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Exploring the impact of network
depth on 3D U-Net-based
dose prediction for cervical
cancer radiotherapy
Mingqing Wang, Yuxi Pan, Xile Zhang and Ruijie Yang*

Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China
Purpose: The 3D U-Net deep neural network structure is widely employed for

dose prediction in radiotherapy. However, the attention to the network depth

and its impact on the accuracy and robustness of dose prediction

remains inadequate.

Methods: 92 cervical cancer patients who underwent Volumetric Modulated Arc

Therapy (VMAT) are geometrically augmented to investigate the effects of

network depth on dose prediction by training and testing three different 3D U-

Net structures with depths of 3, 4, and 5.

Results: For planning target volume (PTV), the differences between predicted and

true values of D98, D99, and Homogeneity were statistically 1.00 ± 0.23, 0.32 ±

0.72, and -0.02 ± 0.02 for themodel with a depth of 5, respectively. Compared to

the other two models, these parameters were also better. For most of the organs

at risk, themean andmaximum differences between the predicted values and the

true values for the model with a depth of 5 were better than for the other

two models.

Conclusions: The results reveal that the network model with a depth of 5 exhibits

superior performance, albeit at the expense of the longest training time and

maximum computational memory in the three models. A small server with two

NVIDIA GeForce RTX 3090 GPUs with 24 G of memory was employed for this

training. For the 3D U-Net model with a depth of more than 5 cannot be

supported due to insufficient training memory, the 3D U-Net neural network

with a depth of 5 is the commonly used and optimal choice for small servers.
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1 Introduction

In radiotherapy, dose prediction has recently emerged as a

significant area of investigation. Traditionally, radiotherapy dose

prediction heavily relied on the expertise and predefined rules of

plan designers, which made the process subjective and inconsistent.

These limitations motivated researchers to delve into the

application of deep learning techniques to enhance the accuracy

and personalize the prediction of radiation dose (1).

The purpose of investigating radiotherapy dose prediction is to

enhance the effectiveness of radiotherapy planning, minimize

damage to healthy tissues, and improve the treatment success

rate. The advancement of this technology has facilitated

personalized radiotherapy treatment, allowing planners to develop

more customized treatment plans based on individual patient

circumstances (2). The 3D U-Net neural network structure holds

tremendous significance in the field of image segmentation. This

architecture, derived from the 2D U-Net, is tailored to the

segmentation of volumetric images and enjoys widespread

adoption (3, 4). Additionally, the 3D U-Net is specifically

engineered for 3D data, rendering it an invaluable asset in the

realm of dose prediction. The input of computer tomography (CT)

images, organs at risk (OARs) and planning target volume (PTV)

masks, and beam direction allows for the training and validation of

an end-to-end network, resulting in a model that provides desired

outcomes (1, 2, 5–20). However, the efficacy of the 3D U-Net model

may be subject to a range of variables, including the network’s depth

(2, 4, 21). In this context, “depth” refers to the quantity of both

encoding and decoding layers within the network. Previous studies

have examined the impact of neural network depth on image

segmentation, but there is a lack of relevant research on the effect

of deep learning dose prediction. Using this as a basis, we carried

out a relevant study (23–26). Increased depth has the potential to

capture more intricate features and achieve higher levels of

accuracy. Nevertheless, more profound architectures may also

lead to heightened computational complexity and lengthier

training periods (21, 23–26). Consequently, thorough

experimentation is often essential to determine the optimal depth

for a given task.

Despite a 3D patch-based technique’s potential to alleviate

large GPU memory demands from 3D volume inputs, this often

sacrifices prediction accuracy. Given a 3D U-net model depth

exceeding 5 is unsupported by insufficient training memory, we

analyze 3, 4 and 5 depth structures. Our goal is to understand

network depth’s impact on deep learning-based dose prediction

for cervical cancer radiotherapy and identify optimal depth

yielding the best results.
Abbreviations: VMAT, Volumetric Modulated Arc Therapy; PTV, Planning

Target Volume; CT, computer tomography; OARs, organs at risk; cc, cubic

centimeter; MSE, mean square error; GPU, graphics processing unit.
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2 Materials and methods

