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Homologous recombination (HR) is a highly conserved DNA repair system, in

which aberrations can lead to the accumulation of DNA damage and genomic

scars known as homologous recombination deficiency (HRD). The identification

of mutations in key genes (i.e., BRCA1, and BRCA2 (BRCA)) and the quantification

of large-scale structural variants (e.g., loss of heterozygosity) are indicators of the

HRD phenotype. HRD is a stable biomarker and remains unchanged during

recurrence, but fails to reveal the molecular profile of tumor progression.

Moreover, interpretation of the current HRD score lacks comprehensiveness,

especially for the HR-proficient group. Poly (ADP-ribose) polymerase (PARP)

enzymes play an important role in the repair of DNA single-strand breaks, the

blockage of which using PARP inhibitors (PARPi) can generate synthetic lethality

in cancer cells with HRD. Although numerous studies have demonstrated that the

benefit of PARPi is substantial in ovarian cancer (OC) patients, the efficacy is

limited by the development of resistance, and seems to be irrespective of HR

and/or BRCA mutation status. Moreover, in addition to improving progression-

free survival, long-term benefit as overall survival brought by PARPi for advanced,

recurrent and refractory OC patients remains unclear. Therefore, further

investigations are needed to uncover the role of HR genes beyond BRCA and

their interactions with other oncogenic pathways, to determine the value of HRD

in the recurrent setting, and to identify alternative strategies for the precise

management of advanced, refractory OC patients.
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1 Introduction

High-grade serous carcinoma of ovary, fallopian tube or

peritoneum is one of the most common gynecological

malignancies. High−grade serous ovarian cancer (HGSOC)

represents 70% of all ovarian cancers (OC). Although most

patients achieve clinical remission following initial treatment by

standard cytoreductive surgery and platinum-based chemotherapy,

approximately 70% of patients still suffer recurrence, and the

average 5-year survival rate is approximately 30% (1, 2). Even

with considerable investigations, effective screening methods for

early diagnosis, as well as precise stratification modality of

individualized clinical management are lacking.

Homologous recombination (HR) system is responsible for

double-strand DNA breaks (DSB) repair with high-fidelity.

HGSOC with homologous recombination deficiency (HRD)

exhibits distinct clinical features, including a superior response to

platinum-based chemotherapies and sensitivity to poly (ADP-

ribose) polymerase (PARP) inhibitors (PARPi) (3, 4). PARP

enzymes can repair single-strand DNA breaks; therefore, PARPi

can achieve “synthetic lethality” when affecting tumor cells with

HRD as shown in Figure 1 (5). Numerous clinical studies have

demonstrated that certain OC patients, either newly diagnosed or

with recurrent disease, may benefit from PARPi as maintenance or

recurrence treatment after primary platinum-based treatment (6).

The introduction of PARPi has transformed the management of

HGSOC in both first-line treatment and relapsed setting (7–12).

Correspondingly, molecular analysis is recommended by guidelines

(e.g., National Comprehensive Cancer Network, NCCN) to include

germline or somatic BRCA1 and BRCA2 (BRCA) gene mutations,

loss of heterozygosity (LOH) or HR status in OC tissues (6, 13).

However, the stratification of OC patients based on BRCA

mutations and LOH testing still lacks efficiency, especially for

recurrent, refractory, and drug-resistant cases. Despite the

improvement of progression-free survival (PFS) associated with

PARPi, tailored management and benefit of overall survival (OS) for

OC patients are still challenging. Herein, we conclude and address

the limitations of the current molecular testing and PARPi

treatment for OC patients in terms of both bio-pathological

mechanisms and clinical circumstances.

2 Limitations of HR testing and PARPi
in OC patients

2.1 Complexity of HR status and
related testing

HRD, also known as “genomic scars”, refers to cellular-level

impairment of the HR repair system, leading to quantifiable and

stable genomic changes. Currently, HR status is typically evaluated

by BRCA mutations, LOH, telomeric allelic imbalance (TAI), and

large-scale state transition (LST), with the genomic instability score

(GIS) subsequently calculated. Mutations in BRCA genes are

mainly identified through next-generation sequencing (NGS) and

multiplex ligation-dependent probe amplification (MPLA), which is
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used for the identification of large rearrangement variants. HRD is a

common molecular marker of tumor cells, and is frequently

detected in metastatic OC tissues as HR gene mutations (14). The

Cancer Genome Atlas (TCGA) project revealed that 22% of

HGSOC patients had germline and/or somatic mutations in

BRCA genes, and HR was defective in approximately half of the

tumors (15). At present, HRD has rapidly developed as a

therapeutic predictor for PARPi, especially for OC patients.

