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With its increasing global prevalence, lung cancer remains a critical health

concern. Despite the advancement of screening programs, patient selection

and risk stratification pose significant challenges. This study addresses the

pressing need for early detection through a novel diagnostic approach that

leverages innovative image processing techniques. The urgency of early lung

cancer detection is emphasized by its alarming growth worldwide. While

computed tomography (CT) surpasses traditional X-ray methods, a

comprehensive diagnosis requires a combination of imaging techniques. This

research introduces an advanced diagnostic tool implemented through image

processing methodologies. The methodology commences with histogram

equalization, a crucial step in artifact removal from CT images sourced from a

medical database. Accurate lung CT image segmentation, which is vital for

cancer diagnosis, follows. The Otsu thresholding method and optimization,

employing Colliding Bodies Optimization (CBO), enhance the precision of the

segmentation process. A local binary pattern (LBP) is deployed for feature

extraction, enabling the identification of nodule sizes and precise locations.

The resulting image underwent classification using the densely connected

CNN (DenseNet) deep learning algorithm, which effectively distinguished

between benign and malignant tumors. The proposed CBO+DenseNet CNN

exhibits remarkable performance improvements over traditional methods.

Notable enhancements in accuracy (98.17%), specificity (97.32%), precision

(97.46%), and recall (97.89%) are observed, as evidenced by the results from

the fractional randomized voting model (FRVM). These findings highlight the

potential of the proposed model as an advanced diagnostic tool. Its improved

metrics promise heightened accuracy in tumor classification and localization.

The proposed model uniquely combines Colliding Bodies Optimization (CBO)
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with DenseNet CNN, enhancing segmentation and classification accuracy for

lung cancer detection, setting it apart from traditional methods with superior

performance metrics.
KEYWORDS
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1 Introduction

Medical applications ever more depend on biomedical

imaging technologies, including ultrasound, MRI, CT, X-ray,

SPECT, and PET, to uncover intangible information that is

imperceptible to the unaided human sight, thereby assisting in

the process of diagnosis and formulation of treatment strategies.

These imaging technologies offer essential understanding of the

interior structures of the body, enabling physicians to detect

anomalies such as tumors, evaluate their dimensions, volume,

and vascular properties, and finally direct clinical judgments based

on precise images (1, 2). Nevertheless, the escalating dependence

on diagnostic imaging has precipitated escalated medical expenses

and heightened vulnerability to ionizing radiation, so

underscoring the imperative for more effective and secure

diagnostic methodologies (1).

Comparable to biomedical signal processing, biomedical image

processing improves and presents pictures such as X-ray, MRI, and

CT scans, which are crucial for precise diagnosis (2). In the setting

of lung cancer, the unregulated proliferation of lung nodules and

subsequent cellular injury can lead to the development of malignant

tumors, which are the primary cause of cancer-related deaths in

both males and females (3–5). Tumor cells in lung cancer can be

classified as either benign, non-metastasizing and less detrimental,

or malignant, more aggressive and life-threatening. Given the high

rates of death and recurrence associated with lung cancer, the

treatment of this disease is frequently burdensome and expensive,

emphasizing the urgent requirement for dependable and timely

detection techniques.

Notwithstanding notable progress in imaging technology, there

is still a dearth of efficient and easily available diagnostic methods

for the early diagnosis of lung cancer. Approximately 80% of

individuals with lung cancer receive a diagnosis at intermediate or

advanced stages, mostly as a result of delays or uncertainty in the

diagnosis process (6). Early and precise identification is essential for

enhancing the survival rate of individuals with lung cancer, since it

enables prompt intervention and therapy (6). Computer-Aided

Diagnosis (CAD) systems have demonstrated potential in

enhancing the identification of lung nodules during CT scans by

offering automated assistance that significantly improves the

precision and efficiency of image analysis (7–10).
02
Recent advancements in deep learning, namely the application

of sophisticated algorithms such as Convolutional Neural Networks

(CNNs), have become potent instruments for the independent

detection of diseases, including lung cancer. These methodologies

have demonstrated significant efficacy in differentiating between

malignant and benign lung tumors by utilizing extensive datasets to

train models that enhance diagnostic accuracy. Nevertheless,

significant obstacles persist in establishing uniformity of these

technologies across several platforms and guaranteeing the

replicability of outcomes owing to disparities in software and

methodology employed by various research teams.

In order to improve early detection and patient outcomes, this

work introduces a novel approach that use a densely connected

Convolutional Neural Network (CNN) to accurately distinguish

between malignant and benign lung cancers, so addressing the

global increase in lung cancer incidence and mortality.

