3) 7

Astrocytoma, IDH-mutant (4) 1

Oligodendroglioma, IDH-mutant and 1p/19q-
codeleted (2)

5

Oligodendroglioma, IDH-mutant and 1p/19q-
codeleted (3)

14

Glioblastoma, IDH-wild type (4) 56

Age (years)

Median 54.5

Range 21-77

Sex

Male 39

Female 51
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and 0.278, respectively, whereas those of SR4 were 0.678 and 0.388,

respectively. At the tumor region level, the mean SSIM and NRMSE

for SR2 were 0.946 and 0.137, respectively, and those for SR4 were

0.778 and 0.291, respectively. In addition, the 4 diffusion models

based on SR2 and the DKI and MAP models based on SR4 had

greater image loss at the whole-brain level than at the tumor region

(P<.001). The mean SSIM and NRMSE at the whole-brain level

were 0.753 and 0.333, respectively, and those at the tumor region

level were 0.862 and 0.214, respectively.

At the whole-brain level, the DTI achieved a smaller loss than

did the other 3 diffusion models (P<.001). At the tumor region level,

the loss with the NODDI was greater than that with the remaining 3

diffusion models (P<.001). At both the whole-brain and tumor-

region levels, the fractional anisotropy (FA) loss was greater than

that of the other 3 parameters in the DTI model (P<.001). No
Frontiers in Oncology 06
differences in parameter losses were observed for the other 3

diffusion models (P>.05).
3.3 Features correlated within
different resolutions

According to Pearson correlation analysis, the correlation

coefficient between the original images and the SR2 images

ranged from -0.984 to 0.999 (Supplementary Figure S2), whereas

that between the original image and SR4 ranged from -0.578 to

0.585. Radiomic features extracted from the original images were

more highly correlated with the radiomic features extracted from

the SR2 images than from those extracted from the SR4 images.
FIGURE 2

Mean loss for the multiple diffusion parameters corresponding to SR at different magnifications at the whole-brain (A) and tumor levels (B). SSIM, structural
similarity; NRMSE, normalized root-mean-square error; SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; DTI, diffusion
tensor imaging; DKI, diffusion kurtosis imaging; MAP, mean apparent propagation diffusion; NODDI, neurite orientation dispersion and density imaging.
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3.4 Comparisons of multiple pipelines and
model selection

We considered a subgroup and a selected model to have high or

low diagnostic efficacy when they exhibited the same trend within

all the sets. The results showed that when predicting IDH, the SR4-

based DTI prediction model had the lowest diagnostic performance

across all sets (Figure 3; Supplementary Figure S3); when classifying

Grade 2 and Grade 3 tumor classification, the performance did not

seem to differ among the SR image sets.

For each of the 15 predictive models, the areas under the ROC

curve (AUCs) in the cross-validation set ranged from 0.593-0.877 and

0.607-0.861 separately for the two tasks. We then further selected the

models with the highest diagnostic performance (P>.05) from the 30

models by comparing the integrated discrimination improvement

metric in the cross-validation sets and identified three predictive IDH

status models and eight models for classifying grade 2 and grade
Frontiers in Oncology 07
3 tumors (Table 2; Figure 4). Models whose outputs were closer to the

true results were then further selected according to the Brier scores

(Supplementary Table S5). Finally, we found that the SR2-based

NODDI model best predicted IDH status, while the original image-

based MAP model performed best in classifying grade 2 and grade

3 tumors.

The NODDI model of SR2 was constructed via logistic

regression and consisted of six features chosen after principal

component analysis (Supplementary Figure S4), including

principal components 13, 11, 5, 31, 24, and 75, the first and last

of which had the highest and lowest mean absolute feature

contribution values, respectively (Supplementary Figure S5). In

addition, we determined the local SHapley Additive exPlanation

(SHAP) values for individual samples. The AUCs of the model in

the training and validation sets were 0.903 (0.832-0.975) and 0.877

(0.789-0.966), respectively (Table 3). In the internal test set, with

pathological confirmation as the reference standard, 4 (66.7%) of 6
FIGURE 3

Comparison of the AUCs in the cross-validation sets of models constructed through different pipelines. **P <.01, ***P <.001. AUC, area under the
curve; SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; DTI, diffusion tensor imaging; DKI, diffusion kurtosis
imaging; MAP, mean apparent propagation diffusion; NODDI, neurite orientation dispersion and density imaging. NS, No significance.
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instances were correctly predicted as having the IDH-mutant type,

