
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Zhongxing Liao,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Hisashi Nakano,
Niigata University, Japan
Haijiao Shang,
RaySearch Medical Device Co., LTD., China

*CORRESPONDENCE

Bao-Tian Huang

hbt830910@126.com

RECEIVED 11 May 2024
ACCEPTED 20 December 2024

PUBLISHED 10 January 2025

CITATION

Huang B-T, Lin P-X, Wang Y and Luo L-M
(2025) External validation of radiobiological
models for local control prediction in
lung cancer patients treated with
stereotactic body radiation therapy.
Front. Oncol. 14:1431140.
doi: 10.3389/fonc.2024.1431140

COPYRIGHT

© 2025 Huang, Lin, Wang and Luo. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 January 2025

DOI 10.3389/fonc.2024.1431140
External validation of
radiobiological models for local
control prediction in lung cancer
patients treated with stereotactic
body radiation therapy
Bao-Tian Huang1*, Pei-Xian Lin2, Ying Wang1 and Li-Mei Luo3

1Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College,
Shantou, China, 2Department of Nosocomial Infection Management, The Second Affiliated Hospital of
Shantou University Medical College, Shantou, China, 3Department of Radiation Oncology, Affiliated
Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
Background: Thedebate regarding theaccuracyof radiobiologicalmodels for local

control (LC) prediction in lung cancer patients undergoing stereotactic body

radiation therapy (SBRT) remains unresolved. The study seeks to externally

validate the predictive efficacy of radiobiological models using single-institutional

SBRT database.

Methods: The cohort comprised 153 patients diagnosedwith primary ormetastatic

lung cancer who underwent SBRT. The study employed three radiobiological

models to estimate the probability of 2-year LC, including the Liu model, Klement

model, and Ohri model. Furthermore, the likelihood of 3-year LC was predicted

using the Liu model, Klement model, Gucken model, and Santiago model. The

performance of the predictionmodels was assessed through the AUC values of the

receiver operating characteristic (ROC) curve and the calibration plots.

Results: Local recurrencewasobserved in38.6%ofpatients (59/153)within twoyears,

and in 43.1% (66/153) within three years after the radiotherapy. The ROC curves

indicated discriminative power for all the 2-year and 3-year models, with the

exception of the Klement model. The Ohri model showed a significantly improved

discriminative ability than the Klement model for 2-year prediction, while it was not

statistically significant when compared to the Liu model. However, no significant

differenceswere found among the fourmodels in terms of 3-year LC prediction. The

calibration plots, using the Hosmer-Lemeshow goodness-of-fit test, confirmed that

the predicted probabilities of the models were in agreement with the actual

observation with P>0.05, except for the 2-year LC prediction using the

Klement model.

Conclusion: Considering the balance between prediction accuracy and model

simplicity, it is recommended to utilize the Ohri model for 2-year LC prediction

and either the Gucken model or Santiago model for 3-year LC prediction.
KEYWORDS

external validation, radiobiological model, local control prediction, lung cancer,
stereotactic body radiation therapy
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1 Introduction

Lung cancer is the predominant cause of cancer-related deaths

worldwide (1). Stereotactic body radiation therapy (SBRT) has

gained widespread acceptance as a potent and tolerable

therapeutic alternative for patients with early-stage non-small cell

lung cancer (NSCLC) who are not candidates for surgical

intervention (2). This treatment modality involves administering

a higher radiation dose to the tumor target within a limited number

of sessions, thereby achieving an elevated biologically effective dose

(BED). The objective of SBRT is to optimize the therapeutic benefit

while concurrently reducing the adverse effects on nearby organs at

risk (OARs) (3, 4). Despite the encouraging outcomes associated

with SBRT, local recurrence remains a challenge in certain cases.

Research has indicated that the rate of recurrence following SBRT

treatment is approximately 13.0% to 18.8% (5, 6). It is noteworthy

that there are documented cases where patients who experience a

local recurrence and subsequently undergo successful salvage

treatment have survival outcomes comparable to those who

received primary SBRT without any recurrence (7). Given these

findings, it is of paramount importance to accurately identify

patients who are more likely to respond positively to SBRT.

