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Squamous cell carcinoma (SCC) is a prevalent malignancy affecting multiple

organs in the human body, including the oral cavity, esophagus, cervix, and skin.

Given its significant incidence and mortality rates, researchers are actively

seeking effective diagnostic and therapeutic strategies. In recent years,

exosomes and their molecular cargo, particularly circular RNA (circRNA), have

emerged as promising areas of investigation in SCC research. Exosomes are small

vesicles released into the extracellular environment by cells that contain

biomolecules that reflect the physiological state of the cell of origin. CircRNAs,

known for their unique covalently closed loop structure and stability, have

garnered special attention in oncology and are closely associated with

tumorigenesis, progression, metastasis, and drug resistance. Interestingly,

exosomal circRNAs have been identified as ideal biomarkers for noninvasive

cancer diagnosis and prognosis assessment. This article reviews the progress in

research on exosomal circRNAs, focusing on their expression patterns, functions,

and potential applications as biomarkers in SCC, aiming to provide new insights

and strategies for the diagnosis and treatment of SCC.
KEYWORDS
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1 Introduction

Squamous cell carcinoma (SCC) is an aggressive malignancy originating from the

squamous epithelium that affects a wide array of organs, such as the oral cavity, esophagus,

cervix, and skin (1–3). The incidence and mortality rates of SCC, a common cancer type,

are significant concerns. Notably, SCC accounts for approximately 60% of all malignancies

in the orofacial region and accounts for approximately 90% of all esophageal cancer cases

(4). Furthermore, it constitutes the majority of cervical and skin cancer diagnoses (5–8).

These statistics not only highlight the global prevalence of SCC but also underscore its
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severe public health implications. Unfortunately, the therapeutic

landscape for SCC is fraught with challenges, as most patients are

diagnosed at advanced stages, leading to poor treatment outcomes,

high recurrence rates, and dismal prognoses. Therefore, the

identification of effective diagnostic and prognostic biomarkers is

crucial for enhancing patient survival and quality of life. In this

context, exosomes and their cargo molecules have attracted

significant scientific interest, particularly in the development and

progression of SCC.

Exosomes are extracellular vesicles approximately 30–150 nm

in diameter that are secreted into the extracellular milieu through

exocytosis (9). Originating from the endosomal compartment, they

fuse with the plasma membrane to be released from the cell (10).

Exosomes are rich in biomolecules, including specific proteins,

mRNAs, microRNAs, and notably, circular RNAs (circRNAs),

which have recently attracted increased amounts of attention

(11). The presence of these molecules not only reflects the

biological state of the parent cell but also modulates the behavior

of the recipient cells, facilitating intercellular communication and

influencing disease pathogenesis (12). CircRNAs, a class of

noncoding RNAs characterized by their covalently closed loop

structure, are more stable than linear RNAs (13). CircRNAs

generated within exosomes by back-splicing are strongly

associated with the onset and progression of various diseases,

particularly in oncology, where aberrant circRNA expression has

been linked to cancer initiation, progression, metastasis, and

chemoresistance (14–16). Given their rich circRNA content,

exosomes are considered ideal biomarkers for noninvasive cancer

diagnostics and prognosis.

In summary, exosomes and their encapsulated circRNAs play a

pivotal role in SCC research due to their critical functions in disease

biology and their vast potential in clinical applications. An in-depth

investigation of the biological properties of exosomes and

circRNAs, as well as their expression and function in SCC,

promises to open new avenues for early diagnosis, therapeutic

decision-making, and prognosis assessment in SCC. This paper

reviews the current state of exosomal circRNA research, focusing on

its expression patterns, functions, and potential as a biomarker in

SCC, with the aim of providing fresh perspectives and strategies for

the diagnosis and treatment of SCC.
2 Biological functions of
exosomal circRNAs

Extracellular vesicles originating from endocytosis are

nanoscale cell-derived vesicles with diameters ranging from

approximately 30 to 150 nm. Most cell types are capable of

producing extracellular vesicles, which circulate in bodily fluids

such as blood, urine, saliva, and breast milk (17). The contents of

extracellular vesicles consist of various growth factors, proteins,

lipids, nucleic acids, lncRNAs, and circRNAs. Consequently,

extracellular vesicles play critical biological roles in cell

interactions, affecting multiple cellular activities in both healthy
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and disease states. Increasing evidence has demonstrated the role of

extracellular vesicles in mediating intercellular communication, the

tumor microenvironment, immune system function, development

and differentiation, cell signaling, and viral replication (18).

