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advanced malignant
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Introduction: Malignant pleural mesothelioma (MPM) is a poor-prognosis disease.

Owing to the recent availability of new therapeutic options, there is a need to better

assess prognosis. The initial clinical response could represent a useful parameter.

Methods: We proposed a transfer learning approach to predict an initial

treatment response starting from baseline CT scans of patients with advanced/

unresectable MPM undergoing first-line systemic therapy. The therapeutic

response has been assessed according to the mRECIST criteria by CT scan at

baseline and after two to three treatment cycles. We used three slices of baseline

CT scan as input to the pre-trained convolutional neural network as a radiomic

feature extractor. We identified a feature subset through a double feature

selection procedure to train a binary SVM classifier to discriminate responders

(partial response) from non-responders (stable or disease progression).

Results: The performance of the prediction classifiers was evaluated with an

80:20 hold-out validation scheme. We have evaluated how the developedmodel

was robust to variations in the slices selected by the radiologist. In our dataset, 25

patients showed an initial partial response, whereas 13 patients showed

progressive or stable disease. On the independent test, the proposed model

achieved a median AUC and accuracy of 86.67% and 87.50%, respectively.

Conclusions: The proposed model has shown high performance even by varying

the reference slices. Novel tools could help to improve the prognostic

assessment of patients with MPM and to better identify subgroups of patients

with different therapeutic responsiveness.
KEYWORDS

malignant pleural mesothelioma, convolutional neural network, machine learning,
mRECIST, CT images, response to therapy
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1 Introduction

Malignant pleural mesothelioma (MPM) is a poor-prognosis

disease, mainly correlated to asbestos exposure (1–7). In most

patients, the diagnosis of MPM occurs at an advanced stage, and

systemic chemotherapy is the frontline standard of care even if usually

with a palliative intent. New therapeutic strategies, including immune

checkpoint inhibitors (ICIs) and antiangiogenetic agents, have shown

encouraging results. First-line therapies generally achieve a partial

regression or stable disease lasting an average of 6 months and, in

15%–20% of cases, even 1 year (8–14).

The therapeutic response of MPM depends on multiple factors,

but the identification of subgroups of patients with different

prognoses and responsivity to therapies is still an unmet need

(15, 16). Because of the recent availability of new therapeutic

options, a better prognostic assessment and the search for

biomarkers capable of predicting the response to treatments are

increasingly needed. As a further matter, the initial clinical response

could represent a parameter useful to identify patients with a better

outcome (8, 17).

The last decade has added important insights for a more

accurate definition of this heterogeneous disease; both for a

correct staging and for a more accurate and updated assessment

of the clinical–radiological response, researchers need to make the

most of the characteristics of nuclear medicine and radiological

imaging for better management of these patients (18–20).

Currently, in clinical practice, the CT scan represents the

baseline diagnostic tool available to the multidisciplinary team

that provides crucial radiological information in the decision-

making process of care.

The hypothesis that motivated this work is that there are

specific patient characteristics, particularly quantitative

characteristics extracted from pre-treatment radiological images,

that can be informative about the early response to therapy.

Morphological, morphometric, and textural characteristics not

visible to the human eye, but quantifiable through innovative

biomedical image analysis techniques using artificial intelligence

(AI) techniques, could help guide the clinicians’ therapeutic

decision-making.

Indeed, the predictive value of a radiomic signature extracted

from radiological images is well established at the state of the art for

different oncological settings (21–26). Lung cancer imaging has

been recently studied with AI techniques in several settings,

focusing on the early detection of pulmonary nodules, histological

diagnosis and prognostic assessment, and the prediction of

treatment response.

In addition, in patients with MPM, this approach (including

radiological and nuclear medicine techniques, such as PET and CT

images) has been proposed to provide useful information about the

diagnosis and outcome of patients (26–29).

To the best of our knowledge, literature data about radiomic

approaches for predicting response to therapy in patients with

advanced mesothelioma are scarce. For this reason, AI

approaches for a better definition of prognostic models assume an
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important role in modern medicine in general, and even more in

rare pathologies such as the main focus of this work.

