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Background: Pathomics has emerged as a promising biomarker that could

facilitate personalized immunotherapy in lung cancer. It is essential to

elucidate the global research trends and emerging prospects in this domain.

Methods: The annual distribution, journals, authors, countries, institutions, and

keywords of articles published between 2018 and 2023 were visualized and

analyzed using CiteSpace and other bibliometric tools.

Results: A total of 109 relevant articles or reviews were included, demonstrating

an overall upward trend; The terms “deep learning”, “tumor microenvironment”,

“biomarkers”, “image analysis”, “immunotherapy”, and “survival prediction”, etc.

are hot keywords in this field.

Conclusion: In future research endeavors, advanced methodologies involving

artificial intelligence and pathomics will be deployed for the digital analysis of

tumor tissues and the tumor microenvironment in lung cancer patients,

leveraging histopathological tissue sections. Through the integration of

comprehensive multi-omics data, this strategy aims to enhance the depth of

assessment, characterization, and understanding of the tumor microenvironment,

thereby elucidating a broader spectrum of tumor features. Consequently, the

development of amultimodal fusionmodel will ensue, enabling precise evaluation

of personalized immunotherapy efficacy and prognosis for lung cancer patients,

potentially establishing a pivotal frontier in this domain of investigation.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1432212/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1432212/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1432212/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1432212/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1432212&domain=pdf&date_stamp=2024-07-08
mailto:shihongcan@163.com
https://doi.org/10.3389/fonc.2024.1432212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1432212
https://www.frontiersin.org/journals/oncology


Yuan et al. 10.3389/fonc.2024.1432212
1 Introduction

Lung cancer remains one of the most prevalent malignancies and

represents the foremost cause of cancer-related mortality worldwide

(1, 2), the majority of lung cancers (80–90%) manifest as non-small

cell lung cancer (NSCLC), often diagnosed at an advanced stage

(65%), potentially with concurrent local or distant metastasis (3).

Recent advances in immunotherapy, particularly the use of immune

checkpoint inhibitors (ICIs), have shown promising outcomes in

enhancing the prognosis of lung cancer patients (4). Nevertheless, not

all patients experience the benefits of immunotherapy, highlighting

the need for additional research into predictive biomarkers of

immune response. These biomarkers, which may include

substances, structures, or products of processes within the body,

have the potential to facilitate personalized immunotherapy by

enabling the monitoring of immune reactions.

Each lung cancer patient undergoes histopathological diagnosis,

involving the preparation of biopsy tissues into pathological slides

for examination. The traditional preservation method of using wax

embedding techniques for pathological slides can now be digitized

through computerization, archiving them as digital pathology

images. This technological advancement serves as a foundation

for applying big data analytics to digital pathology images.

Consequently, the field of pathomics has emerged (5). Pathomics

entails applying machine learning techniques to extract large-scale,

objectively quantifiable, and readily analyzable datasets from

digitally scanned pathological tissue images. Consistent with the

pathological diagnostic requirements of diseases, morphological

features, including size and shape of pathological images, along

with multi-dimensional subtle features reflecting potential

biological characteristics such as texture features and edge

gradient features, are extracted. These features can be utilized for

quantitative disease screening, diagnosis, prognosis prediction, and

other applications (6).

In this study, CiteSpace (7) was utilized for the inaugural

analysis of hotspots and trends in the application of pathomics in

lung cancer. The objective is to provide valuable insights for

scholars involved in research within this domain.
2 Materials and methods

2.1 Data collection

Web of Science Core Collection (WoSCC) database was chosen

as the literature retrieval platform. The retrieval period spanned

from 2018 to 2023, with the final search conducted on October 20,

2023. Subject terms were exclusively employed as the search

method, and the search formula was: TS= (“Pathomics” OR

“Pathomics” OR “Digital Pathology” OR “Whole-slide Imaging”

