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Treating early-stage
centrally-located non-small
cell lung cancer with
DCAT-SBRT in centers lacking
the VMAT technique:
a comprehensive study
Yangyang Huang1,2, Jun Yang2, Rui Song2, Tingting Qin2,
Menglin Yang2 and Yibao Liu1*

1School of Nuclear Science and Engineering, East China University of Technology, Nanchang,
Jiangxi, China, 2Department of Radiotherapy, the Second Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China
Background: Volumetric-modulated arc therapy (VMAT) may have the highest

overall performance for stereotactic body radiotherapy (SBRT) treatment of

inoperable early-stage NSCLC. However, in centers lacking the VMAT

technique, the dynamic conformal arc therapy (DCAT) technique is potentially

the best option for small and rounded NSCLC-SBRT. Therefore, we will

comprehensively analyze the advantages of the DCAT versus the other

techniques except VMAT in terms of dosimetry, plan complexity, delivery time,

g-passing rates and the interplay effect.

Methods: 36 patients with early-stage centrally located NSCLC with PTV

volumes < 65 cc were enrolled. All patients were redesigned with 50Gy/5f, and

100% of the prescribed dose was normalized to cover 95% of the PTV. The other

two delivery techniques compared to the DCAT technique include 3-

dimensional conformal radiotherapy (3DCRT) and intensity-modulated

radiotherapy (IMRT), which use the same parameters for all three techniques.

Results: The dosimetric parameters of the 3-group plans all met the RTOG 0813

protocol. Unsurprisingly, plan complexity parameters such as segments and MUs

were significantly reduced in the DCAT plans by 159.56 and 925.90 compared to

the IMRT plans, respectively (all P < 0.001). The delivery time of the DCAT plans

was the least of 164.51 s (all P < 0.05). Compared to the IMRT plans, the g-passing
rates were higher in the DCAT plans (P < 0.001), with the most significant

difference of 6.01% in the (2%, 1 mm) criteria. As for the interplay effect, the

mean dose difference (MDD) in the DCAT plans was as good as the 3DCRT plans

at different respiratory amplitudes but better than the IMRT plans (all P < 0.05),

and the MDD of DCAT plans did not exceed 3% in all respiratory amplitude.
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Conclusion: In centers lacking the VMAT technique, implementing SBRT

treatment based on the DCAT technique for inoperable early-stage centrally-

located NSCLC patients with PTV volumes < 65 cc achieves better treatment

efficiency and delivery accuracy while maintaining the plan quality.
KEYWORDS

DCAT, SBRT, inoperable early-stage centrally-located NSCLC, dosimetric parameter,
plan complexity, delivery time, g-passing rate, interplay effect
1 Introduction

In recent years, the incidence of inoperable early-stage

centrally-located non-small cell lung cancer (NSCLC) has been

increasing with the increase in population aging and the availability

of screening tools (1–3), and the stereotactic body radiotherapy

(SBRT) is gradually becoming a standard of care (4–7). The

characteristics of SBRT include fewer fractions, higher single

doses, higher conformity, and accurate delivery (8). The tumors

of early-stage centrally-located NSCLC are close to some critical

organs, such as the ipsilateral proximal bronchus tree (PBT) and the

healthy lungs, which may be damaged by the high dose of SBRT,

thus failing to achieve optimal treatment. Therefore, SBRT planning

for inoperable early-stage centrally-located NSCLC requires the

most suitable delivery technique (4).

The most common delivery techniques for linac-based SBRT

treatment include three-dimension conformal radiotherapy

(3DCRT), intensity-modulated radiotherapy (IMRT), dynamic

conformal arc therapy (DCAT), and volumetric-modulated arc

therapy (VMAT) (9, 10). Many reports have confirmed that the

VMAT technique has the highest comprehensive advantage. For

example, Dwivedi et al. (11) found that VMAT-based SBRT plans

for lung cancer were of better quality, with treatment time

decreasing by 57.09% to 60.39% compared to 3DCRT. Xhaferllari

et al. (12) concluded that VMAT had a dosimetric advantage

compared to fixed-beam IMRT in SBRT treatment of early-stage

NSCLC and significantly reduced treatment time. Rauschenbach

et al. (13) thought that VMAT could lower the doses of all the

organs at risk (OARs) compared to DCAT and 3DCRT. However,

in the vast central and western regions of China, many condition-

limited centers have only just completed the popularization of the

fundamental three-dimension technique and lack the hardware and

software to implement the VMAT technique, and the available

SBRT techniques are 3DCRT, IMRT, and DCAT.