Circular RNAs were initially discovered in RNA viruses and are

widely present as a diverse class of endogenous noncoding RNAs

(19). Initially, considered an aberrant splicing byproduct of RNA,

circRNA forms a covalently closed continuous loop structure after

backsplicing of exons, introns or both. This closed loop structure of

circRNA prevents degradation by RNA exonucleases or RNases,

making it more stable than linear RNA and potentially serving as a

disease biomarker. Over 80% of circRNAs overlap with protein-

coding regions, suggesting that circRNAs may play important roles

in diseases or serve as novel biomarkers. CircRNAs function in

various key ways, negatively regulating miRNA expression, acting

as miRNA sponges, regulating splicing and transcription,

posttranscriptionally modulating gene expression, and potentially

influencing cell growth and invasion processes in various cancers,

including gastric, colorectal, and esophageal cancers (17).

Numerous studies have demonstrated that circRNAs have

significant impacts on cancer progression and treatment

(Figure 1) , exert ing regulatory effects on the tumor

microenvironment and serving as potential therapeutic targets

and novel cancer biomarkers. Research has shown that circRNAs

are highly enriched in extracellular vesicles and can exist stably

within them, with a significantly increased abundance of circRNAs

compared to those secreted by normal cells (12, 20). Several

circRNA species with potential biological functions have been

identified in extracellular vesicles, especially in human serum-

derived extracellular vesicles containing more than 1,000

circRNAs, possibly originating from tumors (21, 22). Some

circRNAs have been detected in serum, urine, and tumor-derived

extracellular vesicles. Tumor-derived extracellular vesicle circRNAs

may participate in processes such as cell growth, angiogenesis, and

epithelial–mesenchymal transition (23).

Studies have shown that the abundance of circRNA in

extracellular vesicles is twice that of the parent cells and six times

that of linear RNA (20). The sorting of circRNA into extracellular

vesicles is regulated by changes in related miRNA levels in parent

cells and facilitates the transfer of biological activity to recipient cells,

thereby participating in intercellular communication (20). The

nanoscale size and lipid bilayer structure of extracellular vesicles

can prolong the circulation time of circRNAs and enhance their

biological activity. Therefore, extracellular vesicle circRNAs possess

both the targeting properties of extracellular vesicle-like transfer and

the inherent biological functions of circRNAs, offering more

significant regulatory advantages (24). Multiple studies have

shown that tumor-specific circRNAs can be selectively packaged,

secreted, and transported via tumor-derived extracellular vesicles,

participating in the regulation of the tumor microenvironment to

promote or inhibit tumor cell growth and metastasis. Extracellular

vesicle circRNAs exhibit greater diagnostic sensitivity and specificity

than freely circulating circRNAs in body fluids and could serve as

valuable biomarkers for clinical diagnosis and prognosis (25).
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3 The role of exosomal circRNAs in
the diagnosis and progression of
squamous cell carcinoma

CircRNAs play crucial roles in exosomes and are closely

associated with the development of squamous cell carcinoma

(26). A study revealed that high expression of circ_0000199 in

oral squamous cell carcinoma is linked to increased recurrence and

mortality rates, with its overexpression promoting tumor cell

growth while its silencing exhibiting inhibitory effects (27).

Similarly, circ_0072387 inhibits the progression of oral squamous

cell carcinoma by regulating the expression of microRNA-503–5p

(miR-503–5p), suggesting its potential as a therapeutic target for

this disease (28). Research by Tang et al. further revealed that the

high expression of circFNDC3B in serum exosomes is directly

associated with the occurrence and development of esophageal

squamous cell carcinoma, possibly serving as an independent risk

predictor for aiding in early diagnosis (29). CircfNDC3B not only

affects tumor cells through exosomal transfer but also functions

through the miR-490–5p/TXNRD1 axis, further driving the

progression of esophageal squamous cell carcinoma (30).

Transfection of exosomal circ-CYP24A1 can inhibit the

malignant behavior of cutaneous squamous cell carcinoma,

offering new possibilities for noninvasive therapeutic strategies

and potentially serving as a diagnostic marker (31). In CC,
Frontiers in Oncology 03
the expression level of circRNA_0000285 in cancer tissue samples

was significantly greater than that in corresponding normal tissue

samples. After knocking out circRNA_0000285, the expression of

downstream FUS was significantly downregulated, which indicates

that circRNA_0000285 may enhance the proliferation of cervical

squamous cell carcinoma cells by upregulating FUS and provides

potential therapeutic targets for research on cervical cancer (32).