In our previous study, we evaluated the prognostic power of clinical

factors in predicting the initial therapeutic response of patients with

advanced pleural mesothelioma (30); the results have shown that the

information power contained in the clinical features alone is not

negligible to predicting the initial response to therapy. However, the

clinical features alone did not allow us to develop a support instrument

suitable for actual clinical application. Here, we have hypothesized that

a radiomic signature obtained from CT images of patients with MPM

could predict the initial response to the treatment. Accordingly, the

radiomic characterization of CT images of target lesions at baseline and

at the time of the first disease re-evaluation could represent a possible

criterion for discriminating subgroups of patients based on different

responsiveness to treatments. Indeed, as already suggested in other

neoplastic diseases, this radiomic signature could play a role as an

imaging biomarker correlated to the patient’s outcome (31–35).

In the present study, we applied a transfer learning approach on

baseline CT scans of patients with advanced/unresectable MPM with

the aim to evaluate the ability to early predict the treatment response on

the basis of a pre-trained convolutional neural network (CNN).

Pre-trained CNNs refer to a transfer learning technique (36–39):

the networks have been previously trained (pre-trained CNNs) on a

huge number (millions) of natural non-medical images to learn how

to automatically extract features of different levels of abstraction. The

acquired knowledge during training is transferred and applied to

never unseen images across diverse research fields (transfer learning),

such as CT images, to solve a particular task.

Pre-trained CNNs have already been successfully applied to

medical imaging to solve lung cancer detection, classification, or

diagnosis tasks (39–44). However, such a proposal represents the

first effort towards the designing of a support tool to better guide the

treatment planning in patients with MPM.

We have selected three slices of baseline CT scan as input to pre-

trained CNN to automatically extract low-level features, i.e., related to

the local structure of the image, thus overcoming manual feature

extraction. Next, an optimal feature set was detected and used to train a

support vector machine (SVM) classifier (45) to discriminate

responders (partial response) from non-responder (stable or disease

progression) patients. Such a model could allow for the early

identification of non-responder patients, thus potentially representing

a suitable guide for the choice of the treatment plan.
2 Materials and methods

2.1 Materials

From July 2017 to October 2021, we collected clinical data and

CT scan images of 38 consecutive patients affected by advanced/

unresectable pleural mesothelioma undergoing first-line systemic

treatment. Patients were enrolled according to the following criteria:
• histological diagnosis of MPM,
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• first-line systemic treatment for advanced/unresectable disease,

• evaluation after at least two cycles of treatment, and

• availability of the pre-treatment CT scan.
The population sample used in this study is a subsample used in

a previous study (30) for which baseline CTs were available.

The study was approved by the Ethic Committee of IRCCS—

Istituto Tumori “Giovanni Paolo II” Bari, Italy (Deliberation n. 506/

2023). Patients’ characteristics, including the type of treatment, are

shown in Table 1. The initial response to treatment was evaluated

by both clinical examination and CT scan with the mRECIST

criteria (18, 19) at baseline and after two to three treatment

cycles. For each patient, we have collected pre-treatment CT

images that were acquired by baseline CT scans with a thickness

of 0.625–3 mm and an x-ray tube current at 124–699 mA at 80–

140 kVp.
2.2 Radiomic feature extraction by pre-
trained CNN

All CT images, at baseline and after two to three treatment

cycles, have been retrospectively selected and evaluated by an expert

radiologist with more than 20 years of experience. For each patient,

measurements at three levels of the pleural lesions were made, and

three CT slices were selected, including the target lesions according

to the mRECIST criteria (Figure 1). The CT scans were evaluated

through the portal phase study after contrast medium injection,

which allows the best visualization of the pleura in all its extension.

Given the recent success of the so-called transfer learning

approach across disparate fields of medical application, we used a

high-performing pre-trained CNN architecture, called AlexNet, as a

feature extractor (36–39). The transfer learning approach is used

when the sample studied is small to circumvent the data requirement

for the training process of a deep neural network; it consists of

extracting radiomic features by using a pre-training CNN on millions

of images of different natures. The knowledge learned by the network

was here transferred to our images to fulfill our classification task.

AlexNet is a CNN with eight deep layers (36); it has a hierarchical

structure where deeper levels are built using the functionality of the

previous level. AlexNet was previously trained on millions of images

of different kinds to solve discrimination tasks; the data obtained were

transferred to our images to extract features useful to train a

classification model to predict the treatment response.