Currently, the application of a BED10 > 100 Gy stands as the most

prevalent dose threshold for predicting local recurrence. This method

is widely used for its effectiveness in translating into improved

outcomes for tumor LC (8). To enhance the accuracy of prediction,

various radiobiological models that incorporate both clinical and

dosimetric factors have been introduced for predicting the 2-year and

3-year dose response after lung SBRT in recent years (9–14). Given

the diverse range of doses and fractionation schemes applied in

SBRT, the radiobiological models capable of translating the

dosimetric change into radiobiological benefits are extensively

employed to evaluate and compare the dose response across

various fractionation regimens. These models work by employing

mathematical analysis to predict the outcome for the tumor, using

parameters that are determined from fitting clinical data. Despite the

introduction of numerous radiobiological models, their accuracy has

not been confirmed with external data sets, casting doubt on their

clinical utility. It has been noted that there can be discrepancies of up

to 15% when different prediction models are applied (15).

The objective of the current study is to compare the

effectiveness of radiobiological models in predicting LC for lung

cancer patients who have undergone SBRT, using the SBRT

database available at our institution.
2 Materials and methods

2.1 Study population

The study cohort was comprised of 153 patients with either

primary or secondary lung cancer. Each patient received SBRT at

the Cancer Hospital of Shantou University Medical College between

July 2011 and January 2021. The study was conducted in

accordance with the principles of the Declaration of Helsinki and

was granted approval by the relevant ethical board, where written
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informed consent was waived. The criteria for inclusion in the study

were as follows: (1) A confirmed diagnosis of primary or secondary

lung cancer that was treated using SBRT. (2) Complete baseline

clinical information and subsequent follow-up data were available

for all patients.
2.2 Radiotherapy treatment

Risk-adapted dose schedules were implemented for the

treatment planning. Dose schedules frequently utilized, such as

12.5 Gy×4, 10.0 Gy×5, 25 Gy×1, 10.0 Gy×4, and 12.0 Gy×4, were

chosen based on a compromise between tumor size and proximity

to the OARs. For instance, the 12.5 Gy×4 dose schedule referred to a

50 Gy delivered in 4 fractions, with the other dose schedules being

similarly defined. The Eclipse treatment planning system was

utilized for the treatment planning (July 2011-September 2019,

Version 10.0; October 2019-January 2021, Version 15.5, Varian

Medical System, Inc., Palo Alto, CA). Each patient underwent

treatment on a TrueBeam linear accelerator (LINAC), employing

either the RapidArc or Intensity-Modulated Radiotherapy (IMRT)

treatment technique. Fractional setup error was corrected with the

aid of cone beam computed tomography (CBCT) equipped on the

LINAC. Before performing the radiotherapy, fluoroscopic imaging

on the LINAC was utilized to assess the movement of the tumor in

certain patients, confirming that the trajectory of the tumor

remained within the planned target volume (PTV).
2.3 Follow-up

Patients were subjected to CT scans on a bi-monthly basis

during the initial year post-completion of their treatment. The

interval for evaluation was then extended to semi-annual

assessments (every six months) after the first year (16). The most

recent follow-up was conducted in January 2024. LC of the tumor

was characterized by the absence of any recurrence at the site where

the treatment was administered. The primary method for

establishing local recurrence predominantly involved a biopsy and

an enhanced CT scan. This process identified a progressive increase

in the size of the primary tumor or the area surrounding it, as

observed on two successive CT scans with a minimum time gap of

six months. A pathological examination was conducted when there

was a strong suspicion of local recurrence. In cases where a biopsy

sample was unattainable, the diagnosis was made using contrast-

enhanced CT or PET/CT scans. Additionally, clinical symptoms

and signs evaluated by oncologists could also be utilized as

indicators to detect local recurrence (17).
2.4 Data collection

We gathered clinical attributes of the patients, encompassing

factors such as gender, age, tumor location, clinical stage, whether

the tumor was primary or metastatic, and tumor diameter.