However, HRD is a stable genomic marker for which the

evaluation is not affected by the tumor sampling site. Research

conducted in 50 paired HGSOC samples suggested that HRD was

maintained between the primary and recurrent lesions, regardless of

other genomic changes that occurred during recurrence (16). This

study expands the applicable population of OC patients to receive

PARPi treatment based on HR status. However, HR status may not

accurately represent the molecular features of progressive or

recurrent tumor subclones, as genomic scars can be detected with

the same-level HRD score. Moreover, studies in ovarian and

prostate cancer have revealed multiple-gene (e.g., BRCA1 and

BRCA2) reversion mutations merely identified in progressive

tumor tissues, which lead to the restoration of DNA repair

function and acquired drug resistance. However, traces of

genomic scars caused by HRD did not disappear in such

progressive lesions, which could cause inappropriate stratification

of patients depending solely on HR status (17, 18). Extensive

characterization of the molecular events contributing to drug

resistance or disease relapse has largely been hindered, partially

due to the failure to acquire sequential samples from the same

cancer patient throughout the course of their disease. In particular,

collecting OC tissue samples during relapse for molecular profiling

is challenging, since numerous progressive lesions are unresectable.

For such recurrent cases, circulating tumor DNA would be a

suitable sample source.

In addition, the negative results of the current HR test have

limited predictive value and cannot fully explain the complexity of

the HRD phenotype in each subgroup (19, 20). In addition to the

wide use of the positive cutoff HRD score of ≥42, a recent study

suggested that patients with HRD scores <33 were less likely to

benefit from platinum-based chemotherapy, and had a worse PFS

than patients in the HRD-negative or HRD ≥33 BRCA- mutated

(BRCAm) group (21, 22). However, precise subgrouping of HR-

proficient patients using appropriate HRD cutoff score warrants

further investigations in cohorts with large sample sizes. Genomic

scar analysis of somatic copy number variant based on single

nucleotide polymorphisms (SNPs) is currently the most widely

applied technique for HR testing. The interpretation of HR status

should be handled cautiously according to the cutoff acquired from

different scoring systems for specific PARPi and for corresponding

pathological cancer types in distinct ethnic groups.

In summary, both positive and negative results of the current HR

test have limitations for clinical prediction. Detection involving more

aspects (e.g., promoter methylation of BRCA genes and mutations of

HR genes beyond BRCA) can more comprehensively reveal the

nature of HR system and identify more accurate beneficiaries of

PARPi, especially from the BRCA wild-type (BRCAwt) and/or HR-

proficient patients.
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2.2 Therapeutic effect of PARPi irrespective
of HR or BRCA mutation status

A number of phase III randomized controlled clinical trials

(e.g., SOLO-1, PRIMA) have completed and verified the remarkable

efficacy of PARPi as first-line maintenance therapy for certain OC

patients, with delayed relapse and prolonged PFS (9, 10).

Specifically, subgroup analysis demonstrated that BRCA mutation

carriers and the HRD group benefited more than those in the HR-

proficient group. It is likely that synthetic lethality occurs for

patients with HRD (germline or somatic) when exposed to

PARPi. According to TCGA, approximately half HGSOC patients

were thought to have a deficiency in HR system, expanding the

availability of maintenance therapy by PARPi for a significant

number of women with advanced OC (15).

However, a portion of these studies revealed that the overall

benefit of PARPi was substantial in patients irrespective of HR or

BRCA mutation status (Table 1). Study 19 (a randomized phase II

trial in platinum-sensitive, relapsed HGSOC patients who had

received two or more platinum-based regimens and who had a

partial or complete response to their most recent platinum-based

regimen) demonstrated that a PFS advantage was also seen for

BRCAwt patients. An apparent OS improvement was observed

with olaparib compared with placebo (hazard ratio 0.73, P

=0.02138), irrespective of BRCA mutation status (23). The

phase III OPINION trial investigated olaparib maintenance

monotherapy in patients without a germline BRCA mutation
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(gBRCAm) who had platinum-sensitive relapsed OC and had