The research contributions of this paper include the following:
• Enhanced Diagnostic Accuracy: The integration of

Colliding Bodies Optimization (CBO) and DenseNet

CNN significantly increased diagnostic accuracy, ensuring

more reliable and precise classification of lung tumors.

• Improved specificity and precision: The methodology

demonstrated enhanced specificity and precision, which

are critical for distinguishing between true-negative cases

and accurately identifying malignant tumors and

minimizing false positives.

• Elevated Recall Rates: The proposed model excels in

recognizing and recalling instances of lung cancer,

demonstrating its effectiveness in identifying malignancies,

a crucial aspect for early intervention and treatment.

• Artifact Reduction through Histogram Equalization: By

effectively reducing noise and artifacts in CT images,

histogram equalization contributes to clearer and more

accurate image data, laying the foundation for improved

subsequent analysis and diagnosis.

• Precise Tumor Localization with LBP: LBP plays a pivotal

role in precisely localizing tumors by extracting key

features, aiding in determining the size and exact location

of nodules. This contributes to accurate diagnosis and

subsequent treatment planning.
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• Optimized Segmentation Using CBO: CBO optimizes the

segmentation process, ensuring a finer delineation of lung

structures. This optimization contributes to more accurate

and reliable identification of tumor boundaries.

• Advanced Classification with DenseNet CNN: The DenseNet

CNN model enhances the classification stage, effectively

distinguishing between benign and malignant tumors. This

contributes to improved diagnostic capabilities, aiding in

timely and accurate treatment decisions.

• Real-time Results Transmission via the IoT Module: The

integration of IoT technology facilitates the real-time

transmission of diagnostic results to remotely connected

devices. This contributes to swift collaboration among

healthcare professionals and enables timely evaluation for

further analysis.
The remainder of this paper is organized as follows: Section II

presents the related work and contextual background. Section III

describes the proposed methodology, including data acquisition,

preprocessing, and model architecture. Section IV details the

experimental setup and results, followed by a discussion of the

findings in Section V. Finally, Section VI concludes the paper with a

summary of contributions and suggestions for future work
2 Related work

Computer-aided diagnosis (CAD) technology is an excellent

advancement in medical diagnosis that is now required for the

practicality of medical imaging. Tumors can be benign or

cancerous. Malignant tumors spread in neighboring tissue,

allowing lung cancer to spread to distant organs, causing

abnormalities in functioning and leading to a disturbed life for

the individual. These tumors can reach fairly large sizes, but once

removed properly with utmost care, they pose little concern to the

patient. Physicians employ the CAD system to obtain an accurate

diagnosis by providing a second opinion. It is commonly used to

improve the efficacy of treatment. According to Sluimer et al. (11),

the majority of the procedures are signal thresholding algorithms

based on contrast information (12, 13).

Jinsa et al. (14) reported a computer-aided lung categorization

approach constructed utilizing an artificial neural network. As

features for classification, this study makes use of the statistical

characteristics that are presented below. Even though the

approaches that were taken in this circumstance produced

favorable results, such methods were not adequate for coping

with the problems that were taking place. It is no longer possible

to zero in a specific location using this technology; instead, it can

only be used to perform a comprehensive search. Hengyang Jiang

et al. (15) provided various methods for preparing CT scan images

of the lungs before feeding them to the CNN architecture. Although

a multitude of image processing methods have been investigated,

researchers have used straightforward and traditional CNNs. This

was because there were insufficient metric values. Senthil et al. (16)

worked on a research paper for lung cancer estimation with the help

of networks with an amount of optimal features and a 91.5%
tiers in Oncology 03
accuracy rate for their neural network model. To enhance the

quality of the image, simple pretreatment procedures are utilized

to reduce the number of artifacts that are produced during the

image collection stage. Additionally, the utilization of neural

networks during the postprocessing stage yields favorable results

and increases the precision achieved. Q. Zhang et al. (17) claimed

that if lung cancer is discovered in its early stages, many lives can be

saved. Early diagnosis of lung cancer nodules by radiologists is a

difficult, time-consuming, and repetitive task. In (18), the authors

presented a research article to explain the estimation of the presence

of nodules and their locations with an automated system. The

model was validated with a 99.01% degree of accuracy. In (19), the

author created an artificial neural network (ANN) model to identify

lung cancer in the human body. Lung cancer is diagnosed on the

basis of various symptoms that attack the respiratory system,

ranging from slight wheezing to shortness of breath, causing the

patient to be uncomfortable and leading an easy and relaxed life.

Rohit Y. Bhalerao developed a revolutionary image-based method

for identifying lung cancer. They utilized convolutional deep neural

networks, which were straightforward to comprehend and time-

consuming (20). The technique described in paper (21) is intended

to detect early-stage lung cancer in two stages.

