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Assessment of pathological
grade and variants of bladder
cancer with a continuous-time
random-walk diffusion model
Wei Wang1, Jingyun Wu1, Qi Shen2, Wei Li1, Ke Xue3,
Yuxin Yang3 and Jianxing Qiu1*

1Department of Radiology, Peking University First Hospital, Beijing, China, 2Department of Urology,
Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary
Oncology, Peking University, Beijing, China, 3MR Collaboration, United Imaging Research Institute of
Intelligent Imaging, Beijing, China
Purpose: To evaluate the efficacy of high b-value diffusion-weighted imaging

(DWI) with a continuous-time random-walk (CTRW) diffusion model in

determining the pathological grade and variant histology (VH) of bladder

cancer (BCa).

Methods: A total of 81 patients (median age, 70 years; range, 35-92 years; 18

females; 66 high grades; 30 with VH) with pathologically confirmed bladder

urothelial carcinoma were retrospectively enrolled and underwent bladder MRI

on a 3.0T MRI scanner. Multi-b-value DWI was performed using 11 b-values.

Three CTRW model parameters were obtained: an anomalous diffusion

coefficient (D) and two parameters reflecting temporal (a) and spatial (b)
diffusion heterogeneity. The apparent diffusion coefficient (ADC) was

calculated using b0 and b800. D, a, b, and ADC were statistically compared

between high- and low-grade BCa, and between pure urothelial cancer (pUC)

and VH. Comparisons were made using the Mann–Whitney U test between

different pathological states. Receiver operating characteristic curve analysis was

used to assess performance in differentiating the pathological states of BCa.

Results: ADC, D, and a were significantly lower in high-grade BCa compared to

low-grade, and in VH compared to pUC (p < 0.001), while b showed no significant

differences (p > 0.05). The combination of D and a yielded the best performance

for determining BCa grade and VH (area under the curves = 0.913, 0.811),

significantly outperforming ADC (area under the curves = 0.823, 0.761).
Abbreviations: ADC, Apparent diffusion coefficient; AUC, Area under the curve; BCa, Bladder cancer; CI,

Confidence interval; CTRW, Continuous-time random-walk; DWI, Diffusion weighted imaging; FROC,

Fractional-order calculus; ICC, Interclass correlation coefficients; IQR, Interquartile range; OPC, Optimal

parabolic contour; pUC, Pure urothelial carcinoma; ROC, Receiver operating characteristic; ROI, Region of

interest; SI, Signal intensity; TURBT, Transurethral resection of bladder tumor; VH, Variant histology.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1431536/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1431536/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1431536/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1431536/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1431536&domain=pdf&date_stamp=2024-08-15
mailto:qjx761225@126.com
https://doi.org/10.3389/fonc.2024.1431536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1431536
https://www.frontiersin.org/journals/oncology


Wang et al. 10.3389/fonc.2024.1431536

Frontiers in Oncology
Conclusion: The CTRW model effectively discriminated pathological grades and

variants in BCa, highlighting its potential as a noninvasive diagnostic tool.
KEYWORDS

urinary bladder neoplasms, pathology, neoplasm grading, tumor microenvironment,
diffusion magnetic resonance imaging
Introduction

The pathological status of bladder cancer (BCa) significantly

influences its management strategies. BCa is classified as low- or

high-grade based on the extent of nuclear anaplasia and architectural

abnormalities (1). Transurethral resection of bladder tumor

(TURBT) remains the cornerstone of treatment for low-grade,

non-muscle invasive BCa. For lesions assessed as high-grade upon

resection, a repeat TURBT is recommended to ensure comprehensive

removal (2). High-grade BCa carries an elevated risk for muscle

invasion or metastatic disease (3). Predominantly, BCa manifests as

pure urothelial carcinoma (pUC); however, up to 25% of cases

present morphological features that differ from pUC, including

different histologic subtypes and/or divergent differentiations (1, 4),

which can be indicative of a more aggressive disease trajectory and

adverse outcomes (5, 6). Therefore, accurate evaluation of grade and

variant is crucial for tailoring therapeutic strategies and forecasting

prognosis for BCa patients.