2.1 Network architecture

The 3D U-Net is a convolutional neural network architecture

that has been specifically devised for the purpose of carrying out

image segmentation tasks. It is essentially an extension of the U-Net

architecture and has been tailored for application in 3D image

scenarios. The network is essentially made up of two indispensable

components, namely, the down-sampling path (also known as the

encoder path) and the up-sampling path (also referred to as

the decoder path). This particular configuration is reminiscent of

the shape of the letter “U”, thereby accounting for the title given

to the architecture. In the network architecture of 3D U-Net, each

layer of the neural network comprises two 3x3x3 convolutional

operations, which are followed by Batch Normalization and the

ReLU activation function. During the downsampling process, a

2x2x2 max pooling operation is utilized with a stride of 2. In the

upsampling (synthesis path) process, a 2x2x2 upconvolution is

applied, also with a stride of 2, and this is followed by two 3x3x3

convolutional operations and subsequent Batch Normalization.

To be more specific, the input to the 3D U-Net network is a 4-

dimensional OARs mask matr ix wi th dimensions of

128*128*128*6. The network then processes this input and

generates an output dose matrix with dimensions of 128*128*128

voxel. The down-sampling pathway is composed of convolution

and pooling operations that progressively diminish the dimensions

of the input image whilst capturing more advanced characteristics.

Conversely, the up-sampling pathway employs deconvolution

operations to gradually restore the image’s size, amalgamating

low-level and high-level features to yield the ultimate output.

A crucial component within the network architecture is the

bottleneck layer, located in the middle. The intermediate layer plays

a pivotal role in linking the down-sampling and up-sampling

pathways, thereby allowing for the fusion of features and

transmission of data. The utilization of this U-shaped

configuration in the 3D U-Net architecture facilitates the capture

of image features that span multiple scales and levels, thereby

resulting in significantly enhanced accuracy in dose prediction.

The 3D U-Net’s detailed structure is depicted in Figure 1.

The responsibility of producing pixel-level regression

predictions for the input image lies with the output layer of the

network. The 3D U-Net effectively extracts and integrates image

features via the down-sampling and up-sampling paths and the

bottleneck layer, resulting in precise dose prediction.

This research delves into multiple versions of the 3D U-Net

architecture. A network containing 54 layers is present in the case of

a depth of 3, whereas a depth of 4 has 69 layers. Moreover, the study

explores a depth of 5, which elevates the total number of layers to

84. The corresponding total parameters for these structures are 19

million, 77 million, and 308.7 million, respectively. The image

presented in Figure 2 exhibits the training and testing procedures

for the three network structures.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1433225
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1433225
2.2 Data acquisition

To assess the efficacy of our approach, we employed

information obtained from a cohort of 92 individuals afflicted

with cervical cancer who underwent VMAT during the period

spanning 2012 through 2015. The radiation dose prescribed for

all participants amounted to 50.4 Gy/28 fraction. All data

underwent a secondary review to remove invalid, erroneous, or

incomplete data records. To better adapt the model training, dose

maps were normalized. CT images may contain contrast agents and

metal implants, as well as inherent noise, all of which can interfere

with dose prediction accuracy. This also affects our analysis of the

depth of the network versus dose prediction accuracy. All OAR

masks are binary images with only two grayscale values (0, 1). These

issues pose challenges during training, necessitating preliminary
Frontiers in Oncology 03
experiments to find optimal parameters and avoid problems. The

preprocessed data were saved in the format needed for model

training. The dataset was randomly split into a training set,

validation set, and test set. 72 patients were randomly picked

from the group for the training set, with another 10 each for the

validation and test sets.

We opted to employ the 3D U-Net framework for network

training, owing to its potential for dose prediction. In order to

facilitate clinical applicability, the input data underwent

standardization with a constant plane resolution of 1mm*1mm

alongside a size of 128*128 pixel2. Although the axial resolution

remained constant at 5mm, the number of slices exhibited variability.

Consequently, we uniformly set the dimensions to 128*128*128 voxel.