The 3DCRT technique has the most straightforward plan

complexity of these three techniques and lacks the intensity

modulation capability to protect adjacent OARs. In contrast, the

IMRT technique is superior to the 3DCRT technique in almost all

dosimetric parameters (14, 15). The DCAT technique is traditionally

just the arc 3DCRT technique, which is not much different from the

3DCRT technique in OAR-sparing (16). However, the novel DCAT
02
technique based on the Monaco treatment planning system (TPS)

incorporates two new improvements, namely, variable dose rate

(VDR) and segment shape optimization (SSO), which allow the

linac to reduce the dose rate where a limited dose is needed, and

allow the multi-leaf collimator (MLC) to move within a 5-mm range

in and out of the targets, thus effectively improving the plan quality

(17, 18). As a result, excellent dosimetric quality of the DCAT

technique is demonstrated in treating small, rounded targets.

Rauschenbach et al. (13) concluded that the DCAT technique was

superior in high and low-dose spillage compared to the 3DCRT

technique in the NSCLC-SBRT. Ming et al. (19) found that the mean

heart dose of DCAT and IMRTwere 2.3 Gy and 5.2 Gy in lung cancer

radiotherapy, respectively, meaning that the DCAT technique was

better than the IMRT in heart-sparing. Shi et al. (20) thought the

DCAT technique was valuable and efficient for lung SBRT planning,

and the plan quality met the RTOG protocols.

Several reports showed that the DCAT technique had advantages

regarding plan complexity, delivery time and the g-passing rates. Ong
et al. (21) found that the MU efficiency (MU/Gy) was 187 ± 20, 179 ±

18, and 445 ± 84 for DCAT, 3DCRT and IMRT plans. Rauschenbach

et al. (13) thought that when the single dose was normalized to deliver

20 Gy for comparison purposes, the mean MUs were 1880 ± 1260,

2540 ± 2020, and 3580 ± 1900, respectively, for DCAT, 3DCRT and

VMAT. Moon et al. (22) concluded that the delivery time in liver

SBRT for DCAT and VMAT were 3.6 ± 0.5 min and 4.5 ± 0.7 min,

respectively. Lee et al. (23) considered that the g-passing rate in lung

SBRT for DCAT was 97.60 ± 2.41% under 2%/2mm criteria, which

was high enough for accurate delivery.

An influencing factor that cannot be neglected during dose

delivery in early-stage centrally-located NSCLC is respiratory

motion, which may lead to deviations between the planned and

delivered dose distributions in the form of dose blurring and interplay

effects (24). Regardless of whether 3DCRT, IMRT or DCAT

technique is used, dose blurring occurs, resulting in hot spots and

cold spots in the target volume and an increasing dose to the adjacent

OARs, so every effort must be made to minimize the interplay effects.

Of these three techniques, the DCAT is less vulnerable to interplay

effects. Netherton et al. (25) thought that the simpler the IMRT plan

complexity, the lower the interplay effect. Burton et al. (26) found that

the DCAT plans were sufficiently robust to overcome the interplay

effect, which meant that the DCAT plans had a mean value of 6%
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dose deviation. However, the VMAT plans had a mean value of up to

21% dose deviation in single-fraction lung SBRT utilizing flattening

filter-free (FFF) beams. Seco et al. (27) thought that daily intrafraction

dose variation of more than 10% in IMRT plans was non-negligible

and could potentially lead to biological effects.