OR “Whole Slide Imaging” OR “Computational Pathology”) AND

TS=(“Lung Cancer” OR “Pulmonary Cancer” OR “Carcinoma of

Lung” OR “Pulmonary Carcinoma” OR “Cancer of Lung” OR

“Bronchogenic Carcinoma” OR “Bronchogenic” OR “Cancer of

the Lung” OR “NSCLC” OR “SLC”), document type: Articles or

Review Articles; a total of 109 documents were retrieved.
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2.2 Statistical methods

Export the complete records and referenced bibliographies of

the 109 documents retrieved from WoSCC in Text format,

comprising 85 articles and 24 reviews. Conduct a comprehensive

analysis of the literature using CiteSpace 6.2.R4 (64-bit) Basic,

focusing on the country, institution, authorship, keywords, and

cited references. The bibliometric online analysis platform,

developed by the National Science Library of the Chinese

Academy of Sciences, was employed to conduct a visual analysis

of historical keywords and national collaborations.
3 Results

3.1 Annual publication volume in WoSCC

A total of 109 matching documents were retrieved, and the

overall publication output exhibited a general upward trend,

especially reaching a contribution rate of 26.61% in 2021

(Figure 1). The annual average publication output is approximately

21.8 articles. The results indicate a gradual increase in the attention to

pathomics research in the context of lung cancer.
3.2 Distribution of source journals

The literature selected from the 109 studies on pathomics in the

management of lung cancer has been indexed by 146 journals. For

the top 10 journals in terms of publication output, detailed

information on Journal Citation Reports (JCR) category,

publication quantity, impact factor (IF), and their respective

contribution percentages is provided in Table 1.
3.3 Visualization of collaborations between
countries and institutions

Running the CiteSpace software for country analysis resulted in

a knowledge graph with 35 nodes and 80 edges (Figure 2). Each
FIGURE 1

Annual analysis of the number of articles issued.
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circular node represents a country, with the size indicating the

quantity of publications from that country. The connections

between nodes represent collaborative relationships between

countries, with the thickness of the connections reflecting the

degree of collaboration. Different colors of nodes represent

different time periods (8), the size of the purple circles reflects the

centrality values indicating the influence of each country.

Leveraging the bibliometric online analysis platform, Figure 3

depicts the contributions of different countries in the field.

Distinctly colored blocks represent the proportional contribution

of each country. Table 2 presents the top 5 institutions in terms of

publication output.
3.4 Visualization of author collaborations

Running the CiteSpace software, author analysis resulted in a

knowledge graph with 200 nodes and 383 edges (Figure 4). Each
Frontiers in Oncology 03
circular node represents an author, and the connections between

nodes represent collaborative relationships between authors. The

thickness of the connections reflects the degree of collaboration.

Different colors of nodes represent different time periods.

Conducting a co-occurrence analysis on the author team

collaboration network based on the literature retrieved from

WoSCC, Table 3 is presented, listing the top 5 authors in terms

of publication output along with their affiliated institutions in this

research field.
3.5 Co-occurrence analysis of keywords

Keyword-related analysis, as manifested in the visualization of

co-occurrence patterns, is crucial for delineating the research

hotspots and frontiers within a given domain. Running the

CiteSpace software with author keywords as node types, a co-

occurrence network of keywords with 159 nodes and 334 edges
TABLE 1 Top 10 journals in terms of publication volume.

Journal Titles JCR Number IF Rate%

CANCERS Q1 11 5.2 10.092

MODERN PATHOLOGY Q1 6 7.5 5.505

EBIOMEDICINE Q1 3 11.1 2.752

FRONTIERS IN ONCOLOGY Q2 3 4.7 2.752

HISTOPATHOLOGY Q1 3 6.4 2.752

IEEE ACCESS Q2 3 3.9 2.752

MEDICAL IMAGE ANALYSIS Q1 3 10.9 2.752

BIOINFORMATICS Q1 2 5.8 1.835

COMPUTERS IN BIOLOGY
AND MEDICINE

Q1 2 7.7 1.835

IEEE TRANSACTIONS ON
MEDICAL IMAGING

Q1 2 10.6 1.835
FIGURE 2

Visual map of countries.
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was generated (Figure 5). After removing redundant terms that

