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Xiaodie Tu3 and Xinhua Gu1*
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Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, China, 2Department
of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical
University, Gusu School of Nanjing Medical University, Suzhou, China, 3Alliance Biotechnology
Company, Hangzhou, China
Background: Increasing evidence reveals the involvement of mitochondria and

macrophage polarisation in tumourigenesis and progression. This study aimed to

establish mitochondria and macrophage polarisation-associated molecular

signatures to predict prognosis in gastric cancer (GC) by single-cell and

transcriptional data.

Methods: Initially, candidate genes associated with mitochondria and

macrophage polarisation were identified by differential expression analysis and

weighted gene co-expression network analysis. Subsequently, candidate genes

were incorporated in univariateCox analysis and LASSO to acquire prognostic

genes in GC, and risk model was created. Furthermore, independent prognostic

indicators were screened by combining risk score with clinical characteristics,

and a nomogram was created to forecast survival in GC patients. Further, in

single-cell data analysis, cell clusters and cell subpopulations were yielded,

followed by the completion of pseudo-time analysis. Furthermore, a more

comprehensive immunological analysis was executed to uncover the

relationship between GC and immunological characteristics. Ultimately,

expression level of prognostic genes was validated through public datasets and

qRT-PCR.

Results: A risk model including six prognostic genes (GPX3, GJA1, VCAN, RGS2,

LOX, and CTHRC1) associated with mitochondria and macrophage polarisation

was developed, which was efficient in forecasting the survival of GC patients. The

GC patients were categorized into high-/low-risk subgroups in accordance with

median risk score, with the high-risk subgroup having lower survival rates.

Afterwards, a nomogram incorporating risk score and age was generated, and

it had significant predictive value for predicting GC survival with higher predictive

accuracy than risk model. Immunological analyses revealed showed higher levels

of M2 macrophage infiltration in high-risk subgroup and the strongest positive

correlation between risk score and M2 macrophages. Besides, further analyses

demonstrated a better outcome for immunotherapy in low-risk patients. In

single-cell and pseudo-time analyses, stromal cells were identified as key cells,

and a relatively complete developmental trajectory existed for stromal C1 in three

subclasses. Ultimately, expression analysis revealed that the expression trend of
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RGS2, GJA1, GPX3, and VCAN was consistent with the results of the TCGA-

GC dataset.

Conclusion: Our findings demonstrated that a novel prognostic model

constructed in accordance with six prognostic genes might facilitate the

improvement of personalised prognosis and treatment of GC patients.
KEYWORDS

gastric cancer, mitochondria, macrophage polarization, single-cell data,
prognostic signature
1 Introduction

Gastric cancer is one of the most common malignancies in the

world. Gastric cancer is a complex disease, and its etiology is not

fully understood at present. Helicobacter pylori infection,

environmental factors, genetic factors, etc. may be related to the

occurrence of gastric cancer. About 950,000 new cases of gastric

cancer are reported every year around the world, with nearly

700,000 deaths (1). At present, there are still many deficiencies in

the diagnosis and treatment of gastric cancer. Due to the unobvious

early symptoms of gastric cancer, many patients are in the middle

and late stages when they are found, which greatly reduces the

success rate of treatment. At present, laparoscopic surgery, and even

robotic surgery, have been widely used in the treatment of gastric

cancer patients, which is the most important treatment method for

gastric cancer. However, due to the physical condition, disease

progression and other reasons, surgical treatment often cannot

achieve radical results (2). In addition, there are great limitations

in the chemotherapy of gastric cancer. The selectivity of

chemotherapy drugs is not strong, which may cause damage to

normal cells of patients and produce side effects. For gastric cancer

patients who have metastasis, the effect of chemotherapy is not ideal

(3). Although targeted therapy and immunotherapy for gastric

cancer have made some progress, they are still in the exploratory

stage, and their efficacy and safety need further verification and

improvement (4). Currently, liquid biopsy is playing an increasingly

important role in the diagnosis and treatment of gastric cancer (5).

It is necessary to find more reliable biomarkers to predict the

prognosis of gastric cancer and explore more potential

therapeutic targets.

Mitochondrial function and macrophage polarization processes

are associated with a variety of tumors, including gastric cancer.

Mitochondria are important organelles in cells that can participate

in the metabolism of various substances, including carbohydrates,

fats, and proteins. Mitochondria maintain the normal physiological

functions of cells through oxidative phosphorylation. Abnormal

mitochondrial function may lead to metabolic abnormalities in the
02
body. Tumor cells often have various abnormalities in

mitochondrial function, such as changes in mitochondrial

metabolic pathways and dysregulation of mitochondrial

autophagy. These abnormalities can lead to disturbed energy

metabolism and uncontrolled growth of tumor cells (6).

Mitochondria contain mitochondrial DNA (mtDNA), which is

the genetic material in mitochondria and is double-stranded and

circular. mtDNA carries its own genetic information, including 37

genes, which encode certain proteins and RNAs within the

mitochondria. Many studies have found mitochondrial DNA

mutations in various malignant tumors. Abnormal proteins

produced by mutated mitochondrial DNA can not only help

tumor cells proliferate, but also enable them to migrate and

invade distal organs (7). Abnormal copies of mitochondrial genes

are often associated with poor prognosis for patients (8). In addition

to mtDNA, there are also a large number of mitochondrial-related

genes in the genome, which are closely related to mitochondrial

function. Mutations in these genes often cause abnormal

mitochondrial function in tumor cells (9). Therefore, further

research on mitochondria may not only help us understand the

physiological and pathological processes of various tumors such as

gastric cancer, but also provide new ideas and methods for

cancer treatment.

Macrophage polarization refers to the process that macrophages

exhibit different functional and phenotypic characteristics under

different stimuli. It is a complex cellular process that involves

various signaling pathways and molecular regulatory mechanisms

(10). Macrophages can be divided into M1 macrophages and M2

macrophages, and can be further divided into various subtypes.

Macrophage polarization is a complex process involving various

regulatory mechanisms, including inflammatory factors and anti-

inflammatory factors, as well as various genes involved in the

process of macrophage polarization (11, 12). Currently,

macrophage polarization-related genes have been successively

discovered, such as IRF5 and STAT1, which activate innate

immune responses by inducing the expression of cytokines (13);

STAT3 plays an important role in controlling macrophage
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proliferation and differentiation (14). Macrophage polarization also

plays an important role in tumors. In the tumor microenvironment,

M1 macrophages have the characteristics of killing tumor cells,

producing inflammatory factors and anti-tumor immune responses,

while M2 macrophages are more involved in tissue repair and

immunosuppression (15). Studies have shown that in gastric cancer

tissue, the number of M2 macrophages is significantly increased,

while the number of M1 macrophages is decreased. This

polarization imbalance can promote tumor growth and

immunosuppression, providing favorable conditions for the

development of gastric cancer (16). Cytokines, growth factors,

and chemical substances released by tumor cells, as well as

abnormal tumor microenvironments, can regulate the process of

macrophage polarization. These factors can affect the signal

transduction pathway of macrophages, thereby changing the

function and polarization state of macrophages (17). Therefore,

regulating tumor-associated macrophage polarization may become

a new strategy for tumor treatment. Some drugs can inhibit the

polarization of M2 macrophages, thereby enhancing the anti-tumor

function of macrophages (18).