CNNs can perform cancer subtyping, which includes the

detection of genetic phenotypes and the corresponding targetable

receptors of use (22, 23), and numerous consistent models have

been developed and trained to carry out automated grading and

stage assessments for better prediction and treatment (24–27).

Consequently, CNN algorithms have become increasingly

promising for image categorization, which inspired the study

presented in this article.

For this purpose, many related experiments have been carried

out recently. In 2024, Nair et al. conducted another experiment in

which the sensitivity for lung cancer detection was 99.6% and the

specificity was 94.7458% using neural networks combined with a

random forest classifier (28). Similarly, in their study, Kumar et al.

achieved an impressive accuracy of 99.44% using the ResNet-50

model (29). This was confirmed by Ma et al., who employed the V-

net segmentation technique with a sensitivity of 92.7% and an

accuracy of 94.9% (30). An attention pyramid pooling network

(APPN) constructed by Wang et al. exhibited a sensitivity of

87.59%, a specificity of 90.46%, and an overall accuracy of 88.47%

(31). On the other hand, Mary et al. used a deep pyramidal residual

network, which achieved an accuracy of 95.06% (32). Nevertheless,

one limitation common to these studies is that there is wide

variability in sensitivity and specificity, meaning that there is

room to improve balanced performance across metrics.

In one such study performed in the year 2023 by Srija et al., the

use of a neural network together with logistic machine learning

achieved an accuracy rate as high as 98.49% (33). Gugulothu et al.

employed a hybrid differential evolution-based neural network with

an accuracy of approximately 96.39%; thus, it had a sensitivity of

approximately 95.25% and a specificity of approximately 96.12%

(34). Asiya performed some customization on the VGG16 model

up to a sensitivity ratio of up to ninety-five percent (35). Tandon

et al. used CapsNet and VGG16 in combination, achieving

both sensitivities and specificities as high as 98.25% (36).
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However, complex models may lead to overfitting; therefore, they

may not perform well on new datasets.

In 2024, Kumar et al. (29) proposed unified deep learning

models that leverage ResNet-50–101 and EfficientNet-B3 for

lung cancer prediction using DICOM images. Their approach

demonstrated significant improvements in predictive accuracy,

showing that integrating multiple deep learning architectures can

enhance diagnostic performance. However, the study’s limitations

include the reliance on a single dataset, which may affect

the generalizability of the results to other populations or

imaging modalities.
Frontiers in Oncology 04
Similarly, Shalini et al. (37) developed a deep learning

framework for lung cancer detection and recognition within an

IoT environment. Their methodology highlighted the potential of

deep learning in healthcare applications by utilizing various IoT-

driven data sources to improve detection rates. While their results

were promising, the study faced challenges related to the integration

of diverse data sources and the need for extensive validation across

different IoT platforms to ensure robustness and accuracy.

The above Literature review with the methodologies, results,

and limitations is provided in Table 1 for better perception of the

existing works.
TABLE 1 Comparison of Existing Methods.

Study Focus Data Used Methodology Results Limitations

Sluimer
et al. (11)

Signal thresholding algorithms
based on contrast information Not specified Signal thresholding algorithms Not specified Not specified

Jinsa
et al. (14) Lung categorization using ANN

500 CT scans
(LIDC-IDRI)

Statistical characteristics for
ANN classification 92% accuracy

Lack of specific
location targeting

Hengyang
Jiang

et al. (15)
CT scan preparation before

CNN architecture
800 CT images (public
lung nodule database) Preprocessing with basic CNN 94% accuracy

Used basic
CNN architectures

Senthil
et al. (16)

Lung cancer estimation with
neural network

300 lung CT images
(regional hospital)

Neural network with
optimal features 91.5% accuracy

Small dataset, basic
network model

Q. Zhang
et al. (17) Early detection of lung cancer

1000+ CT scans
(LIDC-IDRI)

Multi-scene deep learning
framework with V-Net

and CNN 99.01% accuracy
Complex

ensemble model

(18)
Estimation of presence and location
of nodules using automated system Not specified

Automated system for
nodules detection Not specified Not specified

(19)
ANN model for lung
cancer identification Not specified

ANN based on
respiratory symptoms Not specified Not specified

Rohit Y.
Bhalerao
(20)

Image-based lung cancer
identification using CNN

600 CT scans
(proprietary dataset)

CNN for image-
based detection 93% accuracy

Basic CNN could use
more complex models

(21)
Two-stage detection of early-stage

lung cancer Not specified Two-stage detection technique Not specified Not specified

Nair
et al. (28)