overlap with the search strategy, an analysis of the co-occurrence

frequency and centrality values of keywords in this field (Table 4)

reveals that the prominent keywords include: deep learning,

artificial intelligence (AI), computer-aided diagnosis, tumor

microenvironment, feature extraction, image analysis, tumor

mutation burden, survival prediction, markov random field,

mixture model. Furthermore, Figure 6 illustrates the temporal

frequency changes of different keywords over time. It highlights

the research focal points in the past few years related to the

application of AI-based pathomics in the diagnosis and treatment

of lung cancer. These themes reflect the proactive role of pathomics

in aiding diagnosis, classification, predicting treatment efficacy, risk

assessment, exploring emerging biomarkers, and analyzing gene
Frontiers in Oncology 04
expression levels in the context of lung cancer diagnosis

and treatment.
3.6 Keyword cluster analysis

Keyword cluster analysis involves utilizing the log-likelihood

rate (LLR) method to analyze the connection relationships among

significant keyword nodes. This method reflects the hot topics

within the research domain, with closely connected keywords in a

cluster indicating higher research intensity. Larger node values

within a cluster signify greater research interest. By examining

these clusters, it is possible to predict the developmental patterns

and emerging trends in the research field (9).

According to the keyword cluster analysis (Figure 7),

researchers’ studies are concentrated in the following 10 key

areas: #0 parameter auto-tuning; #1 concordance study; #2

prognostic and predictive; #3 mixture model; #4 lung cancer slide

cells; #5 non-small-cell lung cancer; #6 immunotherapy; #7 deep-

learning microscopy; #8 telepathology; #9 radiology. By employing

the clustering algorithm within CiteSpace software to organize title

terms and visualize them (Figure 8), a clear sequential pattern

emerges, encompassing: #0 spatial quantitative systems

pharmacology platform spqsp-io; #1 adaptive radiotherapy; #2

patient survival; #3 pd-11 expression; #4 digital analysis; #5

Bayesian hidden Potts mixture model; #6 bayesian collaborative

learning; #7 multi-stained feature matching; #8 oncology; #9

pathomics; Utilizing the clustering algorithm in CiteSpace to

group subject categories and create a visual representation

(Figure 9), a sequential progression of clusters is discernible,
TABLE 2 Top 5 institutions in terms of publication volume.

Rank Number Institution Country

1 8
CASE WESTERN
RESERVE UNIVERSITY

USA

2 8 UNIVERSITY OF TEXAS SYSTEM USA

3 6
LOUIS STOKES CLEVELAND
VETERANS AFFAIRS
MEDICAL CENTER

USA

4 6
UNIVERSITY OF TEXAS
SOUTHWESTERN MEDICAL
CENTER DALLAS

USA

5 6
US DEPARTMENT OF
VETERANS AFFAIRS

USA
FIGURE 3

Proportion of national contribution.
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including: #0 Pathology; #1 Mathematics; #2 Medicine, Research &

Experimental; #3 Computer Science, Theory & Methods; #4

Engineering, Multidisciplinary; #5 Statistics & Probability; #6

Imaging Science & Photographic Technology; #7 Biology; #8

Health Care Sciences Services; #9 Cell Biology. Employing the

clustering algorithm for keywords and generating a graphical

display (Figure 10), a sequential evolution of clusters is evident,

incorporating: #0 digital pathology; #1 machine learning; #2 deep

learning; #3 artificial intelligence; #4 lung cancer; # 5mixture model;

#6 computational pathology; #7 scale invariant feature transform;

#8 equity; #9 cancer immunopathology.