There is a close relationship between mitochondrial dysfunction

and macrophage polarization in tumors. Mitochondrial dysfunction

can promote the polarization of tumor-associated macrophages

(TAMs). Mitochondrial damage-associated molecular patterns

(DAMPs) released by tumor cells can activate macrophages and

induce their polarization towards pro-inflammatory (M1) or anti-

inflammatory (M2) phenotypes (19). Macrophage polarization can

also affect mitochondrial function in tumor cells. For example, M1-

type TAMs can release reactive oxygen species (ROS) and other

oxidative stress molecules, leading to mitochondrial damage and

energy metabolism disorders in tumor cells; while M2-type TAMs

can secrete growth factors and anti-inflammatory factors to

promote tumor cell growth and survival (20). In summary, there

is an interactive and regulatory relationship between mitochondrial

dysfunction and macrophage polarization in tumors. Mitochondrial

dysfunction can promote the polarization of TAMs, while

macrophage polarization can also affect mitochondrial function

and biological behavior of tumor cells.

Currently, there are still limited reports on the relationship

between mitochondrial and macrophage polarization-related genes

in tumors. There is even less literature on prognostic genes related

to these two functions and their underlying molecular mechanisms

in gastric cancer. This study identified prognostic genes related to

mitochondrial and macrophage polarization in gastric cancer

patients based on public database data, including transcriptome

data and single-cell data, and constructed a prognostic model. In

addition, based on the prognostic model, we further explored the

biological pathways involved in prognostic genes and their

relationships with clinical features and tumor immune

microenvironment. In summary, this study identified prognostic

genes related to mitochondrial and macrophage polarization in

gastric cancer and validated them in clinical samples. By exploring

the key genes underlying the intrinsic relationship between the two,

we provide a new perspective for understanding the pathogenesis

and development of gastric cancer, and also provide new ideas and

methods for tumor treatment.
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2 Materials and methods

2.1 Data collection

TCGA database provided the mRNA expression profiles and

accompanying clinical data of 375 stomach adenocarcinoma

tumor tissue samples (GC samples) and 32 paraneoplastic tissue

samples (normal samples), and this set of data was referred to as

the TCGA-GC dataset. Meanwhile, GEO database (http://

www.ncbi.nlm.nih.gov/geo/) provided GC-related original

microarray data, specifically, the GSE15459 dataset with 191 GC

samples, and the GSE13911 dataset which contained 38 GC samples

and 31 normal samples, as well as both datasets were based on the

GPL570 platform (21, 22). Similarly, the GSE183904 dataset

comprised high-throughput sequencing data from 26 GC tissue

samples, 10 normal tissue samples and four peritonium tissue

samples for single-cell data analysis (23). There was no

significant statistical difference in basic information such as the

age and gender of patients in the above-mentioned datasets.

Furthermore, a total of 1,136 mitochondria-related genes (MRGs)

(Supplementary Table 1) and 35 macrophage polarization-related

genes (MPRGs) (Supplementary Table 2) were collected by

accessing MitoCarta3.0 database (https://www.broadinstitute.org/

mitocarta) and Molecular Signatures Database (MsigDB, http://

www.broadinstitute.org/gsea/msigdb/index.jsp), respectively.
2.2 Differential expression analysis

In order to acquire the differentially expressed genes 1 (DEGs1)

between GC and normal groups in single-cell sequencing data

(GSE183904), the ‘FindMarker’-function divided in ‘Seurat’-

package (v 4.3.0) (24) was utilized to carry out differential

expression analysis, and the screening condition was adj.P<0.05.

Meanwhile, DEGs2 between GC and normal groups in TCGA-GC

were identified via ‘DESeq2’-package (v 1.36.0) (25), with the

filtering conditions of adj.P<0.05 and |log2FoldChange(FC)|>0.5.

The ‘ggplot2’-package (v 3.4.1) (26) and ‘ComplexHeatmap’-

package (v 2.12.1) (27) were utilized to create the volcano map

and heat map of DEGs2, respectively.
2.3 Weighted gene co-expression network
analysis(WGCNA)

In our study, based on MRGs and MPRGs as background gene

sets, the MRGs score and MPRGs score for each sample of TCGA-

GC were calculated via ‘GSVA’-package (v 1.38.2) (28), followed by

a rank-sum test to compare the differences in MPRGs score and

MRGs score between GC and normal groups (P<0.05).

Subsequently, depending on the expression data of the GC

samples in TCGA-GC dataset, WGCNA was implemented via the

‘WGCNA’-package (v 1.72–1) (29) to identify the module and

module genes that were most relevant to the MRGs score and

MRGs score. To begin with, the GC samples were clustered and

outlier samples were removed to determine the accuracy of
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subsequent analyses. Next, the optimal soft threshold was

determined at R2 crossing the threshold 0.80 (red line) and mean

connectivity also tending to 0 for ensuring that interactions between

genes maximally matched the scale-free distribution. The

systematic clustering tree was obtained by utilizing the adjacency

connection and gene similarity, and following that, the co-

expression network was constructed according to the guidelines

of the hybrid dynamic tree cutting algorithm (minModuleSize=50

and mergeCutHeight=0.5). Ultimately, a module-trait heatmap was

created to further determine the key module in GC that was most

significant with MRGs score and MPRGs score by comparing the

correlation coefficient and P-value (P<0.05). The genes contained in

key module were defined as key module genes highly correlated

with the MRGs score and MPRGs score.
2.4 Screening of candidate genes and
functional annotation analysis

The intersections of DEGs1, DEGs2, and key module genes

were taken utilizing ‘ggVennDiagram’-package (v 1.2.2) (30), and

the intersecting genes were called candidate genes for follow-up

analysis. Furthermore, in order to further reveal the biological

functions exerted by the candidate genes, enrichment analysis was

undertaken. Specifically, enrichment analyses on the basis of Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) databases were implemented via ‘clusterProfiler’-package

(v 4.4.4) (31) and ‘org.Hs.eg.db’-package (v 3.15.0) (32) with a

significance of P<0.05.
2.5 Creation and validation of risk model

To begin with, the ‘survival’-package (v 3.3–1) (33) was applied

to carry out univariate Cox regression analysis on the basis of

candidate gene expression in 351 GC samples with survival data

from TCGA-GC dataset, and prognosis-related genes in GC were

acquired with HR≠1 and P<0.05 as filter conditions. Subsequently,

prognosis-related genes that passed the PH test (P>0.05) were

subject to LASSO analysis via ‘glmnet’-package (v 4.1–6) (34),

followed by identifying prognostic genes in GC based on

lambdamin value. What’s more, risk model was created, and the

risk score of GC patient was computed on the basis of the

expression levels of prognostic genes and their coefficients with

the following formula:

risk   score =o
n

i=1
(Coefi ∗ Expi)

In TCGA-GC dataset, the GC sample was classified into two

risk subgroups (high- and low-risk subgroups) in accordance with

median risk score. Next, analyses of risk curves, survival status, and

prognostic signature gene expression were completed depending on

survival and expression data of samples in two risk subgroups.