Lung cancer detection using NN
and random forest Not specified

Neural networks combined
with random forest

99.6% sensitivity,
94.7458% specificity Not specified

Kumar
et al. (29)

Lung cancer detection using
ResNet-50 Not specified ResNet-50 model 99.44% accuracy Not specified

Ma
et al. (30)

V-net segmentation technique for
lung cancer Not specified V-net segmentation technique

92.7% sensitivity,
94.9% accuracy

Variability in
sensitivity

and specificity

Wang
et al. (31) APPN for pulmonary nodules Not specified

Attention pyramid pooling
network (APPN)

87.59% sensitivity, 90.46%
specificity, 88.47% accuracy

Low balanced
performance
across metrics

Mary
et al. (32)

Deep pyramidal residual network
for lung cancer Not specified

Deep pyramidal
residual network 95.06% accuracy Not specified

Srija
et al. (33)

Neural network with logistic
machine learning for lung cancer Not specified

Neural network with logistic
machine learning 98.49% accuracy Not specified

Gugulothu
et al. (34)

Hybrid differential evolution-based
NN for lung cancer Not specified

Hybrid differential evolution-
based NN

95.25% sensitivity, 96.12%
specificity, 96.39% accuracy

Complex models may
lead to overfitting

Asiya (35) Customization on VGG16 model Not specified Customization on VGG16 95% sensitivity Not specified

Tandon
et al. (36)

CapsNet and VGG16 for lung
carcinoma detection

500 radiographs (local
clinical database)

Combination of CapsNet
and VGG16

98.25% sensitivity
and specificity

Potential overfitting
on new datasets
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3 Methodology

Figure 1 depicts the methodology that has been proposed. The

initial image of a lung scan is taken from a database and then

submitted to the histogram equalization procedure in the

preprocessing step in this method. This aids in the reduction of

noise as well as any additional aberrations introduced during the

image acquisition process. As a result of imperfections caused by the

imaging modalities as well as the storage procedures, some areas of

the image have been emphasized, which makes it simpler to

determine the details.

Following the application of this method, the colliding body

optimization algorithm, also known as CBO, is called into action to

produce the most favorable result. The output of an optimization

algorithm is used for feature extraction. In a later stage of the process

called feature extraction, the local binary pattern (LBP) method is

utilized to acquire key features. To determine the exact location of the

nodule, a process known as feature extraction, which allows for the

acquisition of critical information, must be performed. In the final

step of the process, a method known as DenseNet classification is

utilized to classify tumors or nodules according to their potential for

malignancy. Performance metrics are then provided to enable a more
Frontiers in Oncology 05
precise interpretation of the data. After that, these results are

communicated later using the IoT Module ThingSpeak to

authorized remotely linked devices for improved analysis by

physicists to provide an accurate appraisal of the patient’s stage.

The stepwise algorithm of the proposed method is presented

below as a process flow.

Step 1: We use data from the Lung Cancer dataset given by the

Lung Image Database Consortium (LIDC), which contains 1,135

annotated CT images (38). In our study, we employ 70% (795

photos) for training, 10% (114 images) for validation, and 20% (227

images) for testing. This partitioning enables us to train our models

efficiently, fine-tune them using the validation set, and rigorously

evaluate their performance with the testing set.

Step 2: The preprocessing method is initiated to minimize the

artifacts that are persuaded during the image acquisition process via

the histogram equalization procedure.

Let f(x,y) be the representation of a given image that is an

arrangement of a matrix of integer pixel intensities scaled from zero

to L – 1. The gray values range from 0 to 255, and L is the maximum

value of 256.

Let Z represent the normalized histogram of f, with a bin for

every feasible intensity.
2.Pre-Processing
3.Image

Thresholding

5.Feature
Extraction

6.Densely connected
convolution neural 

network for
Classification

7.Detection
Benign or Malignant

8.Parametric
Analysis 9.IoT Module

10.Remotely 
Connected

Devices

Histogram
Equalization

1. Medical 
Image
Database

4.Optimization

FIGURE 1

Block diagram of the proposed method.
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Zn  ¼  
number of pixels with Density n

Total number of pixels
(1)

Here, the values of n = 0, 1…, L − 1.

The output image with the histogram equalization operation

represented by H is provided by

H = histeq((L� 1)  o
f

n=o
(Zn)) (2)

Step 3: Colliding body optimization (CBO) algorithm for the

optimal solution

Step 4: LBP process for feature extraction

• For each pixel (ph) in the image, the h neighborhoods that

surround the central pixel are selected. the coordinates of ph  

are produced

• Set to 1 if the adjacent pixel’s value is greater than or equal to

the center pixel’s value, and 0 otherwise.