received ≥2 previous lines of platinum-based chemotherapy. It

revealed a clinical benefit from maintenance olaparib in patients

without a gBRCAm, and across all subgroups compared with

placebo control individuals (24). In addition, the L-MOCA study

indicated that regardless of BRCA status, olaparib maintenance

therapy significantly benefited Asian patients with platinum-

sensitive recurrent disease in terms of PFS (25). Similarly, a

phase III randomized controlled study in China (NORA) also

indicated that both gBRCAm and non-gBRCAm carriers with

platinum-sensitive recurrent OC benefited from niraparib

treatment with longer PFS (26). Notably, the result of the OReO

trial recruiting patients who heavily pre-treated with receiving ≥3

prior lines of any chemotherapy, demonstrated the non-BRCA

mutation cohort had better PFS than BRCA mutation cohort with

maintenance olaparib rechallenge (27). Another nonrandomized

study of olaparib monotherapy in patients with OC reported

response rates of 41% and 24% in the gBRCAm and nonmutated

BRCA patient populations, respectively (31).

Overall, HR status and/or BRCA mutation testing may lack

adequate efficacy as inclusion criteria for PARPi treatment,

especially in recurrent or refractory OC patients. Since the HR-

proficient group could also benefit, the use of PARPi in the

candidate OC population could be broadened irrespective of HR

or BRCA mutation status. In addition, it is a challenge to further

distinguish which patients with BRCAwt or HR proficiency are

most likely to benefit from PARPi.
TABLE 1 Clinical trials in OC relevant to PARPi and HR status.

Trial Phase Region OC Population
Patient
no.

PARPi
PFS regardless of

HR status
OS benefit
by PARPi*

SOLO-1 (10) III Global
Newly
diagnosed advanced

391 Olaparib NA No

PRIMA (9) III Global
Newly
diagnosed advanced

733 Niraparib Yes No

Study 19 (23) II Global
Platinum-
sensitive recurrent

265 Olaparib Yes No

OPINION (24) III Global
Platinum-
sensitive relapsed

279 Olaparib Yes NA

L-MOCA (25) III Asian
Platinum-
sensitive relapsed

225 Olaparib Yes NA

NORA (26) III China
Platinum-
sensitive recurrent

265 Niraparib Yes NA

OReO (27) III Global
Platinum-
sensitive relapsed

220 Olaparib Yes NA

SOLO-2 (11, 28) III Global
Platinum-
sensitive relapsed

295 Olaparib NA No

SOLO-3 (29) III Global
Platinum-
sensitive relapsed

266 Olaparib NA No

NOVA (30) III Global
Platinum-
sensitive recurrent

553 Niraparib Yes No
OC, ovarian cancer; no., number; PARPi, poly (ADP-ribose) polymerase inhibitor; PFS, progression-free survival; HR, homologous recombination; NA, not applicable; OS, overall survival.
*: if OS has been improved significantly by PARPi compared with placebo, it is indicated as “YES”, otherwise as “No”.
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2.3 Indeterminate benefit of PARPi on
long-term survival

Although it has been verified by abundant studies that PFS has

been remarkably prolonged, the results from several large-scale

multicenter clinical studies have suggested that improvements in

OS have not yet achieved statistical significance for advanced OC

patients treated with PARPi therapy (Table 1).

Study 19 revealed that an apparent OS advantage was observed

with olaparib vs. placebo (hazard ratio 0.73, P =0.02138); however,

this difference did not meet the preset threshold defined for

statistical significance (P <0.0095). There was little difference in

the median endpoint estimates (29.8 months for olaparib vs. 27.8

months for placebo), which was unsatisfactory for advanced OC

patients (23). SOLO-2 (a double-blind, randomized, placebo-

controlled, phase III trial was done across 123 medical centers in

16 countries) demonstrated that the median OS was 51.7 months

and 38.8 months with olaparib and placebo, respectively. Although

olaparib provided a median 12.9-month benefit of OS in patients

with platinum-sensitive relapsed OC, the difference was not

statistically significant (hazard ratio 0.74; p =0.054) (28). The

phase III SOLO-3 study showed a significant objective response

and improvement in PFS in patients with gBRCAm platinum-

resistant or partially platinum-sensitive relapsed OC who were

treated with olaparib capsules. Long-term endpoint analysis was

performed at approximately 60% data maturity for OS. However,

OS was similar in the olaparib and the TPC (single-agent non-

platinum chemotherapy of physician’s choice) group (29). NOVA

trial was a multicenter, double-blind, phase III, randomized

controlled trial among patients with platinum-sensitive recurrent

OC. Maintenance therapy with niraparib prolonged PFS regardless

of the presence or absence of gBRCAm or HRD. Similarly, during

the study follow-up period, 60 of 372 patients (16.1%) in the

niraparib group and 35 of 181 (19.3%) in the placebo group died,

with more complete OS data available (30).