Following this, Kaplan-Meier (KM) survival analysis was achieved

via ‘survminer’-package (v 0.4.9) with the aim of comparing the
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survival differences (P<0.05) between the two risk subgroups.

Meanwhile, receiver operating characteristic (ROC) curves at 1-,

3- and 5-years were displayed utilizing ‘survivalROC’-package (v

1.0.3) (35), and the precision of risk model in forecasting the

prognosis of GC on the basis of area under curve (AUC) value

was evaluated. In general, AUC value greater than 0.6 indicated

favorable performance of the risk model. Ultimately, the same

approaches were employed in GSE15459 dataset to validate the

generalisability of the risk model to predict GC prognosis.
2.6 Clinical correlation analysis

According to 351 GC samples with clinical data in TCGA-GC

dataset, the number of patients with different clinical subgroups was

compared between high- and low-risk subgroups with the use of the

chi-square test to explore the association between risk score and GC

clinical characteristics. Specifically, the clinical characteristics

included age, gender, vital status, overall survival (OS),

pathologic-M/N/T, pathologic-stage and grade. Subsequently,

based on the clinical characteristics associated with the risk

scores, comparison of risk scores between different clinical

subgroups was undertaken by rank sum test (two subgroups) and

ANOVA test (three and more subgroups), followed by visualization

of the results using box plots and Sankey diagrams. Eventually, the

expression level analysis of prognostic genes were achieved between

different clinical subgroups.
2.7 Independent prognostic analysis and
nomogram creation

By combining risk score with seven conventional clinical

characteristics (age, gender, grade, pathologic-M/N/T, and

pathologic-stage), univariate and multivariate Cox regression

analyses (P<0.05) as well as proportional hazard (PH) hypothesis

test (P>0.05) were performed in the TCGA-GC dataset to further

assess the possibility of utilizing them as independent prognostic

indicators for GC. After selecting the independent prognostic

indicators, we created a nomogram of 1, 3, and 5-year survival

via ‘rms’-package (v 6.5–0) (36). What’s more, the ROC and

calibration curves were generated to determine the predictive

efficacy of this nomogram.
2.8 Gene set enrichment analysis (GSEA)

GSEA was accomplished with the aim of uncovering biological

pathway differences between the two risk subgroups. To begin with,

differential expression analysis was performed between two risk

subgroups in TCGA-GC dataset, and DEGs were sorted in

accordance with log2FC. Next, based on the KEGG database,

GSEA-KEGG was carried out on the sorted genes via

‘clusterProfiler’-package (v 4.4.4) (31), with thresholds of adj.P<0.05

and |NES|>1.
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2.9 Tumor immune microenvironment
(TIME) analysis

In an attempt to elucidate the association between risk score

and immunological characteristics, a more comprehensive

immunological analysis was accomplished. Firstly, the abundance

of individual immune cells for each sample was obtained through

calculating the scores of 22 immune cells in TCGA-GC dataset

utilizing CIBERSORT algorithm, followed by a rank-sum test to

analyze the differences in immune cell scores between two risk

subgroups (P<0.05). Subsequently, Spearman correlation analysis

was executed between risk score and differential immune cells as

well as between prognostic genes and differential immune cells,

respectively, so as to uncover the relationship between them.

Furthermore, immune checkpoint genes (ICGs) play a critical

role in the TIME. Therefore, this work compared the ICG

expression discrepancy between two risk subgroups on the basis

of 43 ICGs obtained from published literature (37). The Spearman

correlation analysis between prognostic genes and differential ICGs

was also performed. What’s more, tumor immune dysfunction and

exclusion (TIDE) score was calculated for each GC sample in

TCGA-GC dataset through accessing TIDE database (http://

tide.dfci.harvard.edu), and differences between two risk subgroups

were compared by a rank-sum test to predict treatment response to

immune checkpoint inhibitors.

Meanwhile, immunity, stromal, and ESTIMATE scores were

computed through ESTIMATE method for all GC samples from

TCGA-GC dataset with the aim of comparing the differences in

each score between two risk subgroups (P<0.05).
2.10 Chemotherapy drug sensitivity, MSI,
TMB, and CNV analyses

In TCGA-GC dataset, the 50% inhibitory concentration (IC50)

values of 138 chemotherapeutic drugs for each GC sample were

obtained via the ‘pRRophetic’-package (v 0.5) (38), and these 138

agents were retrieved from genomics of drug sensitivity in cancer

(GDSC) database (https://www.cancerrxgene.org/). Next, IC50

values of 138 chemotherapeutic agents were subjected to the

rank-sum test to identify agents that differed markedly between

two risk subgroups. Meanwhile, the fold change (FC) was

calculated, followed by classifying the agents into three groups

based on P value and FC, namely sensitive low-risk (P<0.05 and

FC>0.2), sensitive high-risk (P<0.05 and FC<-0.2), and no sensitive.

Subsequently, the top five agents of sensitive high-risk/sensitive

low-risk were selected for correlation analysis with the risk score.

In the meantime, on the basis of microsatellite instability (MSI)

data in GC patients gained from cBiPortal database (https://

www.cbioportal.org/), GC samples with MSI score>0.3 were

defined as the MSI group, and GC samples with MSI score<0.3

were defined as the MSS (microsatellite stable) group in TCGA-GC

dataset. Subsequently, the difference in risk score between MSI and

MSS groups was compared, and Spearman correlation analysis was

performed between MSI score and risk score. More importantly, the
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top five agents of sensitive high-risk/sensitive low-risk were selected

for correlation analysis with MSI score.

Additionally, tumor mutation burden (TMB) and copy number

variation (CNV) data for GC samples were derived from the

cBiPortal and UCSC Xena (https://xena.ucsc.edu/) databases,

respectively. Next, the differences in TMB and CNV between two

risk subgroups were compared via rank-sum test (P<0.05), followed

by Spearman correlation analysis between them and risk score.
2.11 Single-cell data analysis and pseudo-
time analysis

Single-cell sequencing data (GSE183904) were imported into R

software and analyzed using the ‘Seurat’-package (v 4.3.0) (24).

Initially, the data were filtered using the ‘CreateSeuratObject’-

function with the following filtering criteria: (1) genes expressed

in fewer than 3 cells were eliminated; (2) cells with a total gene

count greater than 200 were retained. Secondly, the percentage of

mitochondrial genes was computed via ‘PercentageFeatureSet’-

function, and cells with a percentage less than 10% were retained

to ensure that low quality cells were excluded. For downstream

analysis, data were normalized utilizing ‘NormalizeData’-function,

and ‘FindVariableFeatures’-function was adopted to identify top

2,000 highly variable genes after quality control (QC) with the ‘vst’

method. Immediately thereafter, multiple samples were combined

and canonical correlation analysis was implemented to remove

batch effects. Based on these 2,000 genes, principal component

analysis (PCA) was implemented for dimensionality reduction, and

then the cells were clustered using ‘FindNeighbors’ and

‘FindClusters’-functions to yield cell clusters. Additionally,

‘FindAllMarkers’-function was applied to discover the significant

marker genes for each cell cluster by setting the parameters

min.pct=0.25, only.pos=TRUE, and logfc.threshold=0.7. What’s

more, to identify cell subpopulations, cell clusters were annotated

according to the CellMarker database (http://biocc.hrbmu.edu.cn/

CellMarker/), and marker genes in different cell subpopulations

were displayed.