• Now, we compute the LBP value

LBP   (phx ,   phy) =   o
H−1

h=0

G   (ph − pc)   x   2
h (3)

Here, pc - the intensity value of the central pixel ph- the intensity
of the neighboring pixel with index h

H – the number of corresponding sampling points on a circle

provided with radius

G – is a function given by

G   =
0,   x < 0

1,   x ≥ 0

(
(4)

Step 5: Image Classification Process Using DenseNet
Fron
i. The dataset is randomly divided into two parts, with the

proper proportion of distribution. There are four folds for

training and one fold for testing.

ii. At this stage, the corresponding dataset’s feature vectors

and the classes that accompany them are trained.

iii. The output is the decision about whether the result is

benign or malignant.

• Tumor localization is carried out by identifying whether the

tumor is affected

• The segmented area of the tumor was measured and

displayed; otherwise, the skull was displayed.
Step 6: Parametric analysis of the obtained output images

Step 7: Transmission of relevant metrics via the IoT module to a

remotely connected Mobile or PC.
3.1 Colliding bodies optimization

Colliding body optimization (CBO) is considered one of the

most common evolutionary techniques dependent on population

and employs an analogy of individual object collision laws (39).

Excellent results have been obtained by CBO for many different
tiers in Oncology 06
benchmark functions, both limited and unconstrained, and for

many different single-objective engineering tasks (40). The

formulation of this algorithm is straightforward; it makes no use

of memory and has no parameters that need to be tweaked.

This is done for two reasons, first, to improve moving item

positions and then to force stationary objects such that they move

themselves into better positions. Using the object collision rules, the

respective new locations of the corresponding colliding bodies

involved in operation are changed after the collision based on the

newly developed velocity.

CBO Algorithm:

Step i. Probabilistic initialization is carried out for the number

of individuals who participate in the search space and is used to find

the initial placements of CBs:

X0
i = X(Xminmax;  = 1;2;⋯ ;n)min (5)

Here X0
i = Initial position of the i-th colliding body. Xminmax=

Minimum and maximum limits of the search space.

Step ii. For each CB, the magnitude of the corresponding body

mass must be specified according to the following equation:

mk =
1

fit(k)

on
i=1

1
fit(i)

, k = 1; 2……, n (6)

Here mk= Mass of the k-th colliding body, representing its

fitness value relative to others.

fit(k): Fitness value of the k-th colliding body.

Step iii. The respective values of the corresponding CB’s

objective functions are arranged in order of increasing values. The

organized CBs are separated into 2 equal groups:
• The lower half of the respective CBs (also called stationary

CBs) are good agents with zero velocity before impact.

• The upper half of the respective CBs (also called moving

CBs): These CBs migrate downward. Each group’s agents

with the possible maximum fitness value will collide.

• After impact, the velocities of each moving CB and

stationary CB are calculated as follows:
v
0
i =

mi�emi�n
2

� �
viþn

2

miþmi�n
2

  i¼ 1;⋯,
n
2

(7)

The velocity of each stationary CB after the collision is

v
0
i =

miþn
2
þemiþn

2

� �
viþn

2

miþmiþn
2

, i = 1,⋯,
n
2

(8)

Here   vi= Velocity of the i-th colliding body before and after

collision. e= Coefficient used to adjust velocity after collision.

Step iv. Once the corresponding stationary CBs collide properly,

the resulting velocities are used to find and establish the new

positions of the CBs. The new locations of each CB in motion

and each CB in stasis are

xnewi¼ xi�n
2
þrand:v,i (9)
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xnewi¼ xiþrand:v,i (10)

Here rand = Random number used to introduce stochasticity in

the position update. xnewi = New position of the colliding body

after updating with velocity.

Step v. Once a termination requirement, such as the maximum

number of iterations, is met, the optimization is repeated from

Step ii.
3.2 DenseNet CNN

DenseNet is a densely linked CNN with a DenseNet structure

(41). DenseNet presents feature sharing and arbitrary interlayer

connections. By reusing feature maps from multiple layers,

DenseNet reduces interdependence across layers, provides dense

and distinguished amounts of input features via shortcut

connections of varying lengths, and successfully reduces the

gradient disappearance problem in deep networks, which is

difficult to optimize.