Overall, the long-term PARPi benefit (i.e., OS) for advanced OC

patients is indeterminate and far from satisfactory. These findings

are still arguable lacking adequate long-term follow-up results.

There is also an urgent need for more treatment alternatives for

OC patients without specific molecular profiles, but with poor

prognosis (15).
3 Future prospects

Due to the aforementioned limitations, biomarkers beyond

BRCA mutations and/or HR status are under continuous

investigation for a significant proportion of advanced, relapsed or

refractory OC patients. It has long been recommended by NCCN

guidelines to include BRCA genes, HR status, microsatellite

instability (MSI), tumor mutation burden (TMB) and NTRK

evaluation when encountering recurrent OC patients. If necessary,

further molecular testing should be conducted to explore potential

treatments and improve patients’ prognosis (6).
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3.1 HR genes beyond BRCA

HR system is a complex signaling pathway involving multiple

steps and factors, and protein-encoding genes other than BRCA1

and BRCA2 include ATM, RAD51, PALB2, MRE11, RAD50, NBN,

CDK12, and FA (16). A retrospective analysis of the Study 19 cohort

also suggested that the HGSOC subgroup with other HR gene (e.g.

BRIP1, CDK12, RAD54L, RAD51B) mutations derived similar

benefits from PARPi as did the BRCA mutation group (21).

ARIEL3 study in OC showed that rucaparib-arm patients with

RAD51C or RAD51D alterations had very high frequency of

exceptional benefit from PARPi (32). In vitro studies also

suggested that defects in other HR genes including ATM, CHEK1/

2, NBN, PALB2, MRE11A and RAD50 could also reflect sensitivity

to PARPi (1, 33–35). Research has shown germline and/or somatic

mutations in HR genes exist in both serous and nonserous OC,

including clear cell, endometrioid, and carcinosarcoma, which

might also benefit from PARPi (4). Additionally, research

findings in other malignancies could shed light upon OC studies:

the PROfound study demonstrated that olaparib could reduce

disease progression or death by 66% in patients with metastatic

castration-resistant prostate cancer (mCRPC) carrying deleterious

mutations in BRCA1, BRCA2 and ATM. Other pathogenic mutation

carriers in other HR genes such as BARD1, BRIP1, CDK12, CHEK1/

2, FANCL, PALB2, RAD51B/C/D, and RAD54L also had improved

PFS (36). Therefore, the role of other HR genes and their

interactions with BRCA genes should continue to be the subject

of further OC investigations, and inhibition of such DNA repair

pathways would expand the use of PARPi (Figure 1).
3.2 Other pathways beyond HR system

The identification of new therapeutic approaches targeting

other pathways is also a critical direction of investigations

relevant to OC. The TCGA database revealed that recurrent

somatic mutations occurred in genes including NF1, RB1, and

CDK12 (15). In addition to HR system, commonly deregulated

pathways include RB, RAS/PI3K, FOXM1, and NOTCH pathways,

and genes involved more broadly in the DNA damage repair system

(e.g., MSH2, MUTYH) provide opportunities for therapeutic attack

(21). The phosphatidylinositol-3 kinase (PI3K) pathway is a crucial

intracellular signaling pathway that is mutated or amplified in a

wide variety of cancers including breast, gastric, ovarian, colorectal,

prostate, and endometrial cancers and glioblastoma (37). The

research sequencing 410 genes of 82 ovarian carcinomas showed

that gain of PIK3CA was characteristic of HGSOC, with H1047R/L

being the mutation hotspot (38). A multicenter phase I study

showed that 12% RAS/BRAF-mutant advanced OC patients who

achieved partial response were treated with binimetinib (MEK

inhibitor) in combination with buparlisib (PI3K inhibitor) (39).