Radiotherapy-related parameters, including prescription dose
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recorded as BED (BEDPD), the maximum BED in the target

(BEDDmax), treatment fractions, and treatment duration were also

collected. The linear-quadratic (LQ) model, utilizing an a/b ratio of

10 Gy, was employed to compute the BED. The formula for BED is

expressed as, BED = n × d × [1 + d/(a/b)], where n denotes the

fraction number and d represents the fractional dose.
2.5 Radiobiological models

We utilized the Liu model, Klement model, and Ohri model to

calculate the 2-year probability of LC. For the estimation of the 3-year

LC probability, we employed the Liu model, Klement model, Gucken

model, and Santiago model. The Liu model accounts for the tumor

regrowth locally following radiotherapy (12). It is applicable for

predicting LC outcomes in relation to the duration of follow-up.

The Klement model operates on a Bayesian framework for estimating

the cure rate (10). It is also capable of determining the LC value as a

function of the follow-up period. The Ohri model, Gucken model,

and Santiago model are all logistic regression models that establish a

logistic correlation between the tumor control probability (TCP) and

the BED (13, 14, 18). For the computation of LC data, we employed a

custom program developed on MATLAB R2021b (MathWorks,

USA). All The parameters for the radiobiological models were

sourced either from the original publications or directly from the

authors by personal communication. The formula and model

parameters for TCP calculation were detailed in the initial

document and re-summarized in Table 1.
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2.6 Dose-response visualization of different
radiobiological models

To graphically represent the variance in dose-response among

different radiobiological models, a 3D map was conceptualized,

assuming a scenario with 3 treatment fractions, to illustrate the

interconnection between TCP, BED, and tumor size. The

development of this 3D map was executed using a program that

was custom-designed on the MATLAB platform.
2.7 Model performance comparison and
statistical analysis

The discriminative ability of the models was evaluated using the

area under the curve (AUC) values derived from the receiver

operating characteristic (ROC) curve, which were charted using

MedCalc software (MedCalc, Version 20.015, MedCalc Software

Ltd). P<0.05 for the ROC curve indicated a statistically significant

ability to discriminate for the model. Furthermore, the DeLong test

comparison with P<0.05 between the two models revealed a

statistically significant difference. The calibration ability of the

models refers to its capability to generate predictions that align

well with the actual outcomes. Model calibration was carried out

using the Hosmer-Lemeshow test and P>0.05 interpreted as

indicating no discrepancy between the observed and the predicted

probabilities. The calibration of the model was also depicted by

plotting the observed versus the predicted probabilities. A
TABLE 1 The formula and model parameters of different radiobiological models.

Study Models TCP formula Model parameters

Liu et al. (12) Liu Model

BEDRe growth = D(1 +
d

a=b
) −

ln 2
tP

G
a

t =
e−½a*BED−(

ln 2
tP
t)d � − Kcr=K0

sk=K0

TCP = 1 −
1ffiffiffiffiffiffi
2p

p
Z t

−∞
e
−x

2
2 dx,

Where G is the elapsed treatment time, Tp is potential effective tumor doubling time, t is
the follow-up time after treatment, d is parameter characterizing the speed of tumor cell
regrowth after radiation treatment, Tp is the conventional doubling time, Kcr is the critical
tumor number that defines the control of an individual tumor, sk is the Gaussian width

for the distribution of tumor cell numbers.

Table 1 of the
original publication

Klement et al. (10) Klement model

TCP = e(−q(1−S(t)))

S(t) = e(−t
r eh) ,

Where q is the cure parameter, t is the follow-up time after treatment. Before entering the
model, binary covariates were rescaled to ±0.5 and continuous covariates were

standardized to have mean 0 and standard deviation 0.5.