AlexNet needs an image input size of 227 × 227; therefore, each CT

slice was first resized to patches of this size. The radiomic features were

extracted from planningDICOM files.We have extracted features from

the first pooling layer (called “pool2”) that had an output with a size of

13 × 13 × 256 that was flattened to a single 129,792-length feature

vector. The extracted features are low-level features, i.e., local details of

the image, such as edges, dots, and curves.

For each patient, three slices of the baseline CT scan were used

as input to the pre-trained AlexNet. Therefore, three radiomic

feature vectors were associated with each case. To obtain a single
tiers in Oncology 03
TABLE 1 Patient characteristics.

Characteristics Distribution

Initial therapy response

Partial response (Abs.; %) 25 (65.79%)

Stable or progressive disease
(Abs.; %) 13 (34.21%)

Age at diagnosis

Median (1st–3rd quartiles) 70.27 (69.05–75.60)

Gender

Female (Abs.; %) 13 (34.21%)

Male (Abs.; %) 25 (65.79%)

Comorbidity

<1 (Abs.; %) 9 (23.68%)

>1 (Abs.; %) 17 (44.74%)

Nan (Abs.; %) 12 (31.58%)

Asbestos exposure

Yes (Abs.; %) 12 (31.58%)

No (Abs.; %) 9 (23.68%)

Nan (Abs.; %) 17 (44.74%)

Smoking habit

Yes (Abs.; %) 8 (21.05%)

No (Abs.; %) 12 (31.58%)

Ex (Abs.; %) 5 (13.16%)

Nan (Abs.; %) 13 (34.21%)

Pack/year

≤31 17 (44.74%)

>31 8 (21.05%)

Nan (Abs.; %) 13 (34.21%)

Histology

Non-epithelioid/biphasic (Abs.; %) 9 (23.68%)

Epithelioid (Abs.; %) 29 (76.31%)

Disease stage

I 0 (-)

II 7 (18.42%)

III 28 (73.69%)

IV 3 (7.89%)

Pleural effusion

Yes (Abs.; %) 9 (23.68%)

No (Abs.; %) 14 (36.84%)

Nan (Abs.; %) 15 (39.47%)

(Continued)
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vector radiomic feature corresponding to each individual patient,

we calculated the average value of each feature. Since the selection of

the three slices of interest, used to assess the disease extent, is

operator-dependent, in this study, we aimed to verify how robust

the developed model was when subjected to variations of the

analyzed slices. Consequently, we evaluated the classification

performance by shifting randomly two slices up and down, with

respect to those selected by our operator.
2.3 Classification model design

The purpose of this study was to predict the initial therapeutic

response in patients withMPM. Amachine learningmodel was trained

to discriminate responders (partial response) from non-responders

(stable or disease progression). Figure 2 illustrates the overall pipeline

of the classification model. For each patient, radiomic features were
Frontiers in Oncology 04
extracted from pre-trained CNN (as described in section 3.2). Then, a

wrapper feature selection was performed on the top 10 most

discriminating features evaluated in terms of AUC. Specifically, a

stepwise feature selection procedure was implemented. Such a method

follows a search approach of optimal features by evaluating different

possible combinations of features according to a specific assessment

criterion. In this study, we performed a forward feature selection based

on the SVM classifier (46). The SVM classifier is a supervised machine

learning algorithm that estimates the optimal hyperplane to separate the

two classes by means of a kernel function. We used the linear function.

The forward sequential selection algorithm identifies a subset of the

features that best predict the expected result by sequentially adding at

each step the feature that increases theperformanceof the SVMclassifier

evaluated in terms of AUC value on the training set of cross-validation.

The procedure stops when 10 features have been included. Evaluations

on a larger number offeatures (greater than10)weremade; however, the

model did not improve performance. Indeed, also considering the small

number of available patients, a greater number offeatures probably leads

to an overfitting of the training set. The performance of the prediction

classifiers was evaluated with an 80:20 hold-out validation scheme.

Training and test hold-out sets were randomly selected by stratifying

with respect to the outcome of interest. Moreover, the classification

performances on the hold-out training set were evaluated in 10 tenfold

validation rounds and expressed in terms of median and interquartile

range (1st and 3rd quantile).