Each section is divided into 10 clustering modules, partial

clustering blocks overlap with each other, suggesting close

connections between these research areas. In addition to the

research retrieval terms, other clusters demonstrate that

pathomics in lung cancer research spans various fields, including

medical experimental research, computer science, cell biology,

statistics, and mathematics. Through advanced methods such as
Frontiers in Oncology 05
AI and machine learning, pathomics involves in-depth digital

analysis of tumor tissues and the tumor microenvironment based

on patients’ pathological tissue sections. It aims to construct hybrid

models, identify a multitude of pathological features, conduct

precise assessments, and predict tumor-related indicators,

including programmed death-ligand 1 Tumor cell Proportion

Score (PD-L1 TPS). The goal is to assist in personalized

diagnosis and treatment for patients and contribute to clinical

decision-making by leveraging the synergies between AI and

clinical medicine.
3.7 Cited references

A total of 426 relevant articles were retrieved from WoSCC,

accumulating a total of 10,174 citations. The average number of

citations per article is 24. The top 10 most cited articles are listed

in Table 5.
TABLE 3 Top 5 authors in terms of publication volume.

Rank Author Institution Country Number

1 Xiao, Guanghua University of Texas Southwestern Medical Center USA 5

2 Xie, Yang
University of Texas Southwestern Medical Center
Clinic Science

USA 4

3 Bera, Kaustav CASE WESTERN RESERVE University USA 4

4 Baxi, Vipul BRISTOL MYERS SQUIBB USA 3

5 Lu, Cheng University of ALBERTA Canada 3
FIGURE 4

Visual map of author network.
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4 Discussion

Pathomics is an innovative interdisciplinary field that combines

digital pathology and AI. The rise of digital pathology has enabled

the scanning of whole tissue slides, based on the fundamental

principle of digitizing whole-slide images (WSI) using state-of-

the-art whole-slide scanners. This technology can convert standard

Hematoxylin-Eosin (H&E) staining glass slides into a digital format

(WSI) (20). This allows for detailed spatial exploration of the entire

tumor heterogeneity and its most invasive elements. It

automatically extracts and classifies histological features,

transforming this information into binary data. Finally, the
Frontiers in Oncology 06
extracted features are processed through sophisticated computer

algorithms to perform tasks such as cancer classification and

outcome prediction (21). Computational analysis of digitized

histological slides through pathomics can extract valuable

information. Some research primarily focuses on predicting the

prognosis of lung cancer (22), including improving clinical

decisions for cancer immunotherapy and exploring biomarkers

related to potential benefits from ICIs, such as microsatellite

instability (MSI), PD-L1 TPS, and inflammatory genes, among

others (23). Another significant research area involves the

integration of pathomics with multiple omics disciplines to

explore the classification of lung cancer and other related aspects.

Alvarez-Jimenez C et al. demonstrated the potential existence of

cross-scale correlations between pathomics and CT imaging, which

could be used to identify relevant imaging and histopathological

features (24).

The escalating demand for personalized cancer treatment

necessitates more precise biomarker assessments and quantitative

tissue pathology for accurate cancer diagnosis. Pathologists must be

equipped with new methodologies and tools to enhance diagnostic

sensitivity and specificity, ultimately contributing to more informed

and improved treatment decisions (13). Recently, significant success

has been achieved in the analysis of medical images using AI due to

the rapid advancement of “deep learning” algorithms (16).

Recent breakthroughs in AI hold the promise of significantly

changing the way we diagnose and stratify cancer in pathology.

Deep learning technology represents a milestone in this

transformation, with numerous deep learning architectures

applied to pathology-focused research. Various modeling

objectives have been pursued, and recent studies demonstrate the

application of deep learning in pathology aiming to predict
TABLE 4 High frequency and centrality keywords.