Further, the expression level of prognostic genes in each cell

subpopulation was demonstrated, and cell subpopulation with

higher expression of prognostic genes and with expression of each

gene was utilized as the key cell for subsequent analyses.

Immediately thereafter, the identified key cell was analyzed for

functional enrichment via ‘ReactomeGSA’-package (v 1.4.2) (39).

Eventually, based on key cells, unsupervised cluster analysis was

implemented via ‘FindNeighbors’ and ‘FindClusters’ functions to

identify subclasses of key cells, followed by pseudo-time analysis of

these subclasses via ‘monocle3’-package (v 1.0.0) (40).
2.12 Chromosomal localization and
subcellular localization analyses

The subcellular localization analysis was performed using the

‘RCircos’-package (v 1.2.2) (41) for determining the location of

prognostic genes on human chromosomes. Simultaneously, the
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function of prognostic genes was closely linked to their location in

the cell, so it was important to know the subcellular location of these

genes. In this study, the subcellular localization of prognostic genes

was predicted by visiting the online website mRNALocater (http://

bio-bigdatacn/mRNALocater).
2.13 Regulatory network analysis

To uncover the molecular regulatory mechanisms of prognostic

genes in GC, lncRNA-miRNA-mRNA regulatory network was

established. Initially, miRWalk database(http://mirwalk.umm.uni-

heidelberg.de/) was employed to forecast miRNAs that could target

prognostic genes. Later on, upstream lncRNAs of miRNAs were

p r ed i c t ed by ac c e s s i n g s t a rBa s e da t aba s e (h t t p : / /

starbase.sysu.edu.cn/), with the fi ltering conditions of

clipExpNum≥2, degraExpNum≥2, and pancancerNum≥2. The

lncRNA-miRNA-mRNA network was generated with the help of

Cytoscape software (v 3.9.1) (42).
2.14 Expression level analysis
and validation

In TCGA-GC and GSE13911 datasets, expression level of

prognostic genes in GC and normal samples was analyzed.

Subsequently, expression analysis of prognostic genes was

finished through quantitative real time polymerase chain reaction

(qRT-PCR). Ten clinical gastric tissue samples were collected from

Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing

Medical University, including five GC patients and five

paraneoplastic patients. The experiment was approved by the

Ethics Committee of Gusu School, Nanjing Medical University.

Total RNA was isolated from gastric tissue using TRIzol

reagent, followed by reverse transcription to synthesize

complementary DNA (cDNA) using SweScript First Strand

cDNA synthesis kit. The qRT-PCR was run for 40 cycles under

the following conditions, 95°C for 1 min, 95°C for 20 s, 55°C for 20

s, and 72°C for 30 s. GAPDH served as the internal reference gene

for biomarkers, and the relative expression levels of prognostic

genes were quantified using the 2-DDCT method. Primers were

shown in Table 1.
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2.15 Statistical analysis

In the present work, all statistical analyses involved were

performed by R program (v 4.2.1). Discrepancies between groups

were completed by rank sum test (two subgroups) or ANOVA test

(three and more subgroups). P-value<0.05 was deemed statistically

meaningful unless otherwise stated.
3 Results

3.1 Key module genes correlated with
MRGs and MPRGs scores were obtained
through WGCNA

In TCGA-GC dataset, there were remarkable differences in

MRGs score and MPRGs score between GC and normal groups

(P<0.05), and both MRGs and MPRGs scores were lower in GC

samples than in normal samples (Figure 1A). Subsequently,

WGCNA was implemented to excavate the modules and module

genes that related to MRGs score and MPRGs score. After the

cluster analysis of the samples, no outlier samples were observed

(Figure 1B). Also, the soft threshold of 14 was chosen to construct

the co-expression network, at which point interactions between

genes maximally matched the scale-free distribution (Figure 1C). In

the process of constructing the co-expression network, five modules

were created with the systematic clustering tree and dynamic tree

cutting algorithms (Figures 1D, E). The module MEbrown

demonstrated the strongest association with MRGs score and

MPRGs score, with a negative correlation with MRGs score

(cor=-0.69 and P<0.001) and a positive association with MPRGs

score (cor=0.32 and P<0.001). Ultimately, a total of 3,110 genes

contained in module MEbrown were identified as key module genes

highly linked to MRGs score and MPRGs score.
3.2 Candidate genes were strongly
associated with immune responses
and cytokines

Through differential expression analysis, a total of 1,628 DEGs1

in GSE183904 dataset and 7,704 DEGs2 (3,625 up-regulated and
TABLE 1 Primers used in PCR experiments.

Gene Forward Primer Reverse Primer

RGS2 ATTCAGCCTGGGTGTTCAGG AGACACCACGTTCAGACCAC

GJA1 CAGCCACTAGCCATTGTGGA GGCTGTTGAGTACCACCTCC

GPX3 AGAAGTCGAAGATGGACTGCC GGGAAAGCCCAGAATGACCA

LOX GTGGGCGAAGGTACAGCATA TGACAACTGTGCCATTCCCA

VCAN TCGAGGAGGCTGCAAAAGAG TGCAGCGATCAGGTCGTTTA

CTHRC1 GGGAGGTGGTGGACCTGTAT GTCCTTCCACGCAATTTTCC

GAPDH CGAAGGTGGAGTCAACGGATTT ATGGGTGGAATCATATTGGAAC
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4,079 down-regulated) in TCGA-GC dataset were mined

(Figures 2A, B). Subsequently, the Venn diagram demonstrated

that 292 candidate genes were acquired through fetching the

intersections of 1,628 DEGs1, 7,704 DEGs2 and 3,110 key module

genes (Figure 2C).