Most of the literature has focused on only the dosimetric

advantage of the DCAT technique, with few comprehensive analyses

of its dosimetry, plan complexity, delivery time, the g-passing rates and
the interplay effect. This paper will comprehensively analyze the above

factors to provide a reference for implementing SBRT using the DCAT

technique in inoperable early-stage centrally-located NSCLC.
2 Methods

2.1 Patient cohort

Thirty-six consecutive patients with inoperable early-stage

centrally-located NSCLC treated with SBRT were retrospectively

selected after obtaining approval from the Ethics Committee of the

Second Affiliated Hospital of Zhengzhou University (ethics number:

2023202). Due to its retrospective design, the Ethics Committee of the

Second Affiliated Hospital of Zhengzhou University waived the need

to obtain informed patient consent. All methods were carried out

following relevant guidelines and regulations. The general conditions

of the patients are shown in Table 1. Based on the RTOG 0236 and

0813 protocols (28, 29), the screened patients were required to fulfill

the following criteria: planning target volume (PTV) no larger than

5 cm and located outside the 0.5 cm area and within the 2 cm area of

the ipsilateral PBT or immediately adjacent to the mediastinal or

pericardial pleura. Exclusion of patients with the tumors’ extent

cannot be defined on CT (e.g., solid lesions around the tumor or

lung atelectasis) and patients with ultracentral lung tumors.
2.2 Positioning and contouring

Scanning was performed with 4DCT. Each patient underwent

scanning on a 16-row big-bore CT scanner (Philips Medical

Systems, Cleveland, OH) with a slice thickness of 3 mm.
Frontiers in Oncology 03
All patients were placed in the supine position, with their arms

holding a handle above their heads. The thoracic area was fixed

using a thermoplastic film (Guangzhou Klarity Medical Equipment

Co., Ltd., Guangzhou, China). The scanning range included all

OARs to be evaluated. The recommended range was from the upper

edge of the cricoid cartilage to the upper edge of the vertebral body

of lumbar 2, with a minimum of 10 cm above the upper and lower

boundaries of the tumors. The internal target volume (ITV) was

delineated on the maximum intensity projection CT (MIPCT) by a

radiation oncologist with expertise in lung SBRT. Based on the

4DCT, all patients had a respiratory amplitude of ≤ 5 mm in the 3D

direction during free breathing. The PTV was created by adding an

isotropic 5 mm margin to the ITV according to the RTOG

recommendations (28, 30). The average intensity projection CT

(AIPCT) was used for planning and dose calculations.

The OARs to be delineated included the ipsilateral lung and

lung all (both excluding the ITV, total named as healthy lungs), the

ipsilateral PBT, the spinal cord, the esophagus, the great vessels, the

heart, the ipsilateral brachial plexus, and the skin.
2.3 Planning

The 3-group plans were redesigned for each patient in Monaco

TPS (V6.0, Elekta Solution AB, Kungstensgatan 18, Stockholm,

Sweden) using the XVMC (X-ray Voxelized Monte Carlo)

algorithm (17). All the plans were delivered by an Infinity Linac

equipped with an Agility collimator and a 6 MV X-ray beam (1400

MU/min). The prescription for all plans was 50 Gy/5 f.

In the 3DCRT plans, ten static, noncoplanar and nonopposing

beams were used, and eight on the ipsilateral side at 30° intervals

(table angle 0°) and two on the anterior side (table angle 90°), with

the isocenter placed at the center of the PTV. Beam directions and

weights were manually optimized according to the tumor location,

mainly to achieve the mediastinal OAR-sparing. All beams in the

3DCRT plans used a collimation angle of 0°. The geometry for the

IMRT plans was the same as for the 3DCRT plans. The IMRT

delivery method was dynamic MLC, and the segment sequencing

options were chosen as SSO and High Precision Leaf Position. The

maximum number of segments per beam was 30, the minimum

segment width was 0.70 cm, and the fluence smoothing option was

medium and max. Sweep Efficiency and Allow Move Only

Segments were selected. In the DCAT plans, two 210° arcs (table

angle 0°) on the ipsilateral side, plus a 60° anterior arc (table angle

90°) were used, with the isocenter placed at the center of the PTV.

The DCAT plans used different collimation angles between ±45° for

each arc to minimize the tongue-and-groove effect (31). The

angular increment was set to 10°, and SSO and VDR were

selected. All plans’ dose grid and statistical uncertainty were

2.0 mm and 1%, respectively, and the Target Margin was selected

as 0-1 mm.