Table 2 of the original
publication, CIS99 model

Ohri et al. (18) Ohri model TCP = e(BED10−c*L−TCD50)=k ÷ (1 + e(BED10−c*L−TCD50)=k)

c=10 Gy/cm
TCD50 = 0 Gy

k=31 Gy

Gucken et al. (14) Gucken model TCP = e(BED10−TCD50)=k ÷ (1 + e(BED10−TCD50)=k)
TCD50=-1 Gy

k=80 Gy

Santiago et al. (13) Santiago model TCP = e(BED10−TCD50)=k ÷ (1 + e(BED10−TCD50)=k)
TCD50=-60.2 Gy

k=113.3 Gy
TCP, Tumor control probability.
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calibration curve of 45-degrees indicates a perfect prognostic

prediction (10). If the plot lies below the line, the model is under-

calibrated (or too conservative), meaning it predicts a lower

probability than the actual observed rate. Conversely, if the plot

lies above the line, the model is over-calibrated (or too confident),

predicting a higher probability than the actual observed rate.

Additionally, the accuracy, sensitivity, and specificity of the

models were compared. The sensitivity and specificity values were

directly retrieved from the MedCalc software, whereas the accuracy

values were computed using the recommended threshold values

provided by the software. Moreover, a confusion matrix was used for

presenting the prediction accuracy of the radiobiological models.
3 Results

3.1 3D visualization of the dose-response
relationship across radiobiological models

Figure 1 showed the 3D map illustrating the relationship

between TCP, BED, and tumor size across various radiobiological

models. Notably distinct dose-response relationships were

observed, regardless of whether the predictions were for 2-year

(Figures 1A–C) or 3-year LC (Figures 1D–G). The z-axis represents

the TCP value, while the x and y axes correspond to the treatment

dose and tumor size, respectively. Typically, when employing the

same TCP range, the shape of the figures should be similar among

different models. However, in this case, despite applying a

consistent TCP range of 50% to 100% across all models, the plots

displayed substantial variation, suggesting that the predicted

outcomes of the radiobiological models showed discrepancies.

This becomes especially apparent for the 2-year prediction models.
3.2 Patient characteristics and
treatment outcome

The study encompassed a total of 153 lung cancer patients who

fulfilled the inclusion criteria, supplying complete clinical data along

with extensive follow-up details. The characteristics of the patients’

treatment were presented in Table 2. By the time of the final follow-

up, 38.6% of the patients (59/153) had encountered local recurrence

within two year following the radiotherapy treatment. Additionally,

43.1% of the patients (66/153) had experienced local recurrence a

three-year period after the radiotherapy treatment.
3.3 The probability predicted by the 2-year
and 3-year radiobiological models

Table 3 provided a summary of the LC probability data for 153

patients as predicted by the 2-year and 3-year radiobiological

models. The median probability data for both the 2-year and 3-

year prediction models demonstrated significant differences across

the various models. It is important to highlight that the Klement

model projected an 8.4% reduction in the 3-year LC data when
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compared to the 2-year LC data. Conversely, the Liu model

suggested a minor decline in the LC data as it transitioned from a

3-year to a 2-year timeframe.
3.4 Model performance evaluation

The discriminative ability of the models was examined in terms

of the AUC value. The AUC values of the models were presented in

Table 4. For 2-year LC prediction, the AUC values for the Liu

model, Klement model, and Ohri model were 0.624 (95% CI 0.542-

0.701), 0.566 (95% CI 0.484-0.646), and 0.633 (95% CI 0.552-0.710),

respectively. For the 3-year LC prediction, the AUC values for the

Liu model, Klement model, Gucken model, and Santiago model

were 0.625 (95% CI 0.543-0.702), 0.575 (95% CI 0.494-0.655), 0.618

(95% CI 0.536-0.696), and 0.618 (95% CI 0.536-0.696), respectively.

All models, for both 2-year and 3-year predictions, exhibited

discriminative ability (P<0.05 for the ROC curve), with the

exception of the Klement model (P>0.05 for the ROC curve). The

ROC curves for the 2-year and 3-year LC predictions were depicted

in Figures 2A, B.