Identifying BCa pathology relies on invasive TURBT (7).

However, insufficient TURBT may lead to underestimation and

inaccuracy (8). The apparent diffusion coefficient (ADC), a

traditional measurement of diffusion in tissue, has been identified

as a promising imaging biomarker for detecting BCa pathology (9).

Several studies have reported an inverse correlation between ADC

and the grade of BCa (10–13). The underlying mechanism for the

correlation of ADC values with pathological characteristics involves

microstructural changes within malignancy, including larger cell

size and density (9). Besides pathological grade, the importance of

reporting variant histology (VH) in BCa has been emphasized in

recent years (14, 15). The use of DWI and ADC in evaluating

variants is lacking but holds significant potential, as the different

histological components within UCmay create more complex tissue

microenvironments than pUC (16). However, water diffusion in

complex tumor tissues exhibits a non-Gaussian distribution, which

cannot be simply reflected by ADC from the Gaussian diffusion

model (17–19). Therefore, non-Gaussian diffusion models are more

applicable for characterizing actual microenvironments within

complex structures (20).

Recent preliminary studies have reported that high b-value

diffusion-weighted imaging (DWI) based on a non-Gaussian

continuous-time random-walk (CTRW) model shows promise in

diagnosing and evaluating brain, breast, and liver diseases (21–24).

Three diffusion parameters derived from the CTRW model—
02
diffusion coefficient (D), temporal diffusion heterogeneity (a), and
spatial diffusion heterogeneity (b)—can quantitatively reflect water

molecular diffusion and intravoxel structural heterogeneity (22).

The fractional order calculus (FROC) model is a simplification of

the CTRW model, focusing only on spatial heterogeneity (25). A

recent study demonstrated the utility of the FROCmodel in grading

BCa (19), indicating the potential value of non-Gaussian diffusion

models in evaluating BCa pathology. However, the performance of

the CTRW diffusion model in assessing BCa pathological status

remains unknown and warrants further investigation. This study

aimed to investigate the efficacy of quantitative diffusion parameters

derived from the CTRW model in characterizing the pathological

grade and VH of BCa and to compare it with the conventional

mono-exponential model.
Materials and methods

This retrospective, single-institution study received approval

from the hospital’s ethics committee, and the requirement for

written informed consent was waived.
Patient enrollment

A total of 107 patients with suspected bladder tumors, who had

not received previous treatment and underwent bladder MRI, were

consecutively enrolled from August 2022 to November 2023. Patients

were excluded if they met any of the following criteria: (1) absence of

pathologically confirmed urothelial carcinoma post-MRI (n = 12); (2)

poor image quality for diffusion images (n = 1); or (3) lesion diameter

less than 5 mm, precluding reliable analysis (n = 4) (10, 26). Notably,

if the tumor could not be entirely resected during TURBT, only a

biopsy or partial resection was performed for pathological evaluation

at our institution. Consequently, 9 patients were excluded from the

study due to incomplete pathological information from TURBT,

which did not provide comprehensive data for the entire tumor.
MRI acquisition

The MR examinations were performed on a 3.0 T MR scanner

(uMR 790, United Imaging Healthcare), with patients in the supine
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position, using a 12-channel body phased-array surface coil. A

series of axial diffusion-weighted images were obtained for CTRW

model analysis using a single-shot spin-echo echo-planar imaging

sequence with the following protocol: repetition time/echo time =

2525 ms/56.9 ms, field of view = 240 × 240 mm², matrix = 96 × 86,

slice thickness = 4 mm, intersection gap = 0.4 mm, acquisition time

= 7 min, and b-values = 01, 501, 1001, 2001, 4001, 8002, 10004, 15006,

20008, 250014, and 300016 s/mm² (the subscript denotes the number

of excitations). To ensure adequate bladder distention, patients

were instructed to drink 500-1000 mL of water 30 minutes before

the scan (27).
Image analysis

The CTRW model analysis utilized the following formula (23):

S = S0Ea ½−(bD)b � (1)

where S is the signal intensity (SI) at a given b-value, and S0 is

the SI without diffusion weighting. Ea is a Mittag-Leffler function

(28), b is the b-value, and D is an anomalous diffusion coefficient

typically associated with tissue cellularity. The parameters a and b
reflect the intravoxel temporal and spatial diffusion heterogeneity,

respectively. Based on Equation (1), three CTRW parameter maps

(D, a, and b) were generated pixel-by-pixel by fitting the multi-b-

value diffusion imaging data via a Levenberg–Marquardt nonlinear

fitting algorithm (21).