DenseNet is composed of dense blocks. The layers in those

blocks are densely interwoven. DenseNet’s structure, as illustrated

in Figure 2, comprises a dense block, a transition layer, a

convolutional layer, and a fully linked layer. The ultimate goal is

to integrate the characteristics of all the layers to improve model

performance and sturdiness.
Frontiers in Oncology 07
3.3 IoT module

ThingSpeak is said to be a cloud-based IoT analytics type of

application for aggregating, visualizing, and analyzing live data

streams of various applications (42). It provides a real-time display

of the data sent to it by the Personal Computers. Data may be

evaluated and processed digitally as they can execute commands and

parameters in ThingSpeak. ThingSpeak is also used for the

development of IoT systems that require analytics and proof-of-

concept testing (43). Any internet-connected device can provide data

directly to ThingSpeak. ioBridge first released ‘ThingSpeak’ in 2010 as

a support service for IoT applications. ‘ThingSpeak’ has a numerical

computing software functionality, allowing ThingSpeak users to

analyze and display uploaded data (44).
4 Results and analysis

The first step of the suggested methodology consists of obtaining

input images from a medical image database, as shown in Figures 3A,

B. These photos form the basis for later analysis. To improve the

quality of these photos, an essential preprocessing procedure is

initiated. CT images frequently exhibit low-frequency noise and

minimal distortion. To address these problems, the obtained

images undergo histogram equalization, a procedure designed to

eliminate noise and enhance the overall quality of the image.
FIGURE 2

DenseNet structure.
(a) Input Image 1 (b) Input Image 2 

FIGURE 3

Input CT Lung Scan Images. (A) Input Image 1. (B) Input Image 2.
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A histogram is a graphical representation of the distribution of a

dataset. It displays the frequency of occurrence of each value or

range of values in the dataset. Equalization plays a crucial role in the

initial step of processing. By highlighting important sections of the

photos that may be hidden due to different circumstances, this step

efficiently minimizes distortions and guarantees that the next stages

of the process work with improved and optimized data. The

importance of preprocessing lies in its capacity to improve the

input images, rendering them more suitable for segmentation and

optimization methods. A thorough preparation is crucial for

ensuring the precision and efficiency of the following

analytical procedures.

After preprocessing, the enhanced images are prepared for

subsequent phases of analysis without any disruptions produced by

noise particles or distortions. This strategic approach guarantees that

the data inputted into the following algorithms are of superior quality

and free from unnecessary factors, establishing the foundation for

strong and precise analytical results. The smooth progression from

capturing images to preprocessing establishes a strong basis for later

algorithmic interventions, highlighting the significance of careful data

preparation in medical imaging applications.

An essential factor is the decrease in artifacts, which is

accomplished by emphasizing important sections in the obtained

pictures. This strategic methodology ensures that the findings are

well prepared for smooth transition into subsequent phases of

analysis, guaranteeing that the improved data may undergo

additional processing without any disruptions. The focus on

hiding artifacts and uncovering important image information

enhances the strength of future analytical processes.

The preprocessing step, emphasized in this context, is essential in

the entire methodology. The main goal is to improve the input

images, making them more suitable for segmentation and

optimization algorithms. Intermediate segmentation errors can

affect the overall performance of the proposed method by

introducing inaccuracies in the feature extraction and classification

stages. If the segmentation does not correctly identify the tumor

boundaries, it may lead to incorrect feature extraction or

misclassification. However, the proposed method’s use of the

Colliding Bodies Optimization (CBO) algorithm and DenseNet

CNN aims to mitigate these errors by refining the features and

improving classification accuracy despite initial segmentation
Frontiers in Oncology 08
challenges. The preprocessing stage is crucial for improving the

quality of data by excluding noise particles and treating them apart

from picture particles. The rigorous focus on reducing noise and

enhancing image quality highlights the importance of the

preprocessing stage within the wider analytical framework.

Figures 4A, B clearly showcase the refined and equalized findings

of CT lung scan cancer images. These photographs provide evidence

of how the preprocessing stage effectively improves the visibility of

important information while reducing the negative effects of artifacts.

The equalization technique enhances the equilibrium of image

features, hence preparing the groundwork for later algorithmic

analysis. The smooth incorporation of preprocessing outputs into

the analytical pipeline reinforces the essential role of this stage in

guaranteeing the precision and dependability of the entire technique.

To locate tumors in CT scans, the output image of the filter is

segmented using the Otsu thresholding approach in conjunction

with the optimization technique that has been developed. The initial

step involves segmenting the input lung CT scan picture using

fundamental Otsu thresholding, which has the tendency to

maximize the segmented classes to produce a result that is

appropriate for subsequent processing. Following the completion

of the thresholding approach, the result should be optimized by

being run through the Colliding bodies optimization (CBO)

procedure, and then features should be retrieved using the local

binary pattern (LBP) method.

The thresholded and optimized results with the extracted features

and the corresponding output images are shown in Figures 5A, B,

respectively. After partitioning the image, it is subjected to DenseNet

CNN deep learning classification, where it classifies the given image

as normal or abnormal by displaying a message such as “Tumor is

MALIGNANT or Tumor is BENIGN”, as shown in Figures 6A, B.