The Ohri model showed improved discriminative ability in

comparison to the Klement model for 2-year prediction (P<0.05).

However, no statistically significant difference was observed when it

was compared to the Liu model (P>0.05). Additionally, no

statistically significant differences were found among the four

models for 3-year LC prediction (P>0.05). A comparison of the

AUC values for the 2-year and 3-year prediction models was

illustrated in Figures 2C, D.

The accuracy, sensitivity, and specificity values of the models

were also tabulated in Table 4. Figure 3 presented a confusion

matrix that graphically represented the prediction accuracy within

the radiobiological models.

The calibration performance of the models was evaluated using

a calibration plot to illustrate the accordance between the predicted

probability and the observed values. The calibration plot is used to

assess how well the predicted probabilities from a model correspond

to the actual observed outcomes. If the model is perfectly calibrated,

the calibration plot will lie along the 45-degree line, indicating that

the predicted probabilities match well with the observed event rates.

The accuracy of model calibration was carried out using the

Hosmer-Lemeshow test and P>0.05 indicated no discrepancy

between the observed and the predicted probabilities. The

calibration curves for the models were displayed in Figure 4. The

findings confirmed that the predicted probabilities from the models

were consistent with the actual observations with P>0.05 when

applying the Hosmer-Lemeshow goodness-of-fit test, with the

exception of the Klement model for 2-year LC prediction, as

noted in Table 5.
3.5 Comprehensive comparison of different
radiobiological models

A comprehensive analysis of different radiobiological models

was shown in Table 6. The evaluation of the different models was
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based on several criteria, including their discriminative ability,

calibration performance, clinical consistency, and the simplicity.

Among the models for 2-year prediction, the Ohri model was

identified as having strong discriminative power, good calibration

performance, good agreement with clinical outcomes, and a relative

simplicity when compared to the Liu model and the Klement

model. For the 3-year models, both the Gucken model and the

Santiago model demonstrated strong discriminative ability, good

calibration performance, consistency with clinical outcomes, and a

relatively simple methodology compared with the Liu model and

the Klement model.
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4 Discussion

This study serves as the first study to externally validate the LC

prediction of different radiobiological models in lung cancer patients

treated with SBRT. Our results suggest that all the 2-year and 3-year

models evaluated in the study showed potential discriminative ability,

with the exception of the Klement model. Notably, the Ohri model

demonstrated superior discriminative ability in comparison to the

Klement model for predicting LC at 2 year. However, no statistically

significant differences were observed among the four models when

predicting 3-year LC outcomes. In the context of clinical practice, it is
FIGURE 1

3D map of the relationship between the TCP, BED, and tumor size among different radiobiological models. (A), Liu model for 2-year LC prediction,
(B), Klement model for 2-year LC prediction, (C), Ohri model for 2-year LC prediction, (D), Liu model for 3-year LC prediction, (E), Klement model
for 3-year LC prediction, (F) Gucken model for 3-year LC prediction, and (G), Santiago model for 3-year LC prediction. TCP, Tumor
control probability.
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essential to consider both the accuracy and simplicity of a model

when selecting a prediction tool. The Liu model is not recommended

for use due to its complex mathematical computations and

discrepancies with clinical observations. Likewise, the Klement

model is also unsuitable because it incorporates multiple factors to

predict the LC data, which compromises its simplicity. Taking into

account all the factors discussed, we propose utilizing the Ohri model

for 2-year LC prediction and either the Guckenmodel or the Santiago

model for 3-year LC prediction. The models we endorse maintain a

straightforward logistic relationship form while the prediction

accuracy is not compromised.