The nonlinear fitting proceeded with a segmented approach

similar to a previous study (22):
Fron
a. Estimating D using the DWI with low b-values (b ≤ 1000 s/

mm2) based on a mono-exponential model.

b. Simultaneously estimating a and b using all DWI images

while fixing the estimated D for each voxel.
The Mittag-Leffler function was computed using open-source

code written by Roberto Garrappa in MATLAB Central (https://

www.mathworks.com/matlabcentral/fileexchange/48154-the-

mittag-leffler-function), which implemented the optimal parabolic

contour (OPC) algorithm (29) and was based on the inversion of

the Laplace transform on a parabolic contour suitably chosen in one

of the regions of analyticity of the Laplace transform. Its complete

form is depicted in the following Equation (2):

Ea (z) = o
∞

k=0

zk

G (ak + 1)
(2)

The conventional ADC map was calculated using the mono-

exponential model formula for comparison:

S = S0e
−bADC (3)

In Equation (3) S0 and S stand for the SI at b values of 0 and 800

s/mm2, respectively.

The regions of interest (ROIs) for each patient were manually

delineated at the slice with the maximum tumor area on DWI

images (b = 800 s/mm²) by two experienced radiologists, with 10
tiers in Oncology 03
and 13 years of experience in urological radiology, respectively.

Necrotic or cystic areas were excluded from the ROIs (25, 30). The

mean values of the CTRW parameters (D, a, and b) and ADC were

subsequently extracted from the delineated ROIs by the two

radiologists through CTRW model fitting. Interobserver

agreement was assessed for all diffusion parameters. The average

diffusion parameters from the two readers were analyzed and

presented in tables and figures.
Reference standard

The histopathological results from surgeries served as the

standard reference for evaluating diagnostic performance. The

urologists recorded the location of each transurethral resected

tumor using a sector map, which was referenced in the

histopathological analysis. All pathological specimens were

reviewed by an expert urological pathologist with 15 years of

experience. The histopathological information included the

histological type, grade, T stage, and histological variants (1).
Statistical analysis

The analysis was performed using SPSS software (version 26)

and MedCalc software (version 20). The Shapiro–Wilk test was

employed to assess the normality of data distributions. Continuous

variables are presented as mean ± standard deviation or median

with interquartile range, depending on the normality test results.

Student’s t-test for normally distributed data or a Mann-Whitney U

test for non-normally distributed data was used to determine the

statistical significance of differences in diffusion parameters between

low- and high-grade BCa, and between pUC and VH. The intraclass

correlation coefficients (ICCs) of the quantitative diffusion

parameters were assessed to evaluate the interobserver agreement

between the two radiologists (ICC < 0.20, poor; 0.21-0.40, fair; 0.41-

0.60, moderate; 0.61-0.80, good; 0.81-1.00, perfect).

Univariate and multivariate logistic regression analyses were

used to select the optimal diffusion parameters and integrate them

to establish a predictive model. Receiver operating characteristic

(ROC) analysis was used to evaluate the diagnostic performance of

individual diffusion parameters and their combination. The area

under the ROC curve (AUC) was compared using the DeLong test.