Rank Keywords Frequency Centrality

1 deep learning 27 0.33

2 artificial intelligence 14 0.29

3 machine learning 10 0.22

4
computer-
aided diagnosis

3 0.11

5 tumor microenvironment 4 0.07

6 feature extraction 3 0.04

7 image analysis 3 0.04

8 late fusion 2 0.02

9 tumor mutation burden 2 0.02

10 survival prediction 2 0.02
FIGURE 5

Visual map of author keywords.
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conventional diagnostic features used in pathology practice (such as

distinguishing between diseases and normal tissues, defining tumor

grades, and differentiating cancer types), leading to new insights

into diseases (25, 26).

Deep learning encompasses various types of deep neural

networks, and its application has achieved several breakthroughs

in addressing current key challenges in pathology (27).

Convolutional Neural Networks (CNN) are the most commonly

used in the analysis of pathological images (28, 29). A standard

CNN consists of an input layer, task-specific output layer, and

multiple hidden layers. Each hidden layer is composed of numerous

convolutional filters (parameters), which apply the same local

transformation at different positions in their input images (30).

Due to the shared parameters when applied locally in the image,

effective parameterization of the CNN model is achieved. The

typical implementation of CNN models offers a degree of

translation invariance, allowing detected objects or patterns to
Frontiers in Oncology 07
appear at any position within the image. Pooling layers are often

included between convolutional layers to down-sample the

intermediate outputs (feature maps) of the convolution function.

Following the convolutional layers are fully connected layers, which

flatten the output of the convolutional layers and generate the final

representation for the input-output layers (30, 31). Each neuron in a

CNN calculates its output by applying a weight vector and bias

(parameters) to the input values from the previous layer.

The optimization (training) of the CNN model involves iteratively

adjusting these biases and weights to minimize the loss function.

One advantage of CNNs over other image classification algorithms

is their suitability for end-to-end learning (32). Another major

advantage of CNNs is their flexibility and efficiency in learning

patterns from image data. Currently, they represent state-of-the-art

technology in the field of image analysis and classification,

consistently outperforming earlier generations of image analysis

methods (29, 32). Kao Y-S et al. conducted a study on the
FIGURE 6

Variation in the number of keywords.
FIGURE 7

Visual map of author-generated keywords network.
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application of deep learning technology in histopathological tissue

slices (deep pathomics) with the aim of predicting the response of

stage III NSCLC to treatment (33). They assessed 35 digitalized

tissue slices (biopsy or surgical specimens) from patients with stage

IIIA or IIIB NSCLC. Based on the reduction in target volume

observed in weekly CT scans during chemoradiotherapy, patients

were categorized as responders (12/35, 34.7%) and non-responders

(23/35, 65.7%). Employing a leave-two-out cross-validation

method, they tested the digital tissue slices using 5 pre-trained

CNNs-AlexNet, VGG, MobileNet, GoogLeNet, and ResNet, and

evaluated the network performance. GoogLeNet was identified as

the most effective CNN, accurately classifying 8/12 responders and

10/11 non-responders. Furthermore, deep pathomics exhibited a

high level of specificity (True Negative Rate: 90.1) and considerable

sensitivity (True Positive Rate: 0.75). Their data suggests that AI can

surpass the capabilities of current diagnostic systems, providing

additional insights beyond what is currently attainable in

clinical practice.
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Furthermore, there are studies attempting to apply AI to

histological images with the aim of discovering novel image-based

prognostic and predictive biomarkers. Cao R et al. proposed a deep

learning model based on histopathological images to predict

microsatellite status, achieving area under curve (AUC) of 0.88

and 0.85, respectively. It is noteworthy that this model can identify

five distinct pathological imaging features, which are associated

with the mutation burden in the genome, DNA damage repair-

related genotypes, and the anti-tumor immune activation pathway

in the transcriptome. The predictive model provides the potential

for multi-omics correlations through interpretability associated

with pathology, genomics, and transcriptomics phenotypes (34).

Wang X et al. developed a system capable of identifying high-risk

recurrence in early-stage NSCLC patients with an accuracy ranging

from 75% to 82% (22). In another study, Wang S et al. characterized

a group of high-risk NSCLC patients and identified image-based

tumor shape features as an independent prognostic factor (35).