In IMRT and DCAT planning, the dose constraints of the

ipsilateral lung and the ipsilateral PBT should be met first and even

prioritized over the PTV dose coverage. All plans were rescaled to

fulfill 95% of the PTV covered by 100% prescription dose, and >

99% of the ITV covered by 100% prescription dose, and all hot spots
TABLE 1 Summary of patients’ general conditions.

Item Descriptions

Tumor Stage 14 cases of T1N0M0, 22 cases of T2N0M0

Age 32 to 73 years old, median age 51

Gender 19 males and 17 females

Tumor Location 13 cases in the lower lobe of the left lung, 14 cases in the
lower lobe of the right lung and 9 cases in the middle lobe
of the right lung

Target Size ITV volume between 2.01 – 23.15 cc, average 16.64 cc; PTV
volume between 5.82 – 63.78 cc, average 29.49 cc, max <
65 cc
ITV, internal target volume; PTV, planning target volume.
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(between 120% and 150% prescription dose) were located within

the ITV. If mediastinal OARs overlap the PTV, the minimum dose

for the PTV and ITV should be at least 70% and 90% of the

prescription dose, respectively.
2.4 Dosimetric evaluation

The PTV was evaluated using D98%, D2%, homogeneity index

(HI), conformity index (CI), and R50%, respectively, where D98% and

D2% represent the PTV’s approximate minimum and maximum

dose. Based on the RTOG 0813 protocol, D2% decreases with

decreasing PTV. At PTV = 70 cc, D2% was < 86.0 Gy; at PTV =

50 cc, D2% was <77.0 Gy; and at PTV < 10 cc, D2% was < 57.0 Gy.

For all PTV, D98% was > 45.0 Gy. CI (32) and R50% were used to

describe the high and intermediate dose spillage for the 3-group

plans. CI=PIV/TV, where PIV is the prescription isodose volume,

and TV is the target volume. The value of CI is ≥1, where the closer

the CI is to 1, the better. According to the RTOG 0813 protocol,

CI < 1.5, preferably < 1.2. R50% represents the 50% prescription

isodose volume ratio to the PTV. Based on the RTOG 0813

protocol, R50% increases as the PTV decreases. For example, R50%

is < 4.8 at PTV = 70 cc, R50% is < 5.0 at PTV = 50 cc, and R50% is <

7.5 at PTV <10 cc. HI describes the dose homogeneity degree within

the PTV, HI = D5%/D95% (33), where D5% and D95% represent the

dose to cover 5% and 95% of the PTV, respectively. A lower HI is

preferred, but pursuing a homogeneous dose within the PTV

increases the OAR dose. Therefore, when the PTV does not

contain organs that need to be preserved (34), the maximum HI

should be set with caution. Based on the clinical practice in the

department, HI < 1.6 is generally considered appropriate.

OARs were compared in compliance with the RTOG 0813

protocol and other relevant requirements in the literature (35, 36),

including ipsilateral lung V5Gy < 60% andV20Gy < 20%, lung all V5Gy <

40% and V20Gy < 10%; ipsilateral PBT V18Gy < 4 cc and Dmax < 52.5

Gy; spinal cord V22.5Gy < 0.25 cc, V13.5Gy < 0.5 cc and Dmax< 32 Gy;

esophagus V27.5Gy < 5 cc and Dmax < 52.5 Gy; heart V32Gy < 15 cc and

Dmax < 52.5 Gy; great vessels V47Gy < 10 cc and Dmax < 52.5 Gy;

ipsilateral brachial plexus V30Gy < 3 cc and Dmax < 32 Gy; skin V30Gy <

10 cc and Dmax < 32 Gy.
2.5 Plan complexity, delivery time, and
the g-passing rates

Plan complexity was weighted based on segments and MUs, as

segments and MUs positively correlate with plan complexity (37).