The cut-off value was determined based on the Youden index. The

sensitivity, specificity, and accuracy were calculated using the

maximum Youden index. P values less than 0.05 indicated

statistical significance.
Results

Patient clinicopathological characteristics

A total of 81 patients (18 females; median age, 70 years;

interquartile range, 13 years) with 81 lesions (median diameter,

2.4 cm; interquartile range, 2.9 cm) were included in the present
frontiersin.org
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study. Twenty-four patients presented with multiple bladder

tumors; the largest tumor was designated as the index tumor for

subsequent analysis. The study flowchart is shown in Figure 1. All

patients underwent TURBT after MRI. Among them, 25 patients

underwent subsequent cystectomies for further treatment after

TURBT. Pathology revealed 43 (53.1%) nonmuscle invasive BCa

(4 pTa + 39 pT1) and 38 (46.9%) muscle invasive BCa (16 pT2 + 11

pT3 + 11 pT4). Of these 81 BCa lesions, 15 (18.5%) were low grade,

and 66 were high grade. Thirty (37.0%) lesions exhibited other

histological types, including 12 squamous, 3 sarcomatoid, 2 nested,

2 glandular, 2 small cell, 2 micropapillary, and 7 mixed (3 glandular

+ squamous, 2 squamous + sarcomatoid, 1 glandular +

sarcomatoid, 1 microcystic + sarcomatoid). The patients’ clinical

and pathological information is listed in Table 1.
Comparison of ADC and CTRW parameters
between different pathological groups

Interobserver agreement for mean ADC, D, a, and b values

were excellent, with all the ICCs > 0.8 [ICC (95% confidence

interval): ADC, 0.936 (0.903-0.959); D, 0.947 (0.919-0.966); a,
0.900 (0.849-0.935); and b, 0.887 (0.830-0.926)]. The average

diffusion MRI metrics measured by the two radiologists were used

in the analysis. The detailed values of each diffusion parameter and

their differences between the different pathological groups are listed

in Table 2.

Significant decreases in ADC, D, and a values were observed in

high-grade compared to low-grade BCa, as well as in VH relative to

pUC. No significant difference in b was found between the low- and

high-grade or between the pUC and VH (p = 0.808 and p = 0.059,

respectively). Boxplots illustrating the comparison of ADC and

CTRW parameters across different pathological groups are shown
Frontiers in Oncology 04
in Figure 2. Representative colormaps of ADC and CTRW

parameters (D, a, and b) are shown in Figures 3 and 4.

Parametric colormaps were smoothed via bilinear interpolation

embedded in the ‘shading interp’ function in MATLAB.
Performance of the diffusion parameters
for pathological evaluation

The diagnostic performance of ADC and CTRW parameters for

differentiating between low- and high-grade BCa and between pUC

and VH are listed in Table 3. The ROC curves for each parameter and

their combinations are shown in Figure 5. Among the diffusion

parameters for determining BCa grade, a exhibited the highest AUC

(0.897), with D showing slightly higher AUC than ADC (0.852 vs.

0.823). However, no statistically significant differences were found in

AUCs among a, D, and ADC (all p values > 0.05). In distinguishing

VH from pUC, the highest AUC was found for D (0.794), which was

significantly higher than that of ADC (0.761, p = 0.024). The a had

similar AUC to ADC (0.765 vs. 0.761) with no significant difference

between them (p = 0.951).

Univariate logistic regression analysis revealed that D and a
were significantly associated with high grade and VH (p < 0.05).

Multivariate logistic regression demonstrated that the combination

of D and a (D+a) yielded significantly higher AUC than ADC

for differentiation between low- and high-grade BCa (0.913 vs.

0.823, p = 0.043), and between pUC and VH (0.811 vs. 0.761,

p = 0.026). For determining the pathological grade, the

combination of D and a showed higher sensitivity (92.42% vs.

84.85%), higher specificity (80.00% vs. 73.33%), and higher

accuracy (90.12% vs. 82.72%) compared to ADC. For the

evaluation of VH, the specificity and accuracy of the combination

of CTRW parameters were increased compared to ADC (72.55% vs.
FIGURE 1

Flowchart of the study. TURBT, transurethral resection of bladder tumor; UC, urothelial carcinoma; VH, variant histology.
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50.98% and 75.31% vs. 66.67%), but the sensitivity was decreased