The classification metrics were evaluated in percentage terms of

AUC value, and accuracy, sensitivity, and specificity were calculated

by identifying the optimal threshold using Youden’s index on the

ROC curves (46).

The same approach was used to determine the classification

performances by shifting two slices up and down, with respect to

those selected by our operator.
3 Results

3.1 Characteristics of dataset

Table 1 summarizes the characteristics of patients. We have

collected the following data: age, gender, comorbidities, previous
FIGURE 1

Example of slices selected according to the mRECIST criteria. The baseline CT scan was evaluated by the portal phase study after contrast medium
injection, which allows the best visualization of the pleura. On the basis of the slices selected by the radiologist, radiomic features are extracted from
the convolutional neural network and subsequently processed with machine learning techniques.
TABLE 1 Continued

Characteristics Distribution

ECOG

0–1 (Abs.; %) 28 (73.68%)

2 (Abs.; %) 10 (26.32%)

BMI

Overweight (Abs.; %) 14 (36.84%)

Normal (Abs.; %) 12 (31.58%)

Nan (Abs.; %) 12 (31.58%)

Systemic therapy

Ipi-nivo (Abs.; %) 9 (23.68%)

Platinum-pem (Abs.; %) 15 (39.47%)

Platinum-pem-beva (Abs.; %) 7 (18.42%)

Platinum-pem-beva-atezo (Abs.; %) 5 (13.16%)

Platinum-pem-pembro (Abs.; %) 2 (5.27%)
Ipilimumab (Ipi); Nivolumab (Nivo); Pemetrexed (Pem); Bevacizumab (Beva); Pembrolizumab
(Pembro); Atezolizumab (Atezo). Not Available (NA); Body Mass Index (BMI).
frontiersin.org

https://doi.org/10.3389/fonc.2024.1432188
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fanizzi et al. 10.3389/fonc.2024.1432188
asbestos exposure, ECOG performance status, body mass index

(BMI), smoking habits with pack/year, histotype, disease stage,

presence of pleural effusion, and type of first-line treatment.

A total of 38 patients with a median age at diagnosis of 70.27

(1st–3rd quartiles of 69.05–75.60) years afferent to our institute

were studied. Among them, 25 patients (65.79%) showed an initial

response to therapy, while stable or progressive disease was

observed in the remaining patients.
3.2 Classification performances

As described in Materials and Methods, an SVM classifier

algorithm was trained on the feature subsets selected by a double

procedure of filtering and stepwise algorithm. The performance of the

prediction classifiers was evaluated with 80:20 hold-out validation

scheme and with 10 tenfold cross-validation rounds on the hold-out

training set. Therefore, we split the sample of 38 patients into a training

set of 30 patients and a test set of 8 patients used as an independent set.

Among the 30 patients in the training set, 20 had a partial initial

response. The proposed model achieves the best performance when

selecting seven features. Table 2 summarizes the results reached by

considering the CT slices selected by our operator. The model is

highly performing with an AUC, accuracy, sensitivity, and

specificity value of 78.50%, 80.00%, 87.50% and 75%, respectively.

Among the eight patients in the test set, five had a partial initial response.

The model achieved stable performances also on the test set. Indeed, our

preliminary model has shown the values of median AUC value, accuracy,

sensitivity, and specificity of 86.67%, 876.67%, 80.00%, and 100%, respectively.

The proposedmodel provides for the selection of the three reference

slices by the radiologist according to the mRECIST criteria. We wanted

to verify that the developed algorithm was robust with respect to

variations in the selection of these slides. Therefore, we evaluated the
Frontiers in Oncology 05
model performances by shifting randomly two slices up or down in the

pre-treatment CT images with respect to those identified by our

operator. In this scenario, the number model selected four features

and, as shown in Table 3, the model seems to remain highly performing

even by varying the reference slices, by reaching an AUC value and an

accuracy of 77.88% and 85.00% on the training set, whereas in the hold-

out test set, they were 73.33% and 75.00%.
4 Discussion

Our experience aimed to evaluate the radiomic approach for

predicting therapeutic response in patients with advanced/

unresectable MPM. Some previous studies, mainly in other

malignancies, showed interesting results by using radiomics to

assess prognosis and predict the patients’ outcome (21, 23, 25–27,

29, 33, 35, 40–44).
TABLE 2 Classification performances achieved on the training and test
set of the hold-out validation scheme by the radiomic-based model
trained using the slices selected by our radiologist.