Rakaee M et al. developed a machine learning-based scoring system
FIGURE 8

Visual map of title keywords network.
FIGURE 9

Visual map of subject categories keywords network.
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for tumor-infiltrating lymphocytes (TILs) to predict the response of

NSCLC to immune checkpoint inhibitor therapy (36). Additionally,

Coudray N, Ocampo PS et al. applied AI to digital pathology slides

to predict the presence of mutations in lung adenocarcinoma (37).

In summary, the development of these advanced deep learning

algorithms enhances the capability of analyzing lung cancer

pathology images, assisting pathologists in challenging diagnostic

tasks such as tumor identification, metastasis detection, and analysis

of the tumor microenvironment.

TME is primarily composed of tumor cells, lymphocytes,

stromal cells, macrophages, blood vessels, and other components.

The composition of the TME varies based on the relative
Frontiers in Oncology 09
proportions of its different constituents, and its presence plays a

crucial role in the growth and invasion of tumors.

Immune cells within the TME exhibit dual functions – on one

hand, they identify and destroy tumor cells, while on the other

hand, they also promote tumor growth and metastasis (38, 39). For

instance, immune cells, including T cells, B cells, macrophages, and

myeloid-derived suppressor cells, possess the ability to modulate the

TME, thereby influencing tumor metastasis and pathological

features (40, 41). Tumor Infiltrating Lymphocytes (TILs) in the

TME involves a complex network of multiple cell types and

cytokines and is a hallmark of immune recognition. Numerous

studies have shown that activated CD8+ T cells are the major players
FIGURE 10

Visual map of keywords network.
TABLE 5 The top 10 cited articles.

Rank Author Year
Total
Citations

Title

1
Pucci,
Carlotta;

2019 343 Innovative approaches for cancer treatment: current perspectives and new challenges (10)

2 Lu, Ming Y; 2021 278 Data-efficient and weakly supervised computational pathology on whole-slide images (11)

3
Khosravi,
Pegah;

2018 180 Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images (12)

4 Acs, B.; 2020 136 Artificial intelligence as the next step toward precision pathology (13)

5
Maibach,
Fabienne;

2020 118 Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma (14)

6
Mezheyeuski,
Artur;

2018 114
Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune
profiles that classify lung cancer patients (15)

7 Wang, Shidan; 2019 103 Artificial Intelligence in Lung Cancer Pathology Image Analysis (16)

8
Johnson,
Douglas B.;

2018 91
Quantitative Spatial Profiling of PD-1/PD-L1 Interaction and HLA-DR/IDO-1 Predicts Improved Outcomes of
Anti-PD-1 Therapies in Metastatic Melanoma (17)

9 Baxi, Vipul; 2022 80 Digital pathology and artificial intelligence in translational medicine and clinical practice (18)

10
Saw,
Stephanie
P. L.;

2021 56 Revisiting neoadjuvant therapy in non-small-cell lung cancer (19)
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involved in anti-tumor immunity, and in a subset of tumors, cancer

cells inhibit the activation of CD8+ cytotoxic T cells through the

expression of ligands such as PD-L1 that bind to inhibitory

checkpoints, which has been suggested to be an important

mechanism of immune escape for cancer cells (42). The

expression of PD-L1 on TME immune cells, including myeloid

cells (macrophages, dendritic cells) and T cells, appears to correlate

more with the ICI response than expression on tumor cells.