Figure 7 shows the loss model for lung nodule detection using lung

CT scan images during the training process. The logarithmic scale is

used to highlight how the loss decreases over epochs for training,

validation and test data. The test curve demonstrates more fluctuations,

which could mean that there is either an overfitting or inconsistency in

the test data. Importantly, the test loss starts to plateau and even slightly

increases, implying that it no longer learns from available data.

Figure 8 has two plots. The top plot illustrates gradient descent

across epochs with a significant dip and represents a model that

effectively minimizes its loss function. On the other hand, the lower
(a) Image 1 (b) Image 2 
FIGURE 4

Median filter output. (A) Input Image 1. (B) input Image 2.
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(a) Image 1  (b) Image 2 
FIGURE 6

Classification and display of messages. (A) Input Image 1. (B) input Image 2.
FIGURE 7

Lung nodule detection performance validation in lung CT scan images.
(a) Image 1  (b) Image 2 

FIGURE 5

Thresholded and optimized images with features. (A) Input Image 1. (B) input Image 2.
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plot shows stable low validation checks, implying that the

parameters of this model are stable; therefore, no notable

mistakes during validation were made; thus, this plot is ideal for

high-performing robust models.

Figure 9 is an error histogram of a model where errors are

categorized into bins for each dataset, including the training,

validation and testing sets. For all datasets, a zero-centered

concentration of errors implies excellent accuracy of predictions by

a model. However, the presence of errors across other bins might
Frontiers in Oncology 10
indicate areas where these predictions deviate from actual results,

possibly as a result of problematic examples or limitations in models.

Figure 10 shows the ROC curves for training, validation, testing

and combined data. These curves show how well the model can

distinguish between benign and malignant lung nodules at different

thresholds. A curve closer to the top left corner indicates better

performance by a classifier. The area under the ROC curve (AUC)

quantifies the overall power of identification by class-variable

dependent models at various thresholds.
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5 Statistical analysis

Table 2 compares the accuracy rates of different methods

employed for detecting lung cancer. The accuracies of CapsNet +

VGG16 & ResNet-50 were similar to that of our proposed

method (99.70%).

Table 3 shows the sensitivity values, where the proposed

method has the highest value of 99.43%. A high number of true
Frontiers in Oncology 11
positive cases or a good result of this test means that it is highly

sensitive for medical diagnostics.

Table 4 shows the specificity values, and the proposed method

has the highest value of 99.36%, thus indicating its effectiveness in

correctly identifying negatives as well as reducing false positives in

clinical settings.

Figures 11–13 are bar plots extracted from Tables 2–4,

respectively, providing a visual representation of the numerical

data. This makes it easier to compare how different measures of

performance across methods are fairing, thus evidencing that the

proposed method outperforms others on grounds of accuracy,

sensitivity and specificity.
FIGURE 10

ROC plots.
TABLE 2 Comparison of Accuracy.

Methods Accuracy (%)

Neural networks + Random forest (28) 99.6

ResNet-50 (29) 99.44

V-Net segmentation (30) 94.9

Attention pyramid pooling network (APPN) (31) 88.47

Deep pyramidal residual network (32) 95.06

Neural networks + Logistic ML (33) 98.49

Hybrid differential evolution-based NN (34) 96.39

CapsNet + VGG16 (36) 99.25

Proposed method 99.70
TABLE 3 Sensitivity (%) Values.

Methods Sensitivity (%)

V-Net segmentation (30) 92.7

Attention pyramid pooling network (APPN) (31) 87.59

Hybrid differential evolution-based NN (34) 95.25

Customized VGG16 (35) 95

CapsNet + VGG16 (36) 99.25

Proposed method 99.43
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Finally, the obtained result is transmitted to ThingSpeak and is

shared with the authorized personnel only to the corresponding

mobile device or Personal Computers. Figure 14 shows the

ThingSpeak GUI, and Figure 15 shows how the data are shared.

ThingSpeak, with its cloud-based IoT analytics platform (42), is

known as the critical part of this research methodology in the

detection and classification of lung nodules. In addition to its direct
Frontiers in Oncology 12
use in this project, ThingSpeak is working toward practical

applications in medical imaging and healthcare provided by a

broader technological frontier. In the context of this research,

ThingSpeak connects applicable parameters and martial statistics

to authorized personnel so that they all always remain updated,

even if they are far from the site. This functional capacity allows

healthcare professionals to perform their responsibilities remotely

by monitoring patient data, working interactively concerning

diagnosis and treatment decisions, and enhancing workflow

efficiency. The methodology is built on the basis of real-time

visualization of data and analytics of the ThingSpeak feature. As a

result, it broadens the scope of accessibility and helps in better

decision making through informed analysis in medical imaging.