Training test
(30 pz.)

Test set
(8 pz.)

Number of
selected features

7 7

AUC (%) 78.50 (68.50–82.50) 86.67

Accuracy (%) 80.00 (76.67–86.67) 87.50

Sensitivity (%) 87.50 (80.00–95.00) 80.00

Specificity (%) 75.00 (70.00–80.00) 100
The median value and the interquartile range (1st and 3rd quantile) of AUC, accuracy,
sensitivity, and specificity are reported in percentage values.
FIGURE 2

Analysis workflow. A set of radiomic features was extracted from the “Pool2” layer of AlexNet. A stepwise feature selection procedure was performed
on the top 10 most discriminating features evaluated in terms of AUC. The model was evaluated with an 80:20 hold-out validation scheme.
Moreover, the classification performances on the hold-out training set were evaluated in 10 tenfold validation rounds.
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Regarding MPM, in the last few years, the search for selecting

some clinical and imaging-based biomarkers has grown (47, 48);

given the recent availability of new therapeutic regimens, there is a

need to better select subgroups of patients with different prognoses

and levels of treatment responsiveness.

In particular, the microenvironmental landscape of mesothelioma

and some clinical–biological determinants as circulating immune cells

and cytokines or genomic characteristics could be integrated into

histopathological aspects (49–58), thus better defining the prognosis

and responsiveness to different therapeutic options. The AI techniques

could be promising tools in the diagnostic and therapeutic

management of pleural mesothelioma; indeed, the large amount of

data that can be analyzed using these techniques could help to create

algorithms potentially useful to the screening and/or early diagnosis of

this disease as well as improve diagnostic accuracy through the

introduction of digital pathology (59, 60). Based on previous studies

that have highlighted the potential of radiomics, also in patients with

MPM, this approach deserves further investigation.

It is noteworthy that the data extracted and processed by the AI

techniques arise from imaging procedures, such as CT and PET

scans, which are part of the diagnostic and therapeutic management

of MPM according to clinical practice guidelines. Hence, such an

approach could provide further information useful to MPM

management without additional costs for the healthcare system

and without any further and/or invasive diagnostic procedures.

The radiomics application to MPM has been generally

investigated with the aim of improving the diagnosis and better

defining the stage of disease (61–65). Our experience arose from the

idea of testing whether radiomics and transfer learning techniques

could be useful to assist clinicians in the choice of therapeutic

strategy on the basis of a more accurate prognostic assessment and

on the possible early prediction of the treatment outcome.

Currently, the recent expansion of the therapeutic landscape of

MPMmakes it necessary to select patients likely responsive to innovative

therapies now available; therefore, the research of clinical and imaging

data as biomarkers could support the treatment planning (66, 67).

Literature data about the possible identification of patients and

disease characteristics of early prediction of treatment response are

lacking and needed.
Frontiers in Oncology 06
In this scenario, starting from the imaging performed routinely, the

herein proposed tool may provide an early prediction of the initial

response to therapy, helping to identify patients who will not respond

after the first two cycles of therapy and who will probably deserve a

different therapeutic management, or at least require a closer monitoring.

Although preliminary, our data about the initial response

prediction are promising. The proposed model has been evaluated

with cross-validation scheme reaching an AUC value and an accuracy

of 78.50% and 80.00%, respectively. The classification performance

was stable on the hold-out test set validation scheme with an AUC

value and an accuracy of 86.67% and 87.50%, respectively.

Furthermore, since the model was developed starting from the

three CT slices selected by the radiologist according to the

mRECIST criteria, as per clinical practice in the tumor staging

phase, we wanted to evaluate how robust the model was to

variations in the operator choice of slices of reference analyzed. By

randomly shifting the slides indicated by our radiologist by two slices,

the model proved to be stable.

Our model exploits CT images commonly carried out in clinical

practice at baseline, so it fits right into this initial phase of the treatment

process. The automated radiomic-based system here proposed aims to

support clinicians in planning a tailored treatment strategy.

The main limitation of this study is the small number of patients,

although the results refer to a homogeneous sample population,

allowing to better highlight the association between the radiomic

signature and the outcome of interest. Therefore, the future goal is

the collation of a larger number of patients and with a longer follow-up.