and 6 (50%) of 12 instances were correctly predicted as having the

IDH-wild type (Supplementary Figure S6). Overall, the model

achieved a favorable AUC of 0.819 (0.576-1) in the internal test
Frontiers in Oncology 08
set. When the threshold probability was greater than 20%, the SR2-

based NODDI provided greater net clinical benefits than did the

other 2 models in predicting IDH status compared with the case

where no predictive model was used (Figure 4).
TABLE 2 Selected features for model construction.

Task
Feature
origin
(N)a

Pipelinec (normalization/
dimension reduction/feature

selector/classifier)
Feature name

IDH-m vs. IDH-w SR2-
NODDIb

(N = 6)

Mean/PCA/KW/LR PCA_feature_5

PCA_feature_11

PCA_feature_13

PCA_feature_24

PCA_feature_31

PCA_feature_75

IDH-m vs. IDH-w Orig-MAPb

(N = 6)
Minmax/PCC/Rel/NB MSD_gldm_LargeDependenceLowGrayLevelEmphasis

QIV_glrlm_LongRunHighGrayLevelEmphasis

MSD_firstorder_Kurtosis

QIV_gldm_SmallDependenceLowGrayLevelEmphasis

RTOP_firstorder_Variance

NG_glszm_LargeAreaLowGrayLevelEmphasis

IDH-m vs. IDH-w Orig-
NODDIb

(N = 4)

Z score/PCC/RFE/SVM ICVF_firstorder_Energy

ODI_firstorder_Skewness

ODI_glcm_Correlation

ODI_glszm_SmallAreaHighGrayLevelEmphasis

Grade 2 vs. grade 3 Orig-MAPb

(N = 2)
Minmax/PCC/Rel/NB NG_gldm_LargeDependenceLowGrayLevelEmphasis

QIV_firstorder_Kurtosis

Grade 2 vs. grade 3 Orig-DKIb

(N = 1)
Minmax/PCC/RFE/LR

MK_glszm_LargeAreaHighGrayLevelEmphasis

Grade 2 vs. grade 3 Orig-DTIb

(N = 2)
Minmax/PCA/ANOVA/LR PCA_feature_1

PCA_feature_40

Grade 2 vs. grade 3 SR2-
Combineb

(N = 1)

Minmax/PCC/RFE/LDA
MK_glrlm_LongRunHighGrayLevelEmphasis

Grade 2 vs. grade 3 SR2-MAPb

(N = 2)
Mean/PCA/ANOVA/LR-Lasso PCA_feature_2

PCA_feature_41

Grade 2 vs. grade 3 SR2-
NODDIb

(N = 2)

Zscore/PCA/KW/AE PCA_feature_1

PCA_feature_34

Grade 2 vs. grade 3 SR4-MAPb

(N = 2)
Minmax/PCA/KW/LDA PCA_feature_6

PCA_feature_36

Grade 2 vs. grade 3 SR4-
NODDIb

(N = 2)

Zscore/PCA/RFE/LR PCA_feature_18

PCA_feature_36
aThe total number of features in the group.
bWe included 11 different modeling approaches for identifying IDH type and predicting grade 2 and 3 glioma.
cPipeline for processing valid data features for modeling.
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The original image-based MAP model was constructed with the

naïve Bayes algorithm and consisted of 1 texture feature (non-

Gaussianity), which had the highest mean absolute feature

contribution value (0.35), and 1 first-order feature (q-space

inverse variance). The AUCs of the model were 0.814 (0.642-

0.985) and 0.806 (0.639-0.972) in the training and validation

sets, respectively.
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4 Discussion