Further, 292 candidate genes were significantly enriched into

800 GO items [699 biological processes (BPs), 60 cellular

components (CCs), and 41 molecular functions (MFs)] and 14

KEGG pathways (P<0.05). The important GO-BP categories were

primarily connected with immune responses and cytokines, such as

“leukocyte migration”, “leukocyte mediated immunity”, “cell

chemotaxis”, “leukocyte activation involved in immune response”,

etc (Figure 2D). The candidate genes were highly enriched in the

“endoplasmic reticulum lumen”, “collagen trimer” and “basement

membrane” in GO-CC analysis (Figure 2D). In GO-MF category,

they showed concentration in “growth factor binding” ,

“immunoglobulin binding”, “transforming growth factor beta

binding”, etc (Figure 2D). Meanwhile, KEGG analysis elucidated
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that candidate genes were engaged in “PI3K-Akt signaling

pathway”, “Phagosome”, “ECM-receptor interaction”, and other

signaling pathways (Figure 2E). These findings strongly revealed

that immune responses and cytokines were highly relevant to the

pathogenesis and progression of GC.
3.3 Risk model was effective in predicting
prognosis of GC

After incorporating 292 candidate genes into univariate Cox

regression analysis and PH hypothesis test, totally 101 genes were

identified that were significantly associated with prognosis in TCGA-

GC dataset (Supplementary Figure 1). Immediately, with respect to

the LASSO regression analysis, the model was optimal when

lambdamin was equal to 0.08366, and six prognostic genes (GPX3,

GJA1, VCAN, RGS2, LOX, and CTHRC1) were chosen to create risk

model (Figure 3A). On the basis of the coefficients of these six genes
A
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FIGURE 1

Key modular genes correlated with MRGs and MPRGs scores obtained through WGCNA. (A) MRGs and MPRGs scores between gastric cancer (GC)
group and normal group in TCGA-GC dataset, (B) Sample dendrogram and trait heatmap, (C) Scale independence and mean connectivity among
genes, (D) Gene dendrogram and module colors, (E) Trait relationships of different colored modules. * indicates p<0.05, ** indicates p<0.01.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1433874
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1433874
in LASSO analysis, we computed risk score by following the formula

below: Risk score = GPX3*0.145 + GJA1*0.071 + VCAN*0.005 +

RGS2*0.072 + LOX*(-0.025) + CTHRC1*0.110. In TCGA-GC

dataset, the GC patients were categorized into two risk subgroups

(low- and high-risk subgroups) in accordance with median risk score.

As demonstrated in Figure 3B, the K-M curve revealed that the

survival rate of high-risk patients was markedly lower than that of

low-risk patients (P<0.001). In ROC analysis, AUC values for 1-, 3-,

and 5-year were 0.650, 0.614, and 0.731, correspondingly, which

implied that risk model was stable and effective in forecasting the
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prognosis of GC patients (Figure 3B). In order to evaluate the robust

prediction value of risk model, these were additionally further

validated in GSE15459 dataset. The results indicated that the

significant prognostic value was P=0.013, and AUC values at 1-, 3-,

and 5-year survival were 0.613, 0.623, and 0.644, correspondingly

(Figure 3C). The relationships of risk score with survival time and

survival status, as well as the heat map of expressions of the six

prognostic genes, were illustrated in Figures 3D, E. Obviously, with

increasing risk score, the survival time of the patient decreased and

the number of deaths rose at the same time.
A

B

D

E

C

FIGURE 2

Candidate genes closely related to immune response and cytokines. (A) 1,628 differentially expressed genes (DEGs1) in GSE183904 dataset, (B) 7,704
differentially expressed genes (DEGs2) in TCGA-GC dataset, (C) Venn diagram obtained by intersecting DEGs1, DEGs2, and key modular genes,
(D) Go functional enrichment analysis of candidate genes, (E) KEGG enrichment analysis of candidate genes.
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3.4 Association analysis of risk score with
GC clinical characteristics

In TCGA-GC dataset, the relationship between risk score and

various clinical characteristics was further investigated to reveal

the effect of risk score in GC progression. Firstly, clinical

characteristics of the two risk subgroups were compared, and

the differences in vital status (P=0.001), OS (P=0.029), pathologic-

T (P=0.007) and grade (P=0.017) between two risk subgroups

were statistically significant (Table 2). Among them, there were
Frontiers in Oncology 09
marked discrepancies in risk scores of patients with different

pathologic-T and grade, and pathologic-TX and grade-3 were

associated with higher risk score (Figure 4A). Meanwhile, the

Sankey plot also demonstrated that the majority of T1 and G2

patients flowed to the low-risk subgroup (Figure 4B). What’s

more, it was discovered that the expression of six prognostic

genes had a gradual upward trend during the period from

pathologic-T1 to TX (P<0.05), and the same trend was noted for

the remaining five genes, except for CTHRC1, during the period

from grade-1 to grade-X (P<0.05) (Figure 4C).
A
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FIGURE 3

Risk model for predicting the prognosis of gastric cancer. (A) Six prognostic genes (GPX3, GJA1, VCAN, RGS2, LOX, and CTHRC1) selected by LASSO
regression analysis to construct the risk model, (B) K-M curve and ROC analysis between high-risk and low-risk patients in TCGA-GC dataset
(P<0.001), (C) K-M curve and ROC analysis between high-risk and low-risk patients in GSE15459 dataset (P=0.013), (D) Heatmap of the expression of
six prognostic genes in patients from TCGA-GC dataset, (E) Heatmap of the expression of six prognostic genes in patients from GSE15459 dataset.
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3.5 An effective nomogram was created
in GC

By combining conventional clinical characteristics with risk

score in TCGA-GC dataset, univariate Cox analysis manifested that

risk score, age, pathologic-M, pathologic-N, pathologic-T, and

pathologic-stage were all markedly associated with OS in GC

(P<0.05) (Figure 5A). On the basis of PH hypothesis test and

multivariate Cox analysis, risk score and age were detected as

independent prognostic indicators for predicting the prognosis of

GC patients (Figure 5B). Subsequently, a nomogram integrating

risk score and age for predicting GC prognosis was constructed

(Figure 5C). The calibration curve suggested that the predicted and

actual values of nomogram were roughly the same (Figure 5D).

Meanwhile, AUC values at 1-, 3-, and 5-years were 0.664, 0.644, and

0.737, correspondingly (Figure 5E). In summary, the nomogram

constructed in accordance with risk score and age had significant

predictive value for predicting GC survival with higher predictive

accuracy than risk model.
3.6 Differences in biological pathways
between two risk subgroups were clarified

The GSEA was conducted in TCGA-GC dataset to determine

the most markedly enriched pathways between two risk subgroups.

It was noted that genes from high-risk patients were markedly

enriched in the “cell adhesion molecules”, “ECM-receptor

interaction”, “cGMP-PKG signaling pathway”, “Calcium signaling

pathway pathways”, etc (Figure 6A). However, genes in low-risk

subgroup were markedly enriched in the following pathways,

namely, “RIG-I-like receptor signaling pathway”, “cell cycle”,

“oxidative phosphorylation pathway”, etc (Figure 6B). These

analyses suggested that risk score was highly correlated with these

biological pathways, providing insight valuable for understanding

the potential molecular mechanisms of GC.
3.7 Risk score was associated with
immunological features in GC

The CIBERSORT program was adopted to estimate the score of

immune cells between the two risk subgroups, and the results

revealed that resting-memory CD4+ T cells, M0 macrophages, M1

macrophages, and M2 macrophages were more enriched in samples

of TCGA-GC dataset (Figure 6C). Further, it was noted that in case

of statistical differences (P<0.05), the infiltration levels of naive B

cells, M2 macrophages, monocytes, resting dendritic cells, and

resting mast cells were higher in GC samples from high-risk

subgroups, whereas the infiltration levels of activated-memory

CD4+ T cells, follicular helper T cells, regulatory T cells (Tregs),

and activated mast cells were higher in GC samples from low-risk

subgroups (Figure 6D). The strongest positive correlation (cor=0.31

and P<0.001) between risk score and M2 macrophages was

observed in the correlation study (Figure 6E). Simultaneously, it
frontiersin.org
TABLE 2 Clinical characteristics of the two risk subgroups.