Delivery time was related to delivery efficiency, and they were

recorded when measuring g-passing rates using SRS MapCHECK

(equipped with the StereoPHAN phantom) (Sun Nuclear,

Melbourne, FL). Based on the AAPM TG-218 report and other

documentation (38, 39), and taking into account the clinical

practice in the department, the g-passing rates were 2%/2mm >

95%, 2%/1mm > 85%, and 1%/2mm > 90%, while excluding data

below 10% of the maximum dose.
Frontiers in Oncology 04
2.6 Interplay effect

The interplay effects of the 3-group plans were all performed on

a programmable dynamic respiratory phantom (CIRS 008A,

Computer Imaging Reference Systems, Norfolk, USA). This

phantom consists of a static chest model and a moving lung-

equivalent rod with a spherical water-equivalent target that

simulates a tumor’s motion. The study simulated the respiratory

movements through a one-dimensional motion in the cranial-

caudal direction.

A representative respiratory motion function was used to

simulate the respiratory motion profile (40, 41). The motion

function is defined as,

A = A0sin
6(pt=T) (1)

where t is the time, A0 is the respiratory amplitude, and T is the

respiratory period. The respiratory movements of three respiratory

amplitudes (20, 10 and 5 mm, peak-to-peak) were simulated for a 5 s

respiratory period.

The point dose at the center of the target volume (phantom

center) was measured using a center-located microdiamond

detector (PTW, Freiburg, Germany) with a minimum sensitive

volume of 0.004 mm3, as shown in Figure 1. The detector was

cross-calibrated in water against a 0.6 cc farmer type chamber

calibrated in a primary laboratory. Considering that the cable of the

microdiamond detector is likely to generate artifacts on the CT of

the phantom, and other tool will be used to measure the g-passing
rates of the plans, the phantom was used to directly measure the

static point doses, and then measured the dynamic point doses

under different respiratory amplitudes respectively. Starting from a

random respiration phase, each of the collection was repeated three

times per respiration amplitude for averaging, and the absolute

value of the difference between the measured dynamic and static

dose divided by the static dose was used to quantify the interplay

effect, named as mean dose difference (MDD).
2.7 Statistical analysis

Data were analyzed using SPSS 25.0 (IBM SPSS Statistics for

Windows, IBM Corp Version 25.0. Armonk, NY). The paired non-

parametric Wilcoxon signed-rank test was used to compare any two

plans. The confidence interval was 95%, with P < 0.05 indicating a

statistically significant difference.
3 Results

3.1 Dosimetric parameters

As can be seen in Table 2, the 3-group plans all met the RTOG

0813 protocol. The D2%, D98%, and HI of the 3-group plans were

very similar, and the differences were not statistically significant (all

P > 0.05). Figures 2, 3 show the transverse and coronal isodose lines

and the DVH for the same case of the 3-group plans, and it can be
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TABLE 2 Summary of dosimetric parameters for the 3-group plans.

Parameters (mean [SD]) 3DCRT (A) IMRT (B) DCAT (C)
P value

A VS. B A VS. C B VS. C

PTV

D98%(Gy) 44.86 (1.23) 43.59 (1.81) 44.02 (2.84) 0.953 0.886 0.518

D2%(Gy) 61.80 (2.87) 66.69 (3.11) 64.55 (5.62) 0.051 0.083 0.178

HI 1.29 (0.05) 1.27 (0.05) 1.28 (0.10) 0.127 0.072 0.913

CI 1.36 (0.11) 1.11 (0.04) 1.15 (0.04) 0.008* 0.011* 0.005*

R50% 5.64 (0.74) 4.36 (0.53) 5.01 (0.62) <0.001* 0.015* 0.001*

Ipsilateral PBT
V18Gy (%) 3.15 (1.12) 3.23 (1.12) 3.04 (1.06) 0.374 0.445 0.291

Dmax (Gy) 51.40 (2.99) 50.25 (3.41) 46.10 (3.74) 0.674 <0.001* <0.001*

Ipsilateral lung
V5Gy (%) 36.36 (7.33) 37.01 (7.00) 39.44 (7.99) 0.008* <0.001* <0.001*