In this study, we used an SR technique (GAN-based model

migration) to improve the resolution of 25 quantitative parameter

maps with 4 diffusion models at different magnifications and then

constructed a multiparametric radiomic model to predict adult-type

diffuse glioma IDH status and classify tumors into grades 2 and 3.
FIGURE 4

Model selection and clinical benefits. (A) ROC curves for the two tasks in the cross-validation set. The third and eight models had the highest
diagnostic efficacy according to the integrated discrimination improvement index. (B, C) Calibration curve and decision curve analysis results in the
training set in predicting IDH status and classifying tumors as grade 2/3. The models corresponding to the solid purple lines had the lowest Brier
scores, 0.132 and 0.168, and their predictive ability was subsequently visualized via calibration curves (full Brier scores are provided in Supplementary
Table S5). Additionally, these two models had the greatest net clinical benefits according to the decision curve analysis. AUC, area under the curve;
SR2, super-resolution reconstruction 2x; SR4, super-resolution reconstruction 4x; DTI, diffusion tensor imaging; DKI, diffusion kurtosis imaging; MAP,
mean apparent propagation diffusion; NODDI, neurite orientation dispersion and density imaging.
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Our study demonstrated that the diffusion MRI radiomic models

noninvasively predicted IDH mutation status and tumor grade. The

NODDI model based on SR2 images had the highest diagnostic

efficacy (validation_AUC = 0.877) and stability (Brier value =

0.132) in predicting IDH mutation status; furthermore, the use of

higher-resolution reconstructed images resulted in greater loss and

a decrease in diagnostic performance. In addition, comparisons of

the diffusion models indicated that advanced diffusion techniques

were not always advantageous over DTI.

SR methods can be broadly divided into two categories:

interpolation-based and learning-based techniques. Interpolation-

based super-resolution reconstruction relies primarily on

mathematical interpolation algorithms, such as nearest neighbor

interpolation, bilinear interpolation, and bicubic interpolation.

These algorithms estimate the values of newly added pixels by

calculating the mathematical relationships among existing pixels.

However, the primary limitation of this kind of approach is that it

cannot introduce new high-frequency information, leading to a

certain degree of image smoothing and, consequently, image

blurriness, particularly around image edges and in regions with

complex textures. Furthermore, the enhancement in spatial

resolution is relatively limited, making it difficult to meet the

demands of high-precision applications. In contrast, learning-

based techniques employ deep learning models to learn the

mapping between low-resolution and high-resolution images (19).

Compared with interpolation-based methods, learning-based

techniques offer superior reconstruction quality, stronger

generalization capabilities, and the ability to support arbitrary
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magnification factors. The 3D super-resolution reconstruction

technology presented in this study has achieved reliable results in

enhancing the spatial resolution of CT images, which has improved

clinical predictions for atherosclerotic plaques (25) and lung

tumors (26).

Traditional morphologic visual evaluation, radiomics, and deep

learning approaches for assessing tumor heterogeneity through

imaging involve qualitative and quantitative analyses within

limited regions of the image, regardless of the image source (e.g.,

radiological, pathological, and so on). Images with high quality

actually make this task easier, whereas those with low quality can

lead to ‘incorrect’ outcomes, especially when the lesion area is small

and noise is present. Many medical image studies (16–18) have

demonstrated the clinical benefits of deep learning-based SR both

qualitatively and quantitatively. However, as the resolution

increases, the number of image artifacts and the amount of noise

also increases. At this point, effective estimation and integration of

blur models may be more important than the utilization of image

priors (27), i.e., models that use high- and low-resolution images.

Images generated with default fixed blur models may be too unclear

or contain oversharpened artifacts. In our study, higher

magnification resulted in more artifacts and greater noise, which

we believe is one of the main reasons for the decrease in diagnostic

model performance. Various methods, such as mean filtering, have

been developed for removing noise from different sources during

(28) and after image generation. We did not apply additional

denoising in our study because the tumor region image losses

remained low, and excessive image smoothing could reduce the

ability to visualize tumor heterogeneity in the images. Additionally,

the residual channel attention network used in the present study is

effective at both denoising and enhancing the resolution of medical

images (29).

In terms of diffusion model theory, non-Gaussian diffusion

models can better describe pathophysiological states in the brain

than Gaussian models can. This means that the results derived from

DKI, NODDI, and MAP data should be better than those derived

from DTI data. However, the theoretical specificity of diffusion

models leads to different practical strengths for each model. For

example, NODDI better captures microstructural changes resulting

from white matter diseases by quantifying changes in neurite

direction (30), whereas non-Gaussianity provides a more detailed

assessment of diffusion characteristics than fiber bundle imaging

does (9).