However, in NSCLC clinical practice, a limitation in histologically

characterizing T lymphocyte infiltration is the scarcity of tumor

tissue, which has hampered insight into the role of T lymphocytes in

influencing the ICI response (43). Tumor-associated macrophages

can promote angiogenesis and invasion by secreting cytokines,

growth factors, and proteases (44). Cancer-associated fibroblasts

(CAF) are pivotal in the formation of organs and the maintenance

of tissue structure and function. They also play a significant role in

tumor initiation, progression, metastasis, and the development of

drug resistance through their potent immunosuppressive

capabilities. Activated CAF possess the capability to secrete

various substances, including extracellular matrix and vascular

endothelial growth factor (VEGF), contributing to the complexity

of the TME (45, 46). The markers associated with CAF are

predominantly linked to T cell immunosuppression, inhibiting

the functions of CD8+ T cells and natural killer cells, particularly

by secreting various chemokines and cytokines, notably interleukin-

6 (IL-6), which leads to suboptimal clinical treatment outcomes. As

research into the effects of CAF and the TME on immune cells and

the efficacy of cancer immunotherapy advances, scientists can

potentially develop novel compounds targeting these mechanisms,

thereby offering innovative strategies for immunotherapy (47). It is

noteworthy that research indicates a significant impact of the TME

on the survival benefits of immunotherapy (48). The presence of

immune cells in the TME, including the percentage of CD8+ T cells,

can serve as a predictive factor for the effectiveness of

immunotherapy (49). The extracellular matrix can influence the

mechanisms of tumorigenesis by affecting cell growth, metastasis,

and immune evasion through the activation of signaling pathways.

Additionally, tumor cells have the capability to release various

growth factors, such as tumor growth factor, endothelial growth

factor, and VEGF, contributing to the promotion of new blood

vessel development (50). Angiogenesis is crucial for providing

nutrients and oxygen to tumor cells, ultimately playing a critical

role in tumor growth.

Therefore, TME plays a crucial role in tumor growth and

metastasis. A comprehensive understanding of TME formation,

investigating the interplay between immune cells and tumors, and

exploring various genetic variations represent the future directions

of TME research (51, 52). Additionally, selecting targeted

therapeutic strategies based on TME subtypes can enhance the

effectiveness of cancer treatment. To further emphasize this point,

computer-assisted automatic detection of tumor cells in lymph

nodes can significantly reduce the false-negative rate, thereby

facilitating earlier detection and treatment of lung cancer,

improving the accuracy of TNM staging, accelerating the

examination process, and reducing the workload of pathologists.

Moreover, tumor spread through air spaces (STAS) has been
Frontiers in Oncology 10
identified as an important clinical factor associated with tumor

recurrence and poor prognosis in patient survival. The

identification and quantification of STAS require experienced

pathologists to perform detailed examinations of entire tissue

sections. Therefore, pathological image analysis tools that rapidly

and accurately identifies STAS would be useful for pathologists (16).

Quantitative characterization of TME and accurate prediction and

classification of important TME components are essential for

targeted tumor therapy and prognosis assessment (53),

necessitating advanced data processing and analysis approaches.

Quantitative characterization of TME involves a crucial step of

segmenting different types of tissue substructures and cells from

pathological images. This segmentation forms the foundation for

various image analysis tasks, including cellular composition, spatial

organization, and morphology specific to substructures. Previous

studies in oncology primarily focused on tumor cells, overlooking

the pivotal role of TME in the initiation and progression of cancer.

The TME of lung cancer is primarily composed of tumor cells,

lymphocytes, stromal cells, macrophages, blood vessels, and other

components. Studies in lung cancer have indicated that TILs are

positive prognostic factors, while angiogenesis is negatively

associated with survival outcomes. The role of stromal cells in

prognosis is complex. Traditional image processing methods

encompass feature definition, feature extraction or segmentation.

These techniques have been employed to segment lymphocytes and

analyze the spatial organization of TILs and stromal cells within the

TME (54). Research associated with the quantitat ive

characterization of TME has the potential to predict treatment

outcomes and provides insights for the development of targeted

therapeutic strategies. Innovative studies in immunotherapy, in

particular, heavily rely on understanding the interactions among

various components within the TME and the mechanisms of

immune evasion.