V20Gy (%) 10.75 (3.43) 7.65 (2.68) 9.53 (3.61) <0.001* 0.066 <0.001*

Lung all
V5Gy (%) 18.60 (4.52) 20.55 (6.09) 21.71 (6.71) 0.006* <0.001* <0.001*

V20Gy (%) 5.80 (1.43) 3.71 (0.27) 4.59 (1.88) <0.001* 0.005* <0.001*

Spinal cord Dmax (Gy) 11.95 (2.57) 9.74 (2.70) 10.11 (5.36) 0.048* 0.260 0.648

Esophagus Dmax (Gy) 21.37 (6.98) 20.70 (10.66) 20.55 (11.63) 0.173 0.069 0.850

Heart
V32Gy (%) 2.50 (3.16) 1.31 (2.04) 1.12 (1.85) 0.028* <0.001* 0.465

Dmax (Gy) 39.55 (13.39) 35.97 (15.76) 34.45 (15.20) <0.001* 0.008* 0.018*

Great vessels
V47Gy (%) 0.20 (0.28) 0.09 (0.18) 0.16 (0.39) 0.310 0.635 0.199

Dmax (Gy) 48.52 (4.82) 42.51 (9.93) 40.57 (10.87) 0.263 0.031* 0.118

Ipsilateral
brachial plexus

Dmax (Gy) 0.33 (0.30) 0.32 (0.15) 0.28 (0.25) 0.377 0.112 0.385

Skin Dmax (Gy) 10.53 (1.04) 14.60 (1.15) 9.74 (1.99) 0.008* 0.224 <0.001*
F
rontiers in Oncology
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SD, standard deviation; 3DCRT, 3-dimensional conformal radiotherapy; IMRT, intensity-modulated radiotherapy; DCAT, dynamic conformal arc therapy; VS., versus; PTV, planning target
volume; D98%, dose to 98% of the target volume; D2%, dose to 2% of the target volume; HI, homogeneity index; CI, conformity index; R50%, the ratio of the 50% prescription isodose volume to the
PTV; PBT, proximal bronchial tree; Vx Gy, the ratio of the volume received > x Gy dose by an organ to the total volume; Dmax, the maximum point dose to an organ. A statistically significant
difference result is indicated by an asterisk (*).
FIGURE 1

Schematic diagram of the combined use of the CIRS 008A phantom and the PTW microdiamond detector. (A) lateral view; (B) front view; (C) X-ray
fluoroscopic view.
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seen that the DCAT plan had a more uniform target dose than the

IMRT plan and a better OAR-sparing than the 3DCRT plan. The

mean CI value of the DCAT plans was between IMRT plans and

3DCRT plans, and the differences were statistically significant (all P

< 0.05). The mean R50% of the DCAT plans was not as good as that

of the IMRT plans but better than the 3DCRT plans, with a mean

value of 5.01, and the differences were statistically significant (all P

< 0.05).
Frontiers in Oncology 06
The DCAT plans were superior in the ipsilateral PBT-sparing

among the 3-group plans, especially in the Dmax parameter (all P <

0.001). The evaluation parameters of the healthy lungs in the DCAT

plans were all inferior to those in the IMRT plans but were superior

to those in the 3DCRT plans (Lung All V20Gy). However, the most

significant difference in mean value among the 3-group plans was

only 7.81% higher (DCAT vs. 3DCRT, ipsilateral lung V5Gy). For

the remaining OARs listed in Table 2, the corresponding
FIGURE 2

Dose distribution of the same case of 3DCRT (Group A), IMRT (Group B) and DCAT plans (Group C). The DCAT plan has a relatively uniform target
dose distribution than the IMRT plan, and a tighter dose distribution than the 3DCRT plan.
FIGURE 3

DVH comparison of the same case between 3DCRT (solid line), IMRT (long dash line) and DCAT plans (short dash line). The legend is displayed in the
right side. DVH similarly supports the view that the DCAT plan has a relatively uniform target dose distribution than the IMRT plan, and a better OAR-
sparing than the 3DCRT plan.
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parameters of the DCAT plans were mostly between 3DCRT and

IMRT plans, and the 3-group plans were all above the qualified line.