In this study, we did not obtain sufficient evidence to support

the hypothesis that advanced diffusion models offer greater clinical

benefits than simple diffusion models. Studies by Gao et al. (11),

Guo et al. (31), and Wang et al. (10) produced results similar to our

results. However, some scholars (32–34) believe that the MAP and

NODDI approaches can be used to better predict glioma

heterogeneity or differentiate gliomas from metastatic tumors.

Studies that drew the latter conclusion, however, used simple

inferential statistics based on histogram averages of tumor entities

or peritumoral edema without involving the extraction of additional

features or the establishment of comprehensive models, and these

limited attempts may not facilitate accurate conclusions. Notably,

other factors, such as variations in the selection of regions of
TABLE 3 Optimal model performance for the two tasks.

Task
Training
set

Cross-valida-
tion set

Internal
test set

IDH-m vs. IDH-w

AUC*
0.903
(0.832–0.975)

0.877 (0.789–0.966) 0.819 (0.576–1)

Sensitivity 0.932 (41/44) 0.886 (39/44) 0.5 (6/12)

Specificity 0.786 (22/28) 0.821 (23/28) 0.667 (4/6)

PPV 0.872 (41/47) 0.886 (39/44) 0.75 (6/8)

NPV 0.88 (22/25) 0.821 (23/28) 0.4 (4/10)

ACC 0.875 (63/72) 0.861 (62/72) 0.556 (40/72)

Grade 2 vs. grade 3

AUC*
0.814
(0.642–0.985)

0.806 (0.639–0.972) –

Sensitivity 0.81 (17/21) 0.857 (18/21) –

Specificity 0.75 (9/12) 0.75 (9/12) –

PPV 0.85 (17/20) 0.857 (18/21) –

NPV 0.692 (9/13) 0.75 (9/12) –

ACC 0.788 (26/33) 0.818 (27/33) –
Data in parentheses are the numerator/denominator of participants included for each
parameter, unless otherwise indicated. The values correspond to the optimal threshold
according to the maximum Youden index.
*Data are the means (95% CI).
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interest, may have contributed to the differences in the results (35).

FA has been included in various prediction models in previous

studies; however, in the present study, DTI exhibited high

losses when FA achieved the best SR effect, which may be one

of the reasons why the clinical benefits of DTI were not

significantly improved.

The results of this study indicate that the combined application

of super-resolution reconstruction and magnetic resonance

diffusion imaging may provide a more comprehensive

understanding of the pathological features of gliomas, including

cell density, invasiveness, and vascular distribution, thereby

providing strong support for an accurate diagnosis. Additionally,

clearer preoperative visualization translates to more precise

preoperative planning, especially with the current high reliance

on intraoperative fiber tracking navigation. However, issues such as

technical complexity and generalizability, data processing and

storage, standardization and normalization, and patient safety and

privacy protection limit the implementation of this technology in

clinical practice. The establishment of proprietary deep learning

models on the basis of specific data and theoretical improvements in

diffusion models are necessary.

This study has several limitations. First, the prospective nature

of the study limited the number of subjects that could be analyzed,

and diagnostic model building was relatively limited due to possible

overfitting issues with the integrated model. Instead, clinical

features and imaging morphological features were used for

assessing the effects of potential confounding factors. Further

large-scale, multicenter studies are needed to validate the

discriminative performance of these diffusion-based indicators,

reducing potential prospective biases and issues related to

insufficient statistical power. Second, the study lacked true high-

resolution multishell diffusion images for evaluating the

reconstruction effect of GAN-based super-resolution; instead, a

downsampling method followed by the addition of noise was

adopted. Although this is a commonly used analysis method,

additional data augmentation or optimization of the model

structure can improve the model’s generalization ability and

reconstruction quality. Third, the number of diffusion models

analyzed in the study was limited, and certain commonly used or

higher-order diffusion models, such as the diffusion-weighted

model and the continuous-time random walk model, were not

included. Future studies should incorporate these common models

when assessing the effects of SR. Fourth, the test-retest procedure

for diffusion MRI was not attempted in the same instances, and the

ROIs created by a small number of physicians may not be

representative of all situations. However, in practice, retest

procedures are limited in terms of time, cost, and instance tolerance.