Total
Risk

Pvalue
high low

age(year)

Mean
(SD)

65.5 (±10.6) 65.3 (±10.9) 65.8 (±10.4) 0.73

gender

FEMALE 124 (35.3%) 62 (35.4%) 62 (35.2%) 1

MALE 227 (64.7%) 113 (64.6%) 114 (64.8%)

vital_status

Alive 209 (59.5%) 89 (50.9%) 120 (68.2%) 0.001

Dead 142 (40.5%) 86 (49.1%) 56 (31.8%)

OS(Months)

Mean
(SD)

612.0
(±548.5)

533.9
(±458.2)

689.6
(±617.0)

0.029

pathologic_M

M0 313 (89.2%) 151 (86.3%) 162 (92.0%) 0.18

M1 22 (6.3%) 13 (7.4%) 9 (5.1%)

MX 16 (4.6%) 11 (6.3%) 5 (2.8%)

pathologic_N

N0 103 (29.4%) 46 (26.4%) 57 (32.4%) 0.26

N1 95 (27.1%) 45 (25.9%) 50 (28.4%)

N2 72 (20.6%) 36 (20.7%) 36 (20.5%)

N3 71 (20.3%) 40 (23.0%) 31 (17.6%)

NX 9 (2.6%) 7 (4.0%) 2 (1.1%)

pathologic_T

T1 18 (5.1%) 3 (1.7%) 15 (8.5%) 0.007

T2 74 (21.1%) 39 (22.3%) 35 (19.9%)

T3 161 (45.9%) 77 (44.0%) 84 (47.7%)

T4 94 (26.8%) 52 (29.7%) 42 (23.9%)

TX 4 (1.1%) 4 (2.3%) 0 (0.0%)

pathologic_stage

Stage I 48 (14.2%) 19 (11.4%) 29 (16.9%) 0.54

Stage II 109 (32.2%) 54 (32.5%) 55 (32.0%)

Stage III 147 (43.5%) 75 (45.2%) 72 (41.9%)

Stage IV 34 (10.1%) 18 (10.8%) 16 (9.3%)

Grade

G1 9 (2.6%) 5 (2.9%) 4 (2.3%) 0.017

G2 126 (35.9%) 49 (28.0%) 77 (43.8%)

G3 207 (59.0%) 117 (66.9%) 90 (51.1%)

GX 9 (2.6%) 4 (2.3%) 5 (2.8%)
Red value means p<0.05.
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was also clear that there was significant correlations between

prognostic genes and differential immune cells, in which the

strongest positive association was found between CTHRC1 and

M2 macrophages (cor=0.32 and P<0.001), and the strongest

negative association was found between RGS2 and Tregs (cor=-

0.31 and P<0.001) (Figure 6F).

From Figure 7A, it could be observed that there were differences

in 28 ICGs (BTLA, BTN2A1, BTN2A2, etc.) levels between the two

risk subgroups, and all of these 28 ICGs levels were lower in high-risk

subgroup compared to the low-risk group. Besides, there were

multiple positive correlations between six prognostic genes and

these 28 ICGs, among which TNFSF4 and CD200 were more

strongly correlated with prognostic genes (Figure 7B). Further

analyses demonstrated a marked difference in TIDE score between

two risk subgroups and a notable positive association between TIDE

score and risk score (cor=0.57 and P<0.001), predicting a better

outcome for immunotherapy in low-risk patients (Figure 7C).

Ultimately, ESTIMATE algorithm demonstrated higher immune,

stromal, and ESTIMATE scores (P<0.001) in high-risk subgroup

compared to the low-risk subgroup (Figure 7D), in other words, there

was marked positive correlations between them and the risk score
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(stromal score: cor=0.7, immune score: cor=0.26, ESTIMATE score:

cor=0.53; all P<0.001) (Figure 7D).
3.8 The relationship of risk score with
chemotherapy agents, MSI, TMB, and CNV

Among 138 chemotherapy agents, five agents (AZD6244,

CCT018159, Mitomycin.C, etc.) belonged to sensitive low-risk

group and 30 agents (AP.24534, Midostaurin, etc.) belonged to

sensitive high risk group (Figures 8A, B). Of these, CCT018159 was

markedly positively associated with risk score, as well as DMOG,

BMS.754807, BX.795, Midostaurin, and AP.24534 were

significantly negatively linked to risk score (P<0.05 and |cor|>0.3)

(Figure 8C). These findings could provide a reliable reference for

clinical treatment. Subsequently, with respect to the MSI analysis,

patients in MSS group had a higher risk score than those in MSI

group, and MSI score was markedly negatively linked to risk score

(P<0.001 and cor=-0.31) (Figure 8D). Interestingly, it was noticed

that the chemotherapeutic agent DMOG was significantly positively

associated with MSI score, while the chemotherapeutic agent
A

B

C

FIGURE 4

Correlation analysis of risk scores with clinical characteristics of gastric cancer in the TCGA-GC dataset. (A) Differences in risk scores among patients
with different pathological T stages and grades, (B) Representation of patient flow into different subgroups through Sankey diagram, (C) Expression
profiles of six prognostic genes between patients with pathological T1 to TX stages and grades 1 to X.
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CCT018159 was significantly negatively associated with MSI score

(P<0.05 and |cor|>0.3) (Figure 8E).

Further, our data revealed that TMB and CNV were markedly

lower in high-risk patients than in low-risk patients, and risk score

was remarkably negatively linked to TMB and CNV in GC

(Figures 8F, G).
3.9 Stromal cells were identified as
key cells

In the samples of GSE183904 dataset, totally 130,770 cells and

25,504 genes were identified after QC for downstream analysis.
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After PCA dimensional reduction and unsupervised cluster

analysis, 35 distinct cell clusters were identified (Figure 9A).

Subsequently, cell annotation yielded six cell subpopulations,

namely, lymphoid cell, epithelial cell, plasma cell, myeloid cell,

stromal cell, and endothelial cell (Figure 9B). Meanwhile, Figure 9C

revealed that the expression of the respective corresponding

significant marker genes was higher in six cell subpopulations, for

example, PECAM1, PLVAP, VWF, and CDH5 were highly

expressed in endothelial cell, as well as FCER1G and SPARC had

higher expression in myeloid cell and stromal cell, respectively.