(80.00% vs. 93.33%).
Discussion

Our study demonstrated that both conventional ADC and

CTRW parameters were effective in distinguishing between

different pathological grades and variants in BCa. These diffusion

parameters (ADC, D, and a) significantly differed between low- and

high-grade BCa and between pUC and VH. Notably, the a
parameter derived from the CTRW model showed the highest

performance for BCa grading, while the D parameter from the

CTRW model was most effective in differentiating VH from pUC.
Frontiers in Oncology 05
Furthermore, the combination of CTRW parameters (D+a)
achieved a higher AUC than individual parameters, marking a

significant improvement over the conventional ADC. These

findings suggest that the CTRW model might be a potential tool

for noninvasively investigating the pathological characteristics of

BCa, offering a supplementary diagnostic approach to the current

clinical reliance on TURBT.

Diffusion MRI stands as a powerful tool for probing biological

microstructures and has shown potential as an imaging-based

marker for predicting the pathological features of BCa (9, 31, 32).

The mono-exponential model and its quantitative ADC parameter

assume that water molecules follow Gaussian motion in a

homogeneous medium. However, tissue structures, especially

tumors, present heterogeneous and complex cellular and

subcellular microstructures, influencing the diffusion of water

molecules in a manner that diverges from a Gaussian

distribution. Therefore, ADC may not be accurate enough to

evaluate the heterogeneous pathological microstructure of BCa

(17). Unlike the mono-exponential diffusion model, non-Gaussian

diffusion models can reveal intravoxel tissue cellularity, the

extracellular matrix, vascularity, and microstructures of tumors

(33). The CTRW model provides insights into the intravoxel

heterogeneity of water molecule diffusion both temporally (a)
and spatially (b). Our study revealed that the CTRW model could

not only aid in evaluating the pathological grade and variant of BCa

but also exhibit superior diagnostic capabilities when compared to

ADC, reinforcing its potential role in enhancing BCa diagnosis and

treatment strategies.

The pathological condition plays a crucial role in guiding the

management and forecasting of BCa outcomes (1). The determination

of pathologic grade and histologic type typically relies on invasive

TURBT procedures, but inadequate resection of the tumor may result

in an inaccurate diagnosis (7). BCa grading is based on the organization

of cytologic features and architectural abnormalities of the papillae

(34). Low-grade BCa exhibits minimal variability in architecture and

cytologic features. In contrast, high-grade BCa is characterized by a

disorderly appearance resulting from marked architectural and

cytologic abnormalities (35). The D parameter from the CTRW

model describes the anomalous diffusion process and is analogous to

ADC, which is related to tumor cellularity. Our results revealed

significantly lower ADC and D values in high-grade compared to

low-grade BCa, consistent with previous studies (10–13). This decrease
TABLE 2 Comparison of ADC and CTRW parameters between different pathological groups (median, IQR).

Parameter ADC (×10-3 mm2/s) D (×10-3 mm2/s) a b

Low grade 1.421 (0.348) 1.583 (0.682) 0.898 (0.067) 0.870 (0.148)

High grade 1.024 (0.313) 1.021 (0.306) 0.783 (0.099) 0.868 (0.074)

p value < 0.001* < 0.001* < 0.001* 0.808

pUC 1.206 (0.418) 1.257 (0.556) 0.860 (0.141) 0.852 (0.114)

VH 0.953 (0.225) 0.934 (0.179) 0.774 (0.066) 0.893 (0.064)

p value < 0.001* < 0.001* < 0.001* 0.059
*Significant difference with p < 0.001.
ADC, apparent diffusion coefficient; CTRW, continuous-time random-walk; IQR, interquartile range; pUC, pure urothelial carcinoma; VH, variant histology.
TABLE 1 Clinicopathological characteristics of the patients.