Six distinct bodily organs, specifically the Body, Bladder,

Rectum, PTV, Small Intestines, and Colon, were taken into
FIGURE 2

The flowchart of the training and testing process using 3D U-Net for dose prediction.
FIGURE 1

The 3D U-Net architecture.
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account as the inputs for the network. The recorded volume

information for the PTV and various OARs was meticulously

documented for both the training and testing datasets, as

provided in Table 1. It may be inferred that the training,

validation, and test sets exhibit comparatively similar

distributions of data. To avert over-fitting during model training,

all training and validation datasets underwent geometric

augmentation. In our approach to data augmentation, we utilized

a variety of geometric transformation methods, which encompassed

mirroring the images both horizontally and vertically, introducing

random rotational changes, and applying random shifts along both

the horizontal and vertical axes.
2.3 Implementation details

To obtain the best model, we selected the output model with the

smallest mean variance in the validation set. The mean-variance

values for the three neural network models were 29.182, 28.497, and

27.39, achieved at 13600, 9600, and 36400 iterations, respectively.

The Adam optimizer was utilized in conjunction with a cost

function based on mean square error (MSE) for the purpose of

minimizing the loss incurred during training. The 2000 cycles that

the models underwent for training had a batch size of 2 and depths

of 3, 4, and 5 respectively. The training process took approximately

3102 minutes 37 seconds, 3192 minutes 41 seconds, and 3507

minutes 40 seconds for each model.

The reduction in the learning rate was determined by evaluating

the number of iterations. A starting learning rate of 0.0003 was

utilized with a decay coefficient of 0.95. The iterations signify the

count of weight updates carried out by the model. All parameter

selections have gone through extensive preliminary experiments,

and the optimal parameters were determined before the training

began. The implementation of our network was executed on a

workstation furnished with two NVIDIA GeForce RTX 3090 GPUs.
3 Results

The prediction results of the 3D U-Net neural network model

with depths of 3, 4, and 5 are shown in Figure 3. By analyzing the

difference in dose distribution, it is observed that the accuracy of

PTV prediction is improved with the increase in the depth of the

network. The improvements are especially evident when studying
Frontiers in Oncology 04
the dose volume histogram (DVH) diagram, which reveals a gradual

reduction in the high dose part of the PTV area. This reduction

results in a gradual overlap with the PTV, indicating more precise

dose distribution prediction in PTV. Additionally, the prediction of

the OARs is significantly decreased, suggesting a lower risk of

adverse effects.

However, it is worth noting that the two deep network models

with depths 3 and 4 were terminated prematurely due to over-fitting

during training. As a result, the detailed information in the PTV was

relatively lost, leading to a dose distribution prediction with

relatively more discrete values. Consequently, the prediction was

not as good as desired.

On the contrary, the deep neural network model with a depth of

5 had the largest network depth and underwent more extensive

training without encountering over-fitting issues. This model was

able to produce a dose distribution with excellent continuity,

ensuring a more accurate and consistent prediction.

Figure 4 depicts the outcomes of the analysis of the absolute

dose error, with particular emphasis on 10 treatment plans and their

corresponding mean and maximum doses in each OAR and the

PTV The symbols (a), (b), (c), (d), (e), and (f) demonstrate the

mean and maximum dispersion of the absolute dose error values

from the 3D U-Net model for the depths of 3, 4, and 5

correspondingly. Upon scrutinizing the mean absolute error of

each OAR and PTV, it was observed that the Body demonstrated

the most significant deviation, followed by the bladder and small

intestine, and subsequently the remaining organs at risk and the

PTV. Furthermore, it was discovered that the mean absolute error

consistently decreased as the network depth grew.

Furthermore, analyzing the maximum absolute error in each

organ and PTV revealed that the body exhibited the highest

deviation, mainly noticeable in the PTV. On the other hand, the

absolute dose deviation in other regions was comparatively small

when compared to the analysis of mean absolute error. It was

perceived that the minimum absolute error was decreased with a

boost in the network depth, indicating a noteworthy improvement

in the prediction accuracy of the network model.