Besides, the proportion of these six cell subpopulations could be

observed for the sample in GSE183904 dataset from Figure 9D,

where lymphoid cell content was highest in all samples.
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FIGURE 5

Analysis of gastric cancer in the TCGA-GC dataset combining risk scores and traditional clinical features. (A) Univariate Cox analysis of risk scores
and traditional clinical features associated with overall survival in gastric cancer, (B) Independent prognostic indicators for predicting the prognosis
of gastric cancer patients obtained through PH hypothesis testing and multivariate Cox analysis, (C) Nomogram constructed by combining risk
scores and age for predicting the prognosis of gastric cancer, (D) Calibration curve of the nomogram, (E) ROC curve of the nomogram.
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The expression discrepancies of the six prognostic genes were

analyzed in six different cell subpopulations to further explore the

expression of these genes at the cellular level. As demonstrated in

Figure 9E and Supplementary Figure 2, the cells with more expression

of the prognostic genes were stromal cell, myeloid cell, and

endothelial cell, and all six genes were expressed in stromal cell, so

stromal cell was employed as the key cell for subsequent analyses in

this study. ReactomeGSA enrichment analysis demonstrated that

stromal cells were primarily engaged in “ATP sensitive potassium

channels”, “FMO oxidizes nucleophiles”, “regulation of thyroid

hormone activity”, etc (Figure 9F). Further, stromal cells was
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divided into three subclasses (stromal C1, stromal C2, and stromal

C3), and it was noted that a relatively complete developmental

trajectory existed for stromal C1 in pseudo-time analysis (Figure 9G).
3.10 Chromosomal localization, subcellular
localization, and potential regulatory
analyses were completed

The results of chromosomal localization analysis indicated that

GPX3, LOX, and VCAN were all located in chromosomes 5, as well
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FIGURE 6

Differences in biological pathways and immune characteristics between two risk subgroups in the TCGA-GC dataset. (A, B) Gene Set Enrichment
Analysis (GSEA) for the high-risk subgroup (A) and the low-risk subgroup (B), (C, D) Analysis of different infiltration levels of immune cells between
the two risk subgroups using the CIBERSORT program, (E) Correlation study between risk scores and different immune cells, (F) Correlation study
between prognostic genes and different immune cells. * represent p<0.05, ** represent p<0.01, *** represent p<0.001, **** represent p<0.0001, ns
represent no significant different.
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as RGS2, GJA1, and CTHRC1 in chromosomes 1, 6, and 8,

respectively (Figure 10A). Meanwhile, the six prognostic genes were

entered into the mRNALocater database to analyze their subcellular

localisation, and the results revealed that GPX3, LOX, and CTHRC1

were preferably expressed in cytoplasm, whereas GJA1, VCAN, and

RGS2 were preferably expressed in nucleus (Figure 10B).

Furthermore, the potential regulatory mechanisms of prognostic

genes were elucidated by constructing a lncRNA-miRNA-mRNA

network, as demonstrated in Figure 10C. It could be observed that

the lncRNA-miRNA-mRNA network included 73 nodes (6 mRNA, 50

miRNA, and 17 lncRNA) and 133 edges, as well as the multiple

relationship pairs were found in network. Obviously, lncRNAs

(LINC01001, AC138035.1, and AC240565.2) could simultaneously

regulate prognostic genes (VCAN, CTHRC1, and GPX3) via both

hsa-let-7 family members (hsa-let-7a-5p, hsa-let-7b-5p, and hsa-let-7d-

5p), as well as hsa-miR-200c-3p was identified as a regulator of LOX.
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3.11 Experimental verification of prognostic
genes expression in GC

In TCGA-GC dataset, the expression of the GJA1, VCAN, LOX,

and CTHRC1 was markedly higher in GC samples than in normal

samples, whereas GPX3 and RGS2 were markedly lower in the GC

samples (Figure 11A). Besides, the expression of six prognostic

genes was validated in GSE13911 dataset, and the results were

presented in Figure 11B. Except for GJA1, the expression trends of

the remaining five genes were consistent with the TCGA-GC

dataset, and the expression of GPX3, LOX, and CTHRC1 had

markedly difference between GC and normal samples (P<0.05).

With the purpose of verifying demonstrate the expression of

prognostic genes in GC samples, qRT-PCR was performed on the

GC tumor and the paraneoplastic normal tissues. As shown in

Figure 11C, RGS2, GJA1, GPX3, and LOX were less expressed in
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FIGURE 7

Differences in immune cell infiltration between two risk subgroups in the TCGA-GC dataset. (A) Immune cell gene (ICG) levels between the two risk
subgroups, (B) Correlation analysis between six prognostic genes and immune cell genes, (C) TIDE scores between the two risk subgroups,
(D) Immune score, stromal score, and ESTIMATE score between the two risk subgroups. * represent p<0.05, ** represent p<0.01, *** represent
p<0.001, **** represent p<0.0001.
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gastric cancer tissues than in paracancerous tissues (P<0.05). The

expression trend of VCAN was opposite (P<0.05), while CTHRC1

had no difference in expression between GC and paracancerous

samples (P>0.05).

4 Discussion

Gastric cancer is a common malignant tumor of the digestive

tract worldwide, and its pathogenesis involves various factors. In
Frontiers in Oncology 15
recent years, with the development of molecular biology, the role of

mitochondrial function and macrophage polarization in gastric

cancer has gradually attracted attention. Current studies have

shown that mitochondrial function is closely related to the

progression of gastric cancer (43), while macrophage polarization

also plays an important role in the immune microenvironment of

gastric cancer (44). However, the relationship between

mitochondrial function and macrophage polarization in gastric

cancer and the underlying genetic regulatory mechanisms remain
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FIGURE 8

The relationship between risk score and chemotherapy drugs, MSI, TMB, and CNV. (A) Likelihood of sensitivity to different chemotherapy drugs,
(B) Correlation between risk score and chemotherapy drugs, (C) Chemotherapy drug scores between the two risk subgroups, (D) MSI scores
between the two risk subgroups and the correlation between MSI score and risk score, (E) Correlation between MSI score and chemotherapy drugs,
(F) TMB scores between the two risk subgroups and the correlation between TMB score and risk score, (G) CNV scores between the two risk
subgroups and the correlation between CNV score and risk score. * represent p<0.05, ** represent p<0.01, **** represent p<0.0001.
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unclear. This study aims to identify genes related to mitochondrial

function and macrophage polarization in gastric cancer through

bioinformatics analysis and biological sample validation, providing

new ideas for the diagnosis and treatment of gastric cancer.

In this study, we first collected gene expression data from gastric

cancer patients and screened out genes related to mitochondrial

function and macrophage polarization using bioinformatics

methods. We selected data of 375 cases of gastric cancer and 32

adjacent tissues from the TCGA dataset, as well as data from the

GSE183904 dataset with complete single-cell sequencing data to

identify related differentially expressed genes and establish the
Frontiers in Oncology 16
model. We also selected the larger sample-sized GSE15459 dataset

and GSE13911 dataset for validation. To avoid potential selection

bias, we used the data of all patients in the datasets for analysis.