Variables Characteristics

Age (years)* 70 (13)

Gender Male 63

Female 18

No. of lesions Single 57

Multiple 24

Tumor size (cm)* 2.4 (2.9)

Pathological T stage pTa 4

pT1 39

pT2 16

pT3 11

pT4 11

Pathological grade Low 15

High 66

Variant histology Absence 51

Presence 30

Surgery TURBT 56

Radical cystectomy 25
*Numbers are medians, with interquartile range in parentheses.
TURBT, Transurethral resection of bladder tumor.
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can be attributed to the heightened tumor cellularity and decreased

extracellular space of high-grade BCa, which consequently impedes

water molecule diffusion (36). In addition, high-grade BCa showed

increased tumor microstructure heterogeneity, with pronounced

architectural and cytologic atypia (37). Our results showed that the

temporal diffusion heterogeneity-sensitive parameter a surpassed other

diffusion metrics in accurately distinguishing low- from high-grade
Frontiers in Oncology 06
BCa, indicating the utility of tumor heterogeneity as a

grading parameter.

Bladder urothelial carcinoma is recognized for its morphological

diversity, encompassing various histological subtypes and divergent

differentiations (1). A careful morphological description of the

presence of variants is crucial in BCa, as it may affect management

and survival expectations (4). Mixed histological components reflect a
FIGURE 2

Box-and-whisker plots of the mean apparent diffusion coefficient and continuous-time random-walk parameters (D, a, and b) for low- and high-
grade bladder cancer (top row, A-D) and pure urothelial carcinoma and variant histology (bottom row, E-H). The statistically significant level, *p <
0.001. ADC, apparent diffusion coefficient; pUC, pure urothelial carcinoma; VH, variant histology.
FIGURE 3

Microscopic pathology and colormaps of the apparent diffusion coefficient and continuous-time random-walk parameters of bladder tumors from a
61-year-old male with low-grade urothelial carcinoma (top row, A-E) and an 81-year-old female with high-grade urothelial carcinoma (bottom row,
F-J). The mean values of diffusion parameters were lower in high-grade bladder cancer compared to low-grade bladder cancer.
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more heterogeneous tumor microenvironment. Our study observed a

lower a value in VH compared to pUC, reflecting the complex and

heterogeneous histological components of VH. Additionally, the

difference in ADC and D values may be attributed to the varying

degrees of cellularity between pUC and VH. The D derived from

CTRW presented the highest AUC in the evaluation of VH. The

results of this study suggested that the quantitative parameters from

the CTRW model could potentially aid pathologists in identifying

concurrent histological variants with urothelial carcinoma.

Both a and b are indicative of diffusion heterogeneity within the
tumor microstructure. The a parameter is associated with temporal

diffusion heterogeneity, revealing the likelihood of water molecules

being “retained” or “released” during diffusion, resulting in a

variable time during each movement (22). Our findings showed

lower a values in higher grades and VH, suggesting a more variable

time for diffusing water molecules to travel through them and

indicating greater temporal inhomogeneity. The b parameter is
Frontiers in Oncology 07
related to spatial diffusion heterogeneity and describes the different

step lengths of water molecules during diffusion (23). Inconsistency

was observed between the a and b values in this study, with no

significant differences in the b values between low- and high-grade

BCa or between pUC and VH. Water molecules can walk a variable

spatial length during each move or spend a variable temporal

interval to make a move. The discordant results between a and b
in our study could be attributed to the variable time required by

water molecules for movement in high-grade or VH BCa, without

necessarily resulting in significantly varied displacements. Similarly,

previous studies have reported inconsistent changes in a and b in

other tumors (24, 38), suggesting that a and b reflect the

heterogeneous microstructure in different aspects.

Compared to the single ADC, the CTRW model has the

advantage of integrating multiple parameters. The CTRW model

encapsulates the attributes of a non-Gaussian distribution and takes

into consideration the underlying tumor tissue cellularity and
TABLE 3 Diagnostic performance of diffusion parameters for distinguishing different pathological group.