Moreover, in this work, we decided to use the entire slice of CT scan

instead of a specific region of interest, given the particular radiological

and morphological presentation patterns of pleural mesothelioma that

could lead to evaluation bias in the segmentation phase. However,

further insights of our study will also concern the evaluation of the

model on suitably segmented regions of interest.

Moreover, in this study, we have preferred to use a shallower

pre-trained neural network such as AlexNet. Compared to other

networks that perform concatenation of operations before arriving

at pooling (e.g., ResNet or DenceNet class), AlexNet learns features

that are more generalizable by increasing the classification capacity

of the medical image database. However, in future studies, we will

evaluate and compare other pre-trained CNN architectures (68).

Finally, since these are radiomic features extracted from a pre-

trained convolutional network, and not handcrafted features, it is

not possible to explain the meaning of the selected features. Indeed,

unlike handcrafted features for which the physical meaning of the

extracted radiomic features is known, it is particularly complex to

explain the meaning of radiomic features extracted from a pre-

trained convolutional network because it is extracted on images that

have undergone a series of convolutional operations, pooling, and

normalization. However, the dense literature on biomedical image

analysis has amply demonstrated that features extracted through

pre-trained CNNs are more informative than handcrafted ones

because they capture the local structure of the image at a deeper

level (points, edges, textures, etc.). However, future developments of

the study involve collecting a significantly larger study sample that
TABLE 3 Classification performance achieved on the training and test
set of the hold-out validation scheme by the radiomic-based model
trained using the shifted slices from those selected by our radiologist.

Training test
(30 pz.)

Test set
(8 pz.)

Number of
selected features

4 4

AUC (%) 77.88 (71.00–80.75) 73.33

Accuracy (%) 85.00 (80.00–86.67) 75.00

Sensitivity (%) 95.00 (85.00–95.00) 80.00

Specificity (%) 70.00 (50.00–70.00) 66.67
The median value and the interquartile range (1st and 3rd quantile) of AUC, accuracy,
sensitivity, and specificity are reported in percentage values.
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will enable end-to-end training of a CNN. In that case, as the

features are extracted directly from the image of interest and not by

transfer of knowledge from a pre-trained network of a different

nature (transfer learning), it is possible to identify at least the areas

found to be most informative through the application of recent

explainable AI techniques (69, 70).

A further future development, in the perspective of defining a

highly personalized model, could be a multimodal model that can

also jointly evaluate, in addition to radiomic characteristics,

quantitative characteristics extracted from images of digitalized

biopsy slides and genomic data. Certainly, it is a particularly

ambitious project that requires a significant effort to collect a

consistent and complete case history of information and data,

especially given the rare nature of the pathology under

examination. Nonetheless, the development of such a multimodal

model could lead to valuable results useful for patient management.
5 Conclusions

The lack of screening tests, albeit for subjects at risk due to previous

asbestos exposure, together with the generally late diagnosis due to the

absence of specific symptoms, makes Malignant pleural mesothelioma

a tumor with a poor prognosis. For this reason, AI approaches for a

better definition of prognostic models assume an important role in

modern medicine in general, even more so for rare pathologies such as

the one object of this work. Our proposed approach is particularly

valuable as it aims to provide these insights without the need for

invasive procedures or incurring additional costs beyond those typically

associated with standard clinical practice.

In addition, our model could represent a part of a multimodal

strategy by including it in a clinical workflow not only to improve

the prognostic assessment of patients with MPM but also to identify

subgroups of patients with different responsiveness to treatments. A

further qualifying element of this approach is represented by the

possibility of using AI techniques based on CT scans and images

normally used in clinical practice, therefore not requiring invasive

or additional tests for patients. Although further validation on a

larger sample population is needed, our study supports the

hypothesis that AI techniques, by evaluating radiomics and other

parameters (clinical, pathological, and genomic data), could

generate algorithms potentially useful to predict patient outcomes.

Such a global approach deserves further investigation given that

innovative treatments are being studied and are about to become

more widely available in MPM; in this scenario, the choice of the

treatment strategy should consider the costs of new drugs and the

need to avoid unnecessary toxicities, thus preserving the quality of

life of unresponsive patients and finally leaning towards the goal of

precision medicine in patients with MPM as well.
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