Currently, the most traditional strategy for predicting LC is the

application of BED10 > 100 Gy dose threshold (8). However, some

studies have supported the recognition that tumor size also

significantly impacts LC for NSCLC patients undergoing SBRT

(19–21). Consequently, some radiobiological models that integrate

dosimetric factors and tumor size have been proposed in recent

years to enhance the prediction accuracy, with the 2-year LC or 3-

year LC serving as the endpoints (8–13). The Ohri model, a logistic

model, was developed by retrospectively analyzing 504 NSCLC

tumors treated with various SBRT schedules. The model

introduces the concept of size-adjusted biologically effective dose

(sBED), which takes into account both tumor diameter and BED to

predict the 2-year probability of LC following SBRT. Both the

Gucken model and the Santiago model, which assume a sigmoidal

dose-response relationship between TCP and BED, utilize only the

isocenter dose as a predictor. Therefore, these three prediction

models are fundamentally similar, with the primary distinction

lying in the specific parameters used within each model. The Liu

model, which considers the tumor regrowth after radiation

treatment, can be employed to predict both 2-year and 3-year LC

data based on the isocenter dose and tumor size. However, the

accuracy of the model is a subject of further debate for two main

reasons. Firstly, the model suggests drastically steep relationships

between TCP and BED within the dose range of 50-60 Gy using a

large a/b value of about 20 Gy, implying that TCP is nearly zero

when the BED is below 50 Gy20. This may not correspond with
TABLE 3 The LC probability predicted by the 2-year and 3-year models.

Endpoint Models Median (IQR) (%)

2-year LC

Liu Model 95.4 (6.8)

Klement model 81.5 (14.0)

Ohri model 93.6 (13.2)

3-year LC

Liu Model 95.4 (8.2)

Klement model 73.1 (19.1)

Gucken model 80.9 (8.2)

Santiago model 82.4 (5.4)
LC, Local control; IQR, Interquartile range.
TABLE 2 Patient and treatment characteristics in this study.

Characteristic Counts (%)/Median (IQR)

Gender

Male 115 (75.2)

Female 38 (24.8)

Age 65.0 (16.0)

Clinical stage

I 48 (31.4)

II 14 (9.2)

III 10 (6.5)

IV 81 (52.9)

Primary or metastatic

Primary 93 (60.8)

Metastatic 60 (39.2)

Tumor location

Peripheral 133 (86.9)

Central 20 (13.1)

Tumor diameter (cm) 3.2 (2.6)

BEDPD (Gy) 95.2 (25.6)

BEDDmax (Gy10) 114.4 (41.1)

Fractions 4.0 (3.0)

Treatment duration (days) 7.0 (7.0)

2-year LC

Yes 94 (61.4)

No 59 (38.6)

3-year LC

Yes 87 (56.9)

No 66 (43.1)

Dose schedules*

12.5 Gy×4 27 (17.6%)

10.0 Gy×5 17 (11.1%)

25.0 Gy×1 15 (9.8%)

10.0 Gy×4 15 (9.8%)

12.0 Gy×4 8 (5.2%)

24.0 Gy×1 6 (3.9%)

Others 65 (42.6%)
BEDPD=The prescribed dose recorded as BED. BEDDmax=The maximum dose in PTV
recorded as BED.
IQR, Interquartile range.
*Dose schedules were recorded as counts (%).
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FIGURE 2

ROC curves for 2-year and 3-year LC prediction and AUC comparison for the 2-year and 3-year prediction models. (A) ROC curves for 2-year
prediction model, (B) ROC curves for 3-year prediction model, (C) AUC comparison for the 2-year prediction models, (D) AUC comparison for the
3-year prediction model. AUC, Area Under the Curve.
TABLE 4 Performance of the 2-year and 3-year LC prediction models.