ADC D a b CTRW (D+a)

Low vs. high grade

AUC (95% CI) 0.823 (0.723-0.899) 0.852 (0.755-0.921) 0.897 (0.809-0.953) 0.520 (0.406-0.633) 0.913 (0.829-0.964)

Sensitivity (%) 84.85 86.36 84.85 77.27 92.42

Specificity (%) 73.33 80.00 93.33 40.00 80.00

Accuracy (%) 82.72 85.19 86.42 70.37 90.12

pUC vs. VH

AUC (95% CI) 0.761 (0.654-0.849) 0.794 (0.690-0.876) 0.765 (0.657-0.852) 0.626 (0.512-0.731) 0.811 (0.709-0.890)

Sensitivity (%) 93.33 80.00 93.33 76.67 80.00

Specificity (%) 50.98 72.50 64.71 52.94 72.55

Accuracy (%) 66.67 75.31 75.31 61.73 75.31
ADC, apparent diffusion coefficient; AUC, area under the curve; CI, confidence interval; CTRW, continuous-time random-walk; pUC, pure urothelial carcinoma; VH, variant histology.
FIGURE 4

Microscopic pathology and colormaps of the apparent diffusion coefficient and continuous-time random-walk parameters of bladder tumors from a
71-year-old male with pure urothelial carcinoma (top row, A-E) and a 63-year-old male with urothelial carcinoma and sarcomatoid variant (bottom
row, F-J). The urothelial carcinoma with variants showed lower ADC, D, and a values than pure urothelial carcinoma.
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heterogeneity, while ADC does not reveal intravoxel tissue

heterogeneity according to the Gaussian distribution. In the

present study, the combination of the CTRW parameters (D+a)
resulted in the best performance compared with the individual

parameters in grade and VH determination. Similarly, Du et al.

reported that the combination of CTRW parameters yielded the

highest AUC in the differentiation of benign and malignant breast

lesions (21). Chang et al. reported that combining multiple CTRW

parameters improved the performance of diagnosing molecular

subtypes of breast cancer (39). These findings suggest that the

combination of the CTRW parameters, which are related to tumor

cellularity and heterogeneity, greatly improves the evaluation of

pathological changes in tumors compared to individual parameters.

Most clinical MRI scanners allow the DWI signal to be acquired

by varying only the diffusion gradient strength (g). Therefore, it is

permissible to quantify only D and b by changing gradient strength

because in this way D and b have a biophysical meaning. The

current a is an estimated parameter extracted from a signal

representation model and does not have a biophysical meaning

(40). To quantify the true a that characterizes subdiffusion, it is

essential to acquire DWI at different diffusion times (D). By varying
the D value while keeping g constant, the decay of the DWI signal

depends on D and a, where the a quantifies the true subdiffusion

(41). In our study, the a does not quantify true subdiffusion because

the data were acquired at a fixed diffusion time. Even though, the a
parameter was a potential image marker and beneficial in

determining pathological states, including grades and variants of

BCa. Furthermore, the combination of a and D achieved the

greatest discriminating power than individual diffusion parameters.

This study has several limitations. Firstly, the distribution of

pathological grades was nonuniform, with more high-grade BCa

than low-grade BCa and more pUC than VH, which may introduce

bias to the statistical analysis. Secondly, a representative two-

dimensional ROI was selected for diffusion parameter measurements,

which may not fully reflect whole-tumor characteristics. A three-
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dimensional whole tumor volume analysis might offer more

comprehensive information on BCa but would be more complex and

time-consuming. Thirdly, the subgroups of different variants were not

further statistically analyzed due to the limited sample size. Future

studies with larger sample sizes are needed to validate the role of

diffusion models in differentiating different subtypes of variants in BCa.

In conclusion, this study highlighted the distinctiveness of D and a
from the non-Gaussian CTRW model and ADC from the mono-

exponential model in distinguishing between low- and high-grade BCa

as well as between pUC and VH. The CTRW model helped evaluate

the grade and variant of BCa. Moreover, the combination of CTRW

parameters representing tissue cellularity and heterogeneity

outperformed the conventional ADC. Thus, the CTRW model could

serve as a promising noninvasive tool, potentially complementing the

current pathological evaluation relying on invasive TURBT.
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FIGURE 5

Receiver operating characteristic curves of the apparent diffusion coefficient, continuous-time random-walk parameters, and the combination of D
and a for differentiating between low- and high-grade bladder cancer (A) and between pure urothelial carcinoma and variant histology (B). pUC,
pure urothelial carcinoma; VH, variant histology; ADC, apparent diffusion coefficient.
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