However, the PI3K/AKT/MTOR pathway is also complex, and

currently PI3K and AKT inhibition may be most promising in

clear cell and endometrioid carcinomas of ovary (38). ARID1A is a
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member of the SWI/SNF chromatin remodeling complex that plays

a role in various cellular function by altering chromatin structure

(40). In vitro studies have demonstrated that ARID1A deficiency

could sensitize cancer cell lines to PARPi, BRD4 inhibitor and

EZH2 inhibitor (41–43). TP53 encodes a tumor suppressor protein

and contains transcriptional activation, DNA binding and

oligomerization domains. The protein responses to a variety of

cellular stresses, regulates the expression of target genes, and

induces cell cycle arrest, apoptosis, senescence, DNA repair or

metabolic changes (44). Approximately 50%-96% of HGSOCs

harbor a clonal somatic TP53 mutation (15, 45). Combined

tumor BRCA/TP53 mutation testing may provide an advantage of

rapid results in comparison to gBRCAm testing via oncogenetic

counseling. And combined tumor BRCA/TP53 testing could also

validate the presence of somatic BRCA mutations in samples with a

low cellularity (46). Nultlin 3a inhibiting MDM−2 (a negative

regulator of p53 protein) and adenovirus−mediated TP53 gene

transfer system is currently analyzed in a clinical trial, which may

restore p53 activity and provide potential therapeutic target (44, 47).

Part of the pathways beyond HR system and potential therapy under

investigation are shown in Figure 1.
3.3 Other biomarkers beyond target genes

In addition to gene mutations, other molecular markers should

be evaluated comprehensively. MSI is the result of mismatch repair

deficiency, which is commonly accompanied by high TMB, and

involved in tumor development and progression (Figure 1).

Numerous studies have suggested that MSI/TMB is related to the

efficacy of immune checkpoint inhibitors (ICIs), such as

programmed cell death-1 (PD-1) and programmed cell death-

ligand 1 (PD-L1) antibodies. Acceptable therapies recommended
Frontiers in Oncology 05
by NCCN include dostarlimab-gxly for recurrent or advanced

epithelial OC tumors, and pembrolizumab for solid tumors either

MSI-high or mismatch repair-deficient (dMMR) or TMB-high (≥10

mutations/megabase) (6).

TCGA has also analyzed mRNA expression, miRNA expression,

promoter methylation, and copy number variants in a large cohort of

HGSOC samples. Elevated promoter methylation events involved

168 genes with reduced tumor expression, and it was notable that

promoter hypermethylation of AMT, CCL21 and SPARCL1 were

detected in the vast majority of tumors (15). In addition, a higher

median HRD score was observed in BRCAm and BRCAwt tumors

with BRCA1 methylation (21). However, 75% of BRCAwt patients

with BRCA1-methylated tumors, neither treated by olaparib or

placebo, had disease progression. It may be because BRCA1

methylation is unable to phenocopy BRCA1 mutation in terms of

olaparib sensitivity/ease of reversibility, which has also been reported

for platinum sensitivity (4). Other study showed methylation of

BRCA1 was not associated with long-term olaparib response in OC

patients, which warrants further evidences (48). Mass spectrometry-

based proteogenomic characterization analysis of HGSOC showed

that proteomic clusters had a clear correspondence to the

mesenchymal, proliferative, immunoreactive, and differentiated

subtypes defined by the TCGA transcriptome analysis. And specific

protein acetylation associated with HRD suggested a potential means

for stratifying patients for therapy (49).
4 Conclusions

While data from ceaseless OC studies are encouraging,

challenges remain. OC patients with tumors harboring deleterious

mutations in HR genes beyond BRCA may constitute a small,

molecularly identifiable and clinically relevant population who
FIGURE 1

Mechanisms of target therapies according to homologous recombination and other pathways. DSB, double-strand DNA break; SSB, single-strand
DNA break; HR, homologous recombination; HRD, homologous recombination deficiency; PARP, poly (ADP-ribose) polymerase; i, inhibitor; MMR,
mismatch repair; dMMR, mismatch repair deficiency.
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benefit from PARPi treatment as patients with BRCA mutations or

HRD. On the other hand, seeking biomarkers that aim to exclude

those patients least likely to benefit may be alternative subject. Due

to different bio-pathological roles and low mutation prevalence of

each gene, integrated analysis involving the genome, transcriptome

and proteome dimensions may provide a panoramic view of the

molecular components and underlying mechanisms associated with

OC. Subsequently, more precise stratification of OC patients could

be achieved, leading to tailored management with favorable

prognosis. Moreover, artificial intelligence, which is proficient in

massive data processing using noncustomary algorithm can aid in

uncovering the complicated nature of malignancies.
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