Endpoint Models AUC (95% CI) p-value Accuracy (%) Sensitivity (%) Specificity (%)

2-year LC

Liu Model 0.624 (0.542-0.701) 0.0085 64.7 47.5 75.5

Klement model 0.566 (0.484-0.646) 0.174 59.5 62.7 58.5

Ohri model 0.633 (0.552-0.710) 0.0049 66.0 42.4 80.9

3-year LC

Liu Model 0.625 (0.543-0.702) 0.0064 64.7 43.9 80.5

Klement model 0.575 (0.494-0.655) 0.113 60.1 62.1 59.8

Gucken model 0.618 (0.536-0.696) 0.0112 63.4 42.4 80.5

Santiago model 0.618 (0.536-0.696) 0.0112 63.4 42.4 80.5
F
rontiers in Oncology
 07
LC, Local control.
The criterion values recommended by the MedCalc software for accuracy calculation for the 2-year prediction model were 0.9481, 0.8145, and 0.8673, respectively. And the corresponding value
for 3-year prediction were 0.9379, 0.7310, 0.7655, and 0.7954, respectively.
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clinical realities (13, 14, 22, 23). Secondly, it is a well-established fact

that the LC rate for the tumor decreases significantly with extended

follow-up periods (11, 24–26), however, it is puzzling that the Liu

model predicts only a minor decrease in 3-year LC data compared

to the 2-year LC data (Table 3). Additionally, the model involves

complex mathematical calculation that might limit its clinical

application. The Klement model, a Bayesian cure rate-based

model, employs up to 6 factors to predict the LC probability,

including isocenter dose, tumor size, gender, age, tumor location

and whether chemotherapy was administered prior to SBRT. The

identified limitation may compromise its clinical utility. Based on

the aforementioned analysis and the results from external

validation, we recommend to use the Ohri model for 2-year LC

prediction and either the Gucken model or the Santiago model for

3-year LC prediction.
Frontiers in Oncology 08
A deficiency in potential discriminative ability was observed

with the Klement model, irrespective of its application for either 2-

year or 3-year prediction. This result can be ascribed to two

principal factors. Firstly, it is important to recognize that the

radiobiological models used in the study are predominantly

tailored for primary lung cancer, whereas the Klement model is

specifically centered on pulmonary metastases. Nevertheless, we

included the Klement model in our analysis because Guckenberger’s

research emphasized that there is no significant difference in the

dose-response relationship for local tumor control between primary

lung cancer and lung metastases when treated with SBRT (27).

Secondly, the Klement model incorporates up to six variables in its

predictive approach. However, it is a widely accepted notion that

including an excessive number of variables in a prediction model

can result in poorer outcomes during external validation processes.
FIGURE 3

Confusion matrix of different radiobiological models. (A), Liu model for 2-year LC prediction, (B), Klement model for 2-year LC prediction, (C), Ohri
model for 2-year LC prediction, (D), Liu model for 3-year LC prediction, (E), Klement model for 3-year LC prediction, (F) Gucken model for 3-year
LC prediction, and (G), Santiago model for 3-year LC prediction.
FIGURE 4

The calibration curves of different radiobiological models. (A) 2-year prediction model, (B) 3-year prediction model.
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The findings of the study highlight the potential utility of

radiobiological models in predicting the LC of lung cancer

following SBRT, with statistically significant discriminatory ability

and reliable calibration. However, it is crucial to observe that the

highest AUC value among different models is only 0.625, which

suggests a further need to improve the accuracy of these prediction

models. One possible explanation for this may lie in the fact that

radiobiological models predominantly concentrate on the effects of

treatment dose and tumor size on LC. Recently, there has been a

growing interest in the prognostic importance of inflammation-

related factors, especially within the era of immunotherapy.

Numerous independent studies have highlighted the correlation

between these factors and overall survival (OS) in lung cancer

patients who have undergone SBRT (28–31). However, the current

literature regarding the prognostic significance of these factors in

predicting LC following SBRT is quite limited. Further researches is

indispensable to investigate the feasibility of integrating these

factors into radiobiological models, thereby enhancing the

accuracy of LC prediction for lung cancer patients.
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The Ohri model illustrates a logistic correlation between TCP and

both tumor size and treatment dose. Similarly, both the Guckenmodel

and the Santiago model also exhibit a logistic relationship, specifically

between TCP and the administered treatment dose. The clinical

applicability of the three models is enhanced by their fewer number

of variables, coupled with the accessibility and simplicity of their

calculationmethods. Conversely, the main obstacle for the adoption of

the recommended models is their uncertainty on the net benefit,

which necessitates a multicenter retrospective study to validate their

efficacy. Even with potentially lower AUC values, we believe that the

Ohri, Santiago, and Gucken models could be particularly suitable for

two patient groups. The first group comprises elderly patients with

comorbidities, who frequently face a multitude of health challenges.