In order to gain a comprehensive comprehension of the dose

distribution within the PTV, we performed PTV dose coverage

statistics for both the true and predicted dose. Specifically, we

employed three evaluation indicators, namely D98, D99, and HI.

D98 and D99 represent the dose obtained by 98% and 99% of the

target volume, respectively, while HI is the homogeneity index. HI is

calculated using the formula (D2% - D98%) divided by DP. Here, D2%
TABLE 1 PTV and OARs volume (cubic centimeter (cc)) statistics for training, validating and testing datasets (mean ± standard deviation).

Training Validating Testing

Body 28028.42 ± 6524.48 35427.03 ± 7906.83 31100.48 ± 2310.39

Bladder 283.70 ± 163.54 307.08 ± 219.29 259.47 ± 85.19

Rectum 60.69 ± 27.82 78.61 ± 49.13 68.13 ± 31.75

Small Intestines 531.77 ± 217.97 591.92 ± 181.05 515.62 ± 227.19

Colon 327.68 ± 186.55 278.06 ± 97.65 416.09 ± 346.05

PTV 1082.30 ± 267.19 1124.33 ± 125.37 1148.47 ± 145.97
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refers to the dose received by 2% of the highest irradiated dose, and

DP refers to the prescribed dose. This formula for computing HI is

widely used in the existing literature (22). As shown in Table 2, we

analyzed our predictions with the ground truth in a paired two one-

sided t-test. Furthermore, a Wilcoxon rank-sum test was conducted
Frontiers in Oncology 05
to assess the statistical differences between the three depths of

network models on the feature parameters D98, D99, and HI. The

results demonstrated no statistically significant differences (p >

0.05) between the depth 3 and depth 4 models for both D98 and D99,

as well as HI. However, a statistically significant difference (p < 0.05)
FIGURE 4

shows the absolute dose error results of 10 testing plans for mean and maximum doses in each OAR and PTV. Where (A, B) are the mean and
maximum violin distribution of absolute dose error values for the 3 D U-Net model with depth 3, (C, D) are the mean and maximum violin
distribution of absolute dose error values for the 3 D U-Net model with depth 4, (E, F) are the mean and maximum violin distribution of absolute
dose error values for the 3 D U-Net model with depth 5, respectively.
FIGURE 3

presents the prediction results obtained from the implementation of the 3D U-Net neural network models with different depths of 3, 4 and 5. The
results of the models for depths 3, 4 and 5 are analyzed from top to bottom. From left to right, the input terms are contours, the true dose
distribution map, the predicted dose distribution map, the difference map and the DVH comparison between the true dose and the predicted dose.
(– Refers to the true dose distribution, - Refers to the predicted dose distribution).
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was observed between the depth 3 and depth 5 models, and between

the depth 4 and depth 5 models. In terms of numerical

performance, the depth 5 model exhibited the most superior results.

Table 3 presents the mean and maximum dose’s mean and

standard deviation across the OARs and the PTV for the ten test

plans. The outcomes suggest that the projected dose is accurate in
Frontiers in Oncology 06
comparison to the authentic dose. As illustrated in Table 3, we

conducted a paired two-sample one-sided t-test to evaluate the

accuracy of our predictions in comparison to the ground truth.

Additionally, a Wilcoxon rank sum test was conducted to assess

statistical differences between the three deep network models on

different OARs and PTV. No statistically significant differences
TABLE 3 The results of 10 testing plans for mean and maximum doses in each OAR and PTV (mean ± standard deviation).

Mean dose Maximum dose

True
Depth3/
P value

Depth4/
P value

Depth5/
P value

P
ValueDepth

(3vs4/
3vs5/4vs5)

True
Depth3/
P value

Depth4/
P value

Depth5/
P value

P
Value
Depth
(3vs4/

3vs5/4vs5)