Additionally, a significant reduction in the impact of circ_0005576

silencing on cervical squamous cell carcinoma cells can be achieved

by inhibiting miR-153–3p, confirming that circ_0005576 promotes

cancer progression through the miR-153–3p/KIF20A axis and that

its overexpression enhances cell proliferation and migration

through a sponge effect on miR-153–3p (33). In conclusion,

exosomal circRNAs not only serve as biomarkers for squamous

cell carcinoma but also reveal potential therapeutic targets through

their dynamic regulation. Future research should further explore

the specific functions of these circRNAs and their potential

applications in cancer prevention and treatment.
4 The role of exosomal circRNAs in
squamous cell carcinoma metastasis

The development and metastasis of tumors represent a complex

and multifaceted process that involves the synergistic action of
FIGURE 1

CircRNA biogenesis and mechanism in cancer cell progression. EcRNA, exonic circRNA; EIciRNA, exonic-intronic circRNA; CiRNA, intronic circRNA.
EWSR1, EWS RNA-binding protein 1; MAZ, MYC-associated zinc finger protein; DMRT2, Doublesex and mab-3-related transcription factor 2; NOL4L,
nucleolar protein 4-like; PHF20, PHD finger protein 20; BRD4, bromodomain protein 4; PLK4, polo-like kinase 4; PRPS1, phosphoribosyl
pyrophosphate synthetase 1; GLI1, glioma-associated oncogene 1; AGO2, Argonaute 2; HK2, hexokinase 2; PAK2, p21-activated kinase 2; HuR,
human antigen R.
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multiple oncogenes and pathways. Recent studies have highlighted

the indispensable role of circRNAs in this process. For instance, Li

et al. demonstrated the upregulation of circMYOF in laryngeal

cancer, where its silencing inhibited tumor cell growth, metastasis,

and glycolysis, thereby suppressing overall tumor progression (34).

Notably, circMYOF is overexpressed in the serum exosomes of

patients with laryngeal cancer and promotes cell migration by

regulating the miR-145–5p/OTX1 axis, thereby accelerating the

progression of laryngeal cancer. In the case of esophageal

squamous cell carcinoma, lymph node metastasis represents a

critical stage of progression. Studies have shown that the level of

circ_0026611 in serum exosomes is significantly elevated in patients

with lymph node metastasis, and its expression level can serve as a

biomarker for assessing lymph node metastasis (35). Exosomal

circ_0026611 derived from ESCC cells can inhibit NAA10-

mediated PROX1 protein acetylation and ubiquitination to

increase the expression level of the PROX1 protein (36). These

findings suggest that circ_0026611 has potential value in the clinical

monitoring and prognostic assessment of esophageal squamous cell

carcinoma (35). Exosomal circRNAs not only directly enhance the

invasiveness of tumor cells but also influence the invasive behavior

of cancer cells by regulating the tumor microenvironment (37).

Particularly in the malignant progression of lymph node metastasis,

the preoperative detection of circRNAs in serum exosomes could

provide valuable information for the early identification of lymph

node metastasis. Therefore, the analysis of exosomal circRNAs is

highly important for understanding the pathways involved in

squamous cell carcinoma metastasis and optimizing personalized

treatment strategies.
5 The role of exosomal circRNAs in
the treatment of squamous
cell carcinoma

The significance of exosomal circRNAs in cancer biology is

increasingly evident, as their potential as therapeutic targets and

biomarkers has attracted increased amounts of attention (38, 39).

Studies have revealed that exosomal circGDI2 regulates the

malignant behaviors of oral squamous cell carcinoma cells by

targeting the miR-424–5p/SCAI axis. CircRNA GDP dissociation

inhibitor 2 (circGDI2) can be transferred via exosomes, positioning

it as a novel exosome-based biomarker and therapeutic agent for

treating oral squamous cell carcinoma (40). Cancer stemness and

immune evasion are closely linked and play pivotal roles in tumor

development and resistance to immunotherapy. Elevated circFAT1

promotes the activation of STAT3, thereby mediating a positive

correlation between cancer stemness and immune evasion (41).