These models may facilitate more effective, personalized treatment

strategies for this vulnerable demographic. The second group includes

patients with large tumors, for whom predicting local recurrence is

particularly challenging. These models comprehensively consider both

the treatment dose and tumor size, thereby enhancing the precision of

tumor control probability predictions. And this is notably true for the

Ohri model, which highlights the effect of both tumor size and

treatment dose on local control for the tumors.

In summary, the radiobiological models exhibited different

prediction accuracy. Furthermore, some models did not align well

with the clinical outcomes, and others employed complex

mathematical computations. We recommend the use of the Ohri

model for 2-year LC prediction and the Gucken model or the

Santiago model for 3-year LC prediction. The models we

recommend are simple at their logistic relationship form without

compromising the predictive accuracy. Although we have validated

the predictive accuracy of the radiobiological models using an SBRT

database from external institution, the study has two limitations that

must be acknowledged. Firstly, the is a single-institutional study and

the sample size was relatively small, which could raise questions about

the reliability and generalizability of external validation. Therefore,
TABLE 5 Hosmer-Lemeshow goodness-of-fit test for the 2-year and
3-year prediction models.

Endpoint Models Chi-square p-value

2-year LC

Liu Model 8.066 0.427

Klement model 15.795 0.045

Ohri model 3.890 0.867

3-year LC

Liu Model 7.685 0.465

Klement model 12.877 0.116

Gucken model 6.755 0.563

Santiago model 6.810 0.557
LC, Local control.
TABLE 6 A comprehensive comparison of the 2-year and 3-year models for LC prediction.

Endpoint Models Discrimination Calibration Clinical consistency Model simplicity

2-year LC

Liu Model Good Good Inconsistent
Two variables,

Complicated calculation

Klement model Bad Bad Consistent
Six variables,

Complicated calculation

Ohri model Good Good Consistent
Two variables,

Simple calculation

3-year LC

Liu Model Good Good Inconsistent
Two variables,

Complicated calculation

Klement model Bad Good Consistent
Six variables

Complicated calculation

Gucken model Good Good Consistent
Two variables,

Simple calculation

Santiago model Good Good Consistent
Two variables,

Simple calculation
LC, Local control.
Different models were compared according to their discriminative ability, calibration ability, clinical consistency and model simplicity.
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further multicenter retrospective investigation with a larger sample

size is necessary for validation. Secondly, given the retrospective

nature of the data collection, there may be inherent biases within the

study that need to be considered. Thirdly, one might question

whether including both primary and metastatic, as well as central

and peripheral lung cancer patients, could potentially weaken our

finding. Guckenberger et al. demonstrated that there was no

difference in tumor local control with SBRT between primary lung

cancer and lung metastases (27). Additionally, Park et al. found that

tumor location did not correlate with worse overall survival, LC, or

toxicity following SBRT for NSCLC (32). Based on the literature

mentioned above, we believe that the inclusion of a mixture of

primary and secondary, central and peripheral lung tumors is

unlikely to have significantly impacted our results.
5 Conclusions

The study determined that all of the models designed for 2-year

and 3-year prediction demonstrated potential discriminative ability,

with the exception of the Klement model. In particular, the Ohri

model showed an improved discriminative ability when compared

to the Klement model for predicting LC at 2 year. Nonetheless, there

were no statistically significant differences observed among the four

models concerning the 3-year LC prediction. To maintain both the

prediction accuracy and the simplicity of the model, it is

recommended to use the Ohri model for predicting 2-year LC

and either the Gucken model or Santiago model for 3-year LC in

patients with lung cancer treated with SBRT.
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