Body
10.06
± 0.99

9.51 ± 0.83/
4.1e-4

9.50 ± 0.80/
3.5e-4

9.79 ± 0.81/
4.1e-2

0.91/
0.48/
0.44

56.81
± 1.17

59.08 ±
0.56/
4.8e-4

59.57 ±
0.45/
1.5e-4

56.63 ±
0.32/
0.62

0.04/
1.08e-5/1.08e-5

Bladder
41.81
± 1.77

42.12 ±
2.59/
0.76

42.40 ±
2.65/
0.55

43.05 ±
2.38/
0.20

0.53/
0.12/
0.22

56.00
± 1.02

57.84 ±
0.17/
3.4e-4

57.89 ±
0.60/
7.0e-4

55.65 ±
0.38/
0.25

0.68/
1.08e-5/1.08e-5

Rectum
42.70
± 3.91

40.74 ±
3.90/
0.08

41.53 ±
3.67/
0.24

41.96 ±
3.84/
0.48

0.58/
0.48/
0.74

56.07
± 0.98

56.21 ±
0.45/
0.72

55.71 ±
0.32/
0.29

54.85 ±
0.66/
2.4e-3

0.01/
2.1e-4/5.2e-3

Small
Intestines

23.77
± 5.59

21.68 ±
6.17/
4.2e-3

22.95 ±
6.33/
0.14

23.32 ±
6.13/
0.38

0.68/
0.58/
0.74

55.55
± 0.85

56.59 ±
0.56/
5.4e-3

58.12 ±
0.68/
2.4e-6

55.17 ±
0.50/
0.09

2.1e-4/
1.3e-4/
1.08e-5

Colon
25.02
± 4.72

23.12 ±
4.48/
3.5e-4

23.81 ±
4.85/
1.9e-3

24.48 ±
4.75/
0.12

0.74/
0.48/
0.63

55.06
± 0.60

56.27 ±
0.30/
1.1e-4

56.74 ±
0.69/
1.1e-4

55.36 ±
0.74/
0.07

0.08/
2.9e-3/
7.3e-4

PTV
53.38
± 0.33

53.08 ±
020/
0.027

53.22 ±
0.25/
0.13

52.89 ±
0.31/
1.2e-3

0.35/
0.05/
0.01

56.81
± 1.17

59.08 ±
0.56/
4.8e-4

59.57 ±
0.45/
1.5e-4

56.63 ±
0.32/
0.62

0.04/
1.1e-5/
1.1e-5
TABLE 2 PTV dose coverage statistics for true and predicted doses (mean ± standard deviation).

True dose Predicted dose True-prediction P value

D98_depth3 47.00 ± 0.91 45.67 ± 0.36 1.33 ± 0.55 2.57e-3

D98_depth4 47.00 ± 0.91 45.64 ± 0.33 1.36 ± 0.58 2.86e-2

D98_depth5 47.00 ± 0.91 46.00 ± 0.68 1.00 ± 0.23 3.64e-2

D98_Pvalue
Depth(3vs4/3vs5/4vs5)

0.85/0.02/0.01

D99_depth3 45.28 ± 1.20 44.12 ± 0.44 1.16 ± 0.76 2.51e-2

D99_depth4 45.28 ± 1.20 44.18 ± 0.39 1.1 ± 0.81 2.85e-2

D99_depth5 45.28 ± 1.20 44.96 ± 0.48 0.32 ± 0.72 0.43

D99_P value
Depth(3vs4/3vs5/4vs5)

0.76/1.5e-3/2.9e-3

Homogeneity_depth3 0.17 ± 0.03 0.22 ± 0.01 -0.05 ± 0.02 1.26e-3

Homogeneity_depth4 0.17 ± 0.03 0.21 ± 0.01 -0.04 ± 0.02 6.36e-3

Homogeneity_depth5 0.17 ± 0.03 0.19 ± 0.01 -0.02 ± 0.02 0.16

Homogeneity_P value
Depth(3vs4/3vs5/4vs5)

0.059/5.8e-4/2.8e-3
The bolded values indicate the best performance.
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were observed between the OARs with regard to mean dose (p >

0.05). However, a statistically significant difference was identified

between the PTV for depths 4 and 5 (p < 0.05). With regard to the

maximum dose, a statistically significant difference (p < 0.05) was

observed between the OARs and PTV in all three models, with the

exception of the bladder and colon. In terms of numerical

performance, the depth 5 model exhibited the most superior results.