In conclusion, we used GAN-based SR to improve the

resolution of four diffusion models (DTI, DKI, NODDI, and

MAP), allowing better visualization on multishell diffusion images

and the possibility of quantitatively predicting IDH status and

tumor grades 2 and 3 in adult-type diffuse glioma patients. Future

work should include proprietary GAN model training and

applications for specific diffusion models to further determine

whether parameters fitted by multishell diffusion models can
Frontiers in Oncology 11
serve as imaging markers for adult-type diffuse glioma or other

types of tumor.
Data availability statement

The datasets presented in this article are not readily available

because data sharing that may reveal personally identifiable

information about persons shall be done so carefully and in

accordance with applicable laws and regulatory agencies. Requests

to access the datasets should be directed to Yang Gao,

1390903990@qq.com.
Ethics statement

The studies involving humans were approved by Ethics

Committee of Affiliated Hospital of Inner Mongolia Medical

University. The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

CZ: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Validation, Writing – original draft.

PW: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Visualization, Writing –

review & editing. JH: Formal analysis, Methodology, Visualization,

Writing – review & editing. QW: Formal analysis, Methodology,

Supervision, Writing – review & editing. SX: Formal analysis,

Methodology, Writing – review & editing. BL: Data curation,

Investigation, Writing – review & editing. XH: Data curation,

Investigation, Writing – review & editing. SW: Methodology,

Software, Writing – review & editing. HZ: Resources, Writing –

review & editing. ZH: Formal analysis, Investigation,

Writing – review & editing. WG: Formal analysis, Investigation,

Wr i t ing – r ev i ew & ed i t ing . YL : Forma l ana ly s i s ,

Investigation, Writing – review & editing. JG: Formal analysis,

Investigation, Writing – review & editing. MH: Formal

analysis, Investigation, Writing – review & editing. YG: Funding

acquisition, Project administration, Resources, Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Science and Technology Planning Project of

Inner Mongolia Autonomous Region (2019GG047); the research

project of Inner Mongolia Medical University Affiliated Hospital,

Inner Mongolia Autonomous Region Clinical Medicine Research

Center of Nervous System Diseases, Hohhot Religion High-quality
frontiersin.org

mailto:1390903990@qq.com
https://doi.org/10.3389/fonc.2024.1435204
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1435204
Developmental and Advantageous Key Clinical Project of

Neurological System Disease (2023NYFY LHYB008) and Natural

Sc ience Foundat ion of Inner Mongol ia Autonomous

Region (2024MS08015).
Acknowledgments

The authors gratefully acknowledge the essential contributions

of the research staff of Affiliated Hospital of Inner Mongolia

Medical University. Meanwhile, we are grateful to OnekeyAI and

its developers for their invaluable assistance in this scientific

research endeavor.
Conflict of interest

Authors SW and HZ were employed by the company

Siemens Healthineers.
Frontiers in Oncology 12
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1435204/

full#supplementary-material
References
1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The
2021 WHO classification of tumors of the central nervous system: a summary. Neuro
Oncol. (2021) 23:1231–51. doi: 10.1093/neuonc/noab106

2. Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain Malignancies in
adults: A review. Jama. (2023) 329:574–87. doi: 10.1001/jama.2023.0023

3. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al.
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat
Rev Clin Oncol. (2021) 18:170–86. doi: 10.1038/s41571-020-00447-z

4. Smits M. MRI biomarkers in neuro-oncology. Nat Rev Neurol. (2021) 17:486–500.
doi: 10.1038/s41582-021-00510-y

5. de Godoy LL, Chawla S, Brem S, Mohan S. Taming glioblastoma in “Real time”:
integrating multimodal advanced neuroimaging/AI tools towards creating a robust and
therapy agnostic model for response assessment in neuro-oncology. Clin Cancer Res.
(2023) 29:2588–92. doi: 10.1158/1078-0432.Ccr-23-0009

6. Zhang H, Liu K, Ba R, Zhang Z, Zhang Y, Chen Y, et al. Histological and
molecular classifications of pediatric glioma with time-dependent diffusion MRI-based
microstructural mapping. Neuro Oncol. (2023) 25:1146–56. doi: 10.1093/neuonc/
noad003

7. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical
in vivo neurite orientation dispersion and density imaging of the human brain.
Neuroimage. (2012) 61:1000–16. doi: 10.1016/j.neuroimage.2012.03.072

8. Özarslan E, Koay CG, Shepherd TM, Komlosh ME, Iṙfanoğlu MO, Pierpaoli C,
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