Some of the OARs’ data were not presented in Table 2 because all

the values among the 3-group plans were 0 (spinal cord V22.5Gy,

ipsilateral brachial plexus V30Gy, and skin V30Gy), or the majority of

them were 0 (spinal cord V13.5Gy, esophagus V27.5Gy).
3.2 Plan complexity, delivery time, the
g-passing rates, and the interplay effect

Regarding the plan complexity, the DCAT plans showed a

significant reduction in segments and MUs compared to the

IMRT plans, mean reduction in segments by 159.56 and MUs by

925.90 (all P < 0.001), as shown in Table 3. The mean delivery time

of the DCAT plans was the least of 164.51 s (all P < 0.05). The

g-passing rates of 3-group plans were qualified under different

criteria (2%/2mm, 1%/2mm, and 2%/1mm), as shown in Table 3.

However, the g-passing rates of the DCAT plans were higher than

those of the IMRT plans under all criteria (P < 0.001), and the

advantage became more and more evident as the criteria became

more and more stringent. For example, under the criteria of (2%/

1mm), the g-passing rates of the DCAT plans got a mean

improvement of 6.01% compared to the IMRT plans (P < 0.001).

As for the interplay effect, with the respiratory amplitude decreased,

the MDD decreased in all the 3-group plans. At different respiratory

amplitudes, the MDD in the DCAT plans was as good as the

3DCRT plans but better than the IMRT plans (all P < 0.05). The

MDD of DCAT plans did not exceed 3% at expected

respiratory amplitudes.
4 Discussion

In this paper, we compared the dosimetric parameters, plan

complexity, delivery time, the g-passing rates, and the interplay
Frontiers in Oncology 07
effect of the 3DCRT, the DCAT, and the IMRT plans for 36 patients

with inoperable early-stage centrally-located NSCLC (PTV < 65 cc),

and analyzed the feasibility of the DCAT plans to implement SBRT

treatment (50Gy/5fx). The results showed that all dosimetric

parameters of the 3-group plans met the RTOG 0813 protocol,

and the DCAT plans showed the highest comprehensive advantage.

As shown in Table 2 and Figure 2, the D2%, D98%, and HI of the

DCAT plans were very similar to the other two plans (all P > 0.05),

and the DCAT plans had moderate CI and R50% values among the

3-group plans. The above results are similar to the findings of

several authors. For example, Goto et al. (16) found that the DCAT

plans (median 1.3) had better CI than the 3DCRT plans (median

2.2), which was similar to the results of Peterlin et al. (42). Yau et al.

(43) thought that the DCAT plans could offer similar dosimetric

benefit compared to the IMRT plans. It is reported that the clinical

outcomes of the DCAT plans were pretty good, and the 1-year local

control of DCAT-SBRT was 96.7%, 1-year overall survival was

93.1% in early-stage lung cancer (44).

The most common side effects of SBRT treatment for centrally-

located lung cancer include fatal hemoptysis (45) and fatal radiation

pneumonitis in patients with poor respiratory function (46–48),

particularly those with underlying interstitial lung disease.

Therefore, the dose to the ipsilateral PBT and healthy lungs must

be strictly controlled according to the RTOG 0813 protocol. As

shown in Table 2, the DCAT plans were superior in protecting the

ipsilateral PBT in parameters of Dmax (all P < 0.001). The lung

evaluation parameters in the 3-group plans were substantially lower

than the RTOG 0813 protocol, and the DCAT plans got relatively

lower V20Gy. It has been reported that only 4.6% of symptomatic

grade 2 radiation pneumonitis in similar lung evaluation

parameters in the DCAT plans (44). In addition, Table 2 showed

the DCAT plans had advantages in most remain OARs. In

summary, all three techniques produced dosimetrically qualified

plans much smaller in absolute values than those required by the

RTOG0813 protocol. Therefore, no significant differences in

radiotoxicity were expected.
TABLE 3 Summary of other parameters for the 3-group plans.