Then, we used bioinformatics tools to perform functional

annotation and pathway analysis on these genes to reveal their

possible mechanisms in gastric cancer. Through analysis, we

identified a group of genes closely related to mitochondrial

function and macrophage polarization in gastric cancer. These

genes are mainly involved in biological processes such as energy

metabolism, oxidative stress, and immune response. In addition, we

also found that these genes are closely related to the prognosis of
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FIGURE 9

The relationship between stromal cells and prognostic genes. (A, B) Cell clusters in the GSE183904 dataset, (C) Significant marker genes
corresponding to each of the six cell subsets. (D) Proportions of the six cell subsets, (E) Expression differences of six prognostic genes in six different
cell subsets, (F) ReactomeGSA enrichment analysis of stromal cells in different tissues, (G) Pseudo-time analysis of three stromal cell subclasses.
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gastric cancer, suggesting that they may be potential targets for

gastric cancer treatment.

Glutathione peroxidase 3 (GPX3), the only known extracellular

glycosylated enzyme in the glutathione peroxidase family, is a

protein that contains a selenocysteine residue. It plays an

important role in cellular defense mechanisms by resisting stress

signals and scavenging reactive oxygen species, thereby maintaining

the genetic integrity of cells (45). GPX3 can induce mitochondrial-

related apoptosis through the AMPK/ERK1/2 pathway (46). GPX3

is also correlated with macrophage infiltration in tumors (47). In

various tumors, the GPX3 promoter is hypermethylated or its allele

is lost, leading to low expression (48, 49). Low expression of GPX3 is

closely related to the occurrence, development, and prognosis of

tumors such as gastric cancer (50).

Regulator of G protein signalling 2 (RGS2) is involved in cell

cycle, transmembrane receptor protein tyrosine kinase signaling

pathway, and regulation of G protein-coupled receptor protein

signaling pathway, with a negative regulatory function in signal

transduction (51). Studies have shown that the RGS2 gene also plays

a certain role in cancer. In gastric cancer, the RGS2 gene is

considered a new tumor biomarker. Fatty acid metabolism is

related to the changes in the immune microenvironment of

gastric cancer, and the RGS2 gene may participate in this process

by regulating the G protein signaling pathway (52). Additionally,
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the RGS2 gene exhibits abnormal expression in prostate cancer.

During the progression of prostate cancer, the downregulation of

RGS2 expression is associated with hypoxia and is related to the

regulation and influence of tumor phenotypes (53).

Versican, the protein encoded by the VCAN gene, is an

important extracellular matrix protein involved in biological

processes such as cell adhesion, migration, proliferation, and

signaling. Research has shown that the VCAN gene is negatively

regulated by methylation, leading to its high expression in cancer

tissues (54). In gastric cancer, VCAN is overexpressed and can

predict the response to adjuvant chemotherapy, adjuvant

radiotherapy and immunotherapy (55).

The CTHRC1 gene encodes collagen triple helix repeat protein

1, which plays an important role in various biological processes,

including inhibiting collagen deposition, promoting cell migration,

and accelerating vascular repair. In recent years, the role of

CTHRC1 in cancer research has gradually emerged, especially in

gastric cancer, hepatocellular carcinoma, colorectal cancer,

esophageal cancer, and other cancers (56). The expression of

CTHRC1 protein in gastric cancer tissues is significantly higher

than that in adjacent tissues, and there is a certain correlation

between the expression of CTHRC1 protein and the prognosis of

gastric cancer patients. CTHRC1 increases the expression of

CXCR4 by up-regulating the expression of HIF-1a, ultimately
A

B

C

FIGURE 10

Chromosome Localization, subcellular Localization, and potential regulatory analysis. (A) Chromosome localization analysis of six prognostic genes,
(B) subcellular localization of six prognostic genes, (C) lncRNA-miRNA-mRNA network of six prognostic genes.
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promoting cell migration and invasion (57). In colon cancer,

CTHRC1 remodels infiltrating macrophages through interaction

with TGF-b receptors, promoting liver metastasis of colorectal

cancer cells (58).

The gene for Gap Junction Alpha-1 (GJA1), also known as

Connexin43 (Cx43), is a key gap junction protein necessary for the

propagation of action potentials between adjacent cells (59). The

GJA1 gene also plays a role in cancer. In breast cancer, the

expression of GJA1 is related to tumor subtype (60). In colorectal

cancer, the loss of GJA1 expression is positively correlated with

patient metastasis and poor prognosis. Overexpression of GJA1 can

inhibit the progression of colorectal cancer and enhance cancer cell

sensitivity to 5-fluorouracil (5-FU) (61). The function of the GJA1

gene in gastric cancer is still unclear. Some studies have shown that

the expression level of GJA1 protein is low in gastric cancer tissue,

and its low expression is associated with the progression and poor

prognosis of gastric cancer (62), which is consistent with our

analysis results but inconsistent with the results of the TCGA

database. This suggests that the role of the GJA1 gene in the

occurrence and development of gastric cancer may be complex.

Currently, the specific mechanism of GJA1 in gastric cancer still
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requires further investigation to provide new ideas and methods for

the diagnosis and treatment of gastric cancer.

LOX is a copper-dependent monoamine oxidase that

participates in the covalent cross-linking of collagen and elastin in

the extracellular matrix, thereby maintaining the normal structure

and function of the extracellular matrix (63). LOX can affect VEGF

induction, HIF-1a activation, and other mechanisms, playing an

important role in the occurrence, development, invasion, and

metastasis of various tumor (64). In gastric cancer, the

downregulation of LOX expression can downregulate the

expression of MMP-2 and MMP-9 in cancer cells (65). Literature

shows that the expression level of LOX in gastric cancer is usually

high, which is consistent with the results of TCGA and GEO

databases (66). However, our verification results may be limited

by the sample size and show opposite results, which can be further

verified with more samples in the future.

This study revealed the potential mechanism of mitochondrial

function and macrophage polarization-related genes in gastric

cancer through bioinformatics analysis, and verified the

expression of these genes in gastric cancer tissues by qRT-PCR,

providing new ideas for the diagnosis and treatment of gastric
A

B

C

FIGURE 11

Experimental validation of prognostic gene Expression in GC, (A) Expression of six prognostic genes in the TCGA-GC dataset, (B) Expression of six
prognostic genes in the GSE13911 dataset, (C) Expression of six prognostic genes in GC tumor tissues and adjacent normal tissues. * represent
p<0.05, ** represent p<0.01, *** represent p<0.001, **** represent p<0.0001, ns represent no significant different.
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cancer. Gene diagnosis is playing an increasingly important role in

clinical work. Currently, samples from patients after surgery are

often subject to genetic analysis. Therefore, in future work, it is

highly feasible to apply the nomogram composed of these genes for

clinical diagnosis, prognosis determination and clinical decision-

making. The target genes screened in this study have not yet been

functionally validated at the cellular level. These genes may not only

function in tumor cells but also play important roles in stromal cells

and affect the behavior of tumor cells. Stromal cells in tumors may

impact aspects such as tumor occurrence, development, metastasis,

and treatment response through means like growth factor signal

transduction, influencing the function of immune cells in the tumor

microenvironment, and providing nutrients for tumor cells. In the

future, we will further validate the functions of these genes through

cellular and animal experiments, focusing on exploring their

mechanisms in mitochondrial function and macrophage

polarization in gastric cancer, in order to more comprehensively

understand the pathogenesis and treatment of gastric cancer.
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