Regarding the PTV, the D98 value from the model with a depth

of three is 47.00 ± 0.91, while the projected dose has a mean value of

45.67 ± 0.36. The evidence implies that the anticipated dosage is

slightly below the authentic amount, with a mean variance of 1.33 ±

0.55. Likewise, for models with depths 4 and 5, the anticipated doses

are also marginally lower than the authentic doses, with mean

differences of 1.36 ± 0.58 and 1.00 ± 0.23, respectively. The D99

follows a similar pattern, with the projected dose being marginally

lower than the authentic dose.

The HI, which quantifies the consistency of the dose

distribution within the PTV, exhibits negative values across all

three models, thus signifying that the anticipated doses demonstrate

greater variability when compared to their actual counterparts. It is

noteworthy that the increase in network depth results in a decrease

in HI values, suggesting that the dose distribution tends towards

uniformity as the neural network’s depth increases.

These results suggest that the predicted doses from the 3D U-

Net neural network models are slightly lower than the true doses

within the PTV. However, the dose deviations are relatively small

and decrease with the increase in the network depth, indicating

improved prediction accuracy.

4 Discussion

The 3D U-Net deep neural network structure is widely utilized

for dose prediction in radiotherapy. However, the attention to the

network depth and its impact on the accuracy and robustness of

dose prediction remains inadequate. In this study, we explored the

effects of network depth on dose prediction by training and testing

three different 3D U-Net structures with depths of 3, 4, and 5 using

data from 92 cervical cancer patients who underwent Volumetric

Modulated Arc Therapy (VMAT). Our statistical analysis revealed

significant differences in maximum dose for various OARs and PTV

parameters (D98, D99, and HI) across depth 4 and depth 5 models.

Deeper models generally showed smaller maximum dose and better

uniformity. These findings inform subsequent model depth

selection, suggesting a deeper network structure within

constraints of limited training data, hardware capabilities, and

reasonable hyperparameter and data augmentation settings.

Although deeper networks may have more parameters and be

prone to over-fitting, they can capture more relevant features of the

radiation dose and aid in accurate prediction. Additionally, the

network depth affects training time, computational resources, and

potential issues like gradient disappearance or explosion. Overall,

the selection of network depth involves balancing various factors

and considering the trade-offs between accuracy, robustness, and

resource constraints.

While other deep learning algorithms like GAN and diffusion

models with similar U-net structures can also be used for dose
Frontiers in Oncology 07
prediction, the impact of network depth is a common issue. Taking

the 3D U-net structure as an example supports our conjecture

(1, 15–17). The impact of network depth on radiotherapy dose

prediction requires careful evaluation and optimization for specific

tasks and datasets. Adding depth to a network significantly

increases complexity and enhances information understanding

and processing, improving prediction accuracy. However, deeper

networks require more GPU memory and training time. Choosing

the appropriate depth is crucial, guided by task-specific testing and

evaluation. Data enhancement via geometric techniques is

beneficial but challenging due to memory and computational

power requirements. Inadequate data augmentation often leads to

overfitting, emphasizing the importance of selecting appropriate

network depth. Limitations like the inability to test 3D U-nets

beyond depth 5 due to GPUmemory constraints further complicate

matters. It’s worth noting a 128x128x128 image is saturated for 3D

U-net testing at depth 5.
5 Conclusion

The study focused on assessing the influence of neural network

models with varying depths in predicting radiation dose for cervical

cancer. The results reveal that the network model with a depth of 5

exhibits superior performance, albeit at the expense of the longest

training time and maximum computational memory in the three

models. A small server with two NVIDIA GeForce RTX 3090 GPUs

with 24 G of memory was employed for this training. The 3D U-net

neural network model with a depth of more than 5 cannot be

supported due to insufficient training memory, while the

comparative analysis of the models with depths of 3, 4, and 5

yields the best performance for the model with a depth of 5.

Therefore, for the training of small servers, the 3D U-Net neural

network model with depth 5 is the commonly used and optimal

choice. This informs subsequent model depth selection, suggesting

a deeper network structure within constraints of limited training

data, hardware capabilities, and reasonable hyperparameter and

data augmentation settings.
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