Parameters (mean [SD]) 3DCRT (A) IMRT (B) DCAT (C)
P value

A VS. B A VS. C B VS. C

Segments N/A 10 261.68 (11.10) 102.12 (27.25) N/A N/A <0.001*

MUs N/A 1648.93 (76.43) 2781.36 (451.68) 1855.46 (269.34) 0.008* 0.842 <0.001*

Delivery time (s) N/A 192.32 (18.54) 253.47 (23.97) 164.51 (15.07) <0.001* 0.017* <0.001*

g-passing
rates (%)

(2%/2mm) 99.27 (0.45) 96.34 (1.98) 98.99(1.11) <0.001* 0.674 <0.001*

(1%/2mm) 97.16 (1.87) 93.61 (2.78) 96.85(1.97) <0.001* 0.138 <0.001*

(2%/1mm) 93.55 (2.98) 87.13 (3.77) 93.14 (2.91) <0.001* 0.164 <0.001*

MDD (%)

20mm 2.05 (1.62) 4.39 (5.47) 2.84 (2.48) <0.001* 0.321 0.035*

10mm 1.68 (0.56) 3.73 (4.68) 1.89 (1.45) <0.001* 0.647 0.006*

5mm 0.78 (0.22) 2.35 (1.49) 1.08 (0.14) <0.001* 0.257 0.014*
SD, standard deviation; 3DCRT, 3-dimensional conformal radiotherapy; IMRT, intensity-modulated radiotherapy; DCAT, dynamic conformal arc therapy; VS., versus; MUs, monitor units; N/A,
not applicable; MDD, mean dose difference. A statistically significant difference result is indicated by an asterisk (*).
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In addition to the dosimetric advantage, the most significant

advantages of the DCAT plans are suitable plan complexity,

delivery time, g-passing rates, and the interplay effect (49–52). As

can be seen in Table 3, the DCAT plans required fewer segments

and MUs to deliver the same dose compared to the IMRT plans

(13), with an average reduction in segments and MUs of 159.56 and

925.90, respectively (all P < 0.001). As a result, the mean delivery

time of the DCAT plans was the least of 164.51 s (all P < 0.05),

which could improve the patient’s comfort, especially in deep

inspiration breath-hold radiotherapy (53). Another benefit of

fewer segments and MUs may be the higher g-passing rates

compared to the IMRT plans (54). The results in Table 3 showed

that the g-passing rates in the DCAT plans were more significant

than that in the IMRT plans under all criteria (P < 0.001), and the

advantage became more and more evident as the criteria became

more and more stringent. This is due to the rounded segment shape

and large segment area of the DCAT plans (17, 18, 44, 53, 55).

Table 3 also showed that the DCAT plans had a relatively lower

interplay effect among the 3-group plans. At expected respiratory

amplitudes (5-20 mm), the MDD did not exceed 3%. The interplay

effect can lead to hot and cold spots within the target (40), reducing

the tumor control probability. The study showed that the interplay

effect of the DCAT plans was significantly smaller than that of the

IMRT plans but similar to the 3DCRT plans. Considering the MLC

leaves in the DCAT plans moved around the edge of the moving

target, the findings of this study were consistent with the study of Ge

et al. (50). This is especially critical in the SBRT treatment of

NSCLC with respiratory motion. After all, the interplay effect is one

of the biggest concerns in conducting chest SBRT treatment in the

free-breathing condition (56). Therefore, the DCAT technique may

be the best choice in some condition-limited centers when

implementing inoperable early-stage centrally-located NSCLC

SBRT (57).

Implementing the DCAT plans in this paper is based on two

premises. The first point is that the targets must be far from the

OARs (58), especially the ipsilateral PBT because the DCAT plans

have low dose modulation and are less capable of OAR-sparing. The

second point is that the maximum PTV volume included in this

paper is < 65 cc, so no analysis is given for a larger PTV volume.

One of the shortcomings of this paper is that it does not involve the

research on multiple lesions. Therefore, we look forward to

conducting in-depth research on radiotherapy techniques for

multiple lesions in the upcoming experiments.
5 Conclusions

In centers lacking the VMAT technique, the study herein

supports the DCAT technique as the first choice for SBRT

treatment of inoperable early-stage centrally-located NSCLC

(PTV < 65cc) because of certain advantages in terms of adequate

OAR-sparing, less treatment time, high g-passing rates, and low

interplay effect.
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