Accurate characterization of specific structures and features of

TME is crucial for evaluating tumor prognosis (55), enhancing

clinical decisions, and advancing precision medicine. Radiomics can

unveil the heterogeneity of tumor cells and TME, while genomics

and pathomics explore the biological significance of imaging

histological features. The integration of these three approaches

contributes to a comprehensive understanding and decoding of

TME characteristics in tumors, facilitating prognostic predictions

(56). The interconnection between radiomics, pathomics, and

genomics contributes to establishing and deepening our

understanding of cancer biology and imaging features.

Concurrently, powerful machine learning techniques can decipher

the complex interactions between tumors and cancer treatments.

The integration of machine learning technologies with digital

imaging and novel methods for assessing TME at the molecular

level significantly enhances our comprehension of TME and cancer

prognosis assessment. Vanguri RS et al. employed machine learning

to integrate multimodal features into a risk prediction model (57).

By combining radiological, histopathological, and genomic features,

they assessed the predictive capability of immunotherapy response

in NSCLC. Their study revealed that the AUC value of the

multimodal model was 0.80, surpassing any single variable.

These findings establish a quantitative foundation for enhancing
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the accuracy of predicting immunotherapy response in NSCLC

patients through the integration of multimodal features and

machine learning.

Simultaneously, the quantitative characterization of TME in

lung cancer poses certain challenges, including the following

aspects: (1) Complexity and heterogeneity of lung cancer TME

composition: In addition to the mentioned cell types, other

structures such as bronchi, cartilage, and pleura often appear in

pathological sections of the lung. This complexity and heterogeneity

make segmentation and traditional feature definition challenging.

(2) Cellular spatial organization (e.g., spatial distribution and

interactions of different cell types): While playing a crucial role in

TME, it is more challenging to capture than simply providing the

quantity or ratio of different cell types. Current research mainly

focuses on the proportion of different cell types, overlooking the

intricate cellular spatial organization, which may result in limited

and contradictory outcomes regarding the roles of different cell

types in the TME. (3) For H&E-stained glass slides, there can be

significant color variations based on staining conditions and the

time gap between slide preparation and scanning. Traditional image

processing methods based on manual feature extraction struggle to

overcome these obstacles. (4) Multi-omics studies face the high

dimensionality and heterogeneity of data, and integrating

quantitative measurements of multi-modal data for prognosis

prediction is a highly challenging task. In summary, pathomics, as

a nascent research methodology, is presently undergoing

preliminary investigation. Future studies utilizing extensive multi-

omics datasets have the potential to advance the formulation of

sophisticated integration strategies. These strategies would facilitate

a more exhaustive evaluation, characterization, and elucidation of

TME (58). Consequently, this advancement will yield profound

insights into the imaging characteristics and the pathophysiological

and biological underpinnings of tumor pathology.

In recent years, amidst the high incidence and mortality rates of

lung cancer, the selection and implementation of treatment plans for

advanced-stage lung cancer patients, as well as the creation of more

precise platforms for predicting treatment responses, continue to face

challenges. Pathomics not only synergizes with traditional

pathological semantic information and clinical data to discover

disease patterns but also interacts and integrates with various omics

information, leveraging the unique advantages of each omics

discipline. The development of these interdisciplinary approaches

not only aids in identifying subtle lesions that may escape the naked

eye and uncovering disease patterns beyond subjective judgment but

also facilitates relatively objective and accurate assistance in disease

screening, diagnosis, differential diagnosis, and prognosis assessment.

Furthermore, it contributes to saving human and material resources,

optimizing the utilization of limited medical resources to the

maximum extent, and, on a broader scale, promoting the

development of the personalized immune intervention.
5 Conclusion

In conclusion, this study systematically analyzed the literature

on pathomics in the management of lung cancer indexed within the
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WoSCC. It offers an initial overview of recent research trends and

forecasts potential hotspots and frontiers for future inquiry, aiming

to provide valuable insights and references for scholars and

researchers involved in personalized immunotherapy efficacy and

prognosis for lung cancer.
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