CircFAT1 knockdown (KD) enhances CD8+ cell infiltration into

the tumor microenvironment and augments the efficacy of PD-1

blockade immunotherapy. CircFAT1 interacts with cytoplasmic

STAT3 to prevent SHP1-induced dephosphorylation of STAT3,

promoting its activation and inhibiting STAT1-mediated

transcription, establishing circFAT1 as a crucial regulator of
Frontiers in Oncology 04
cancer stemness and antitumor immunity . S imilar ly ,

overexpression of circ_0060927 reduces the activity and promotes

the apoptosis of skin squamous cell carcinoma cells while inhibiting

epithelial–mesenchymal transition (EMT) processes within cells.

The overexpression of circ_0060927 impedes the Wnt signaling

pathway via miR-4438, thereby affecting proliferation, apoptosis,

and EMT in skin squamous cell carcinoma cells. Recent studies

have suggested that exosomes can regulate the immune system and

serve as potential agents in immune therapy. Exosomal circRNAs

are increasingly regarded as a novel subset of endogenous RNAs

that regulate target genes either by modulating miRNA activity or

by forming complexes with target proteins. Studies indicate that

exosomal circRNAs can affect the drug resistance of tumor cells,

and their significant role as mediators of chemotherapy resistance is

gradually being elucidated (42).
6 The role of circRNAs in the
regulation of tumor chemotherapy
and radiotherapy resistance

In the management of locally advanced malignancies,

radiotherapy is frequently employed, either as an adjunct to

surgical interventions or synergistically with chemotherapeutic

agents (43). A significant barrier to the efficacy of these therapies

in patients with advanced cancer is the development of resistance to

chemotherapy (44). One of the pivotal mechanisms underpinning

this resistance involves ATP-binding cassette B1 (ABCB1), a

protein associated with multidrug resistance that is overexpressed

in resistant cell lines and facilitates the extracellular expulsion of

intracellular chemotherapeutic agents (45, 46). Consequently,

targeting and inhibiting the expression of ABCB1 is a promising

strategy for mitigating drug resistance in tumors (47). A notable

example of this mechanism is observed in oral squamous cell

carcinoma (OSCC), where circ_0109291 has been shown to

enhance resistance to cisplatin by modulating ABCB1 expression

primarily through the adsorption of miR-188–3p. This interaction

provides fundamental insight for strategies aimed at reducing the

prevalence of resistance in OSCC (48).

Furthermore, heat shock protein 27 (HSP27, also known as

HSPB1) is a member of the small heat shock protein superfamily

with Phospho-HSP27 (Ser15), Phospho-HSP27 (Ser78), and

Phospho-HSP27 (Ser82) receptor sites (49). The function of

HSP27 is regulated by posttranslational phosphorylation (50). In

tongue squamous cell carcinoma (SCCT), HSP27 augments

multidrug resistance by activating the NF-kB pathway (51). The

overexpression of HSP27 is associated with cellular resistance to

various chemotherapeutic agents, including cisplatin and

staurosporin, in laryngeal squamous cell carcinoma (LSCC)

through mechanisms involving the induction of cell cycle arrest

and alterations in actin polymerization, which affect drug uptake

(52). Interestingly, the circRNA circGNG7 has been shown to

interfere with the phosphorylation of HSP27 at Ser78 and Ser82

in head and neck squamous cell carcinoma (HNSCC), thus
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impeding its phosphorylation within malignant signaling pathways

and potentially reducing chemoresistance in HNSCC (53). In

addition, circ-PKD2 in OSCC functions as a tumor suppressor by

promoting the expression of autophagy-related 13 (Atg13) through

the adsorption of miR-646, thereby enhancing sensitivity to

cisplatin (54). Radiotherapy tolerability also serves as a critical

prognostic indicator in patients with HNSCC. The upregulation

of circCUX1 in radiation-resistant hypopharyngeal squamous cell

carcinoma (HPSCC) is correlated with poorer survival outcomes

(55). CircCUX1 interacts with caspase-1 mRNA, inhibiting its

expression, which in turn modulates the inflammatory response

of tumor cells to radiation, thereby fostering tolerance to

radiation therapy.
7 Challenges and prospects

Exosomal circRNAs represent a cutting-edge area of research in

oncology. These molecules are known to regulate key cancer cell

processes, such as proliferation, invasion, migration, and metastasis,

and hold potential as biomarkers for early cancer diagnosis.

Increasing evidence has highlighted the significant role of exosomal

circRNAs in the initiation and progression of squamous cell

carcinoma (Table 1) (87). CircRNAs can modulate the expression

of