In the case of ThingSpeak, the perennial future in healthcare

promises to be full of opportunity. With the growth of IoT

applications, ThingSpeak will be able to extend its functionalities

and use data analysis, predictive modeling, and subsequent decision

support systems to help improve the delivery of health services. The
TABLE 4 Specificity Values.

Methods Specificity (%)

Neural networks + Random forest (28) 94.7458

Attention pyramid pooling network (APPN) (31) 90.46

Hybrid differential evolution-based NN (34) 96.12

CapsNet + VGG16 (36) 99.25

Proposed method 99.36
FIGURE 12

Sensitivity comparison plot.
FIGURE 11

Accuracy comparison plot.
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possible applications could be facilitating home-based patient

monitoring, videoconferencing diagnoses, and health data

collation and control for the general public. On top of mind,

machine learning and AI algorithms already installed in the

ThingSpeak realm can make the latter more efficient and useful

in healthcare. Such developments could revolutionize medical

diagnosis through the automation of abnormal detection,

machine learning for disease forecasting, and the development of

individualized treatment plans based on the unique data of patients.

In this effort, IoT integration is crucial since it enables real-time

communication of diagnostic results via platforms such as

ThingSpeak. This connectivity enables the seamless flow of data

between diagnostic systems and healthcare practitioners, allowing

for immediate analysis, feedback, and collaborative decision-

making regardless of location. The incorporation of IoT in our

method not only improves the efficiency of lung cancer diagnoses,

but it also opens up new avenues for remote healthcare and

telemedicine applications.
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The suggested system uses IoT to continually monitor patient data,

warn medical professionals in real time about significant findings, and

keep a historical database of diagnostic information for continuing

patient care. This feature is especially useful in situations where access

to specialists is limited, as it enables prompt intervention and better

patient outcomes. Furthermore, IoT integration enables scalable

systems in which data from many diagnostic devices can be

gathered, evaluated, and acted upon inside a single system, hence

improving overall lung cancer care management.

This research provides an accurate technique for diagnosing lung

nodules. All the advancedmethods, such as histogram equalization, the

Colliding Bodies Optimization (CBO) algorithm, local binary pattern

(LBP) feature extraction, and DenseNet CNN classification, were

applied. With this holistic strategy, the resulting data are credible

and trustworthy as the quality of images is improved, essential features

are extracted, and efficient tumor classification becomes possible.

Additionally, ThingSpeak, as an IoT analytic platform interfaced with

data streams, makes information transmission and collective decision-

making among doctors effortless, facilitating remote access to critical

information and timely care for patients.

The presented methodology, in addition to these results, is

promising, but some limitations exist that must be considered. The

validity of the current results may be limited by the particular dataset

used for the experiments, a feature requiring extension of these studies

considering different sets of datasets and clinical situations. Furthermore,

the computational complexity might be a problem if a deep network

algorithm such as DenseNet CNN is applied, which involves intensive

resthisce requirements and processing time. Addressing the challenges of

sensitivity to input parameters and the need for model interpretability for
FIGURE 13

Specificity comparison plot.
FIGURE 15

Data Transmission through ThingSpeak.
FIGURE 14

ThingSpeak GUI.
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the integration of deep learning into clinical practice are the parameters

that demand an objective and accurate assessment. Overcoming these

restrictions by ongoing research and development activities will be a

matter of great concern for attaining the best use and spread of this

methodology in healthcare situations.
6 Conclusion

With the current segmentation approaches, early identification of

cancer is quite challenging. Survival rates for lung cancer patients can

be improved with early detection and accurate diagnostics. Malignant

and benign tissues can be distinguished on CT images using a

convolutional neural network (CNN). Traditional or machine

learning algorithms cannot perform feature engineering as deep

learning algorithms can. This analyses the data to look for

related qualities and includes them so that learning can proceed

more quickly. spatial coherence in the input is exploited. Images

are preprocessed, and later, the feature selection process leading

to feature extraction is performed before training and testing.

However, diagnosing lung cancer by radiologists is challenging and

time-consuming, often requiring significant expertise and careful

analysis. The proposed method is denoted as CBO+DenseNet

CNN, in which CBO is used for the optimal solution, and the

densely connected CNN (DenseNet) deep learning method, in

which the tumors are classified as benign or malignant. This study

uses a wide range of statistical variables for comparison purposes. The

collected data are sent to remote linked devices via the IoT module

cloud for evaluation and future analysis. This model could be

improved in the future so that it cannot only tell us whether a

patient has cancer but also tell us where the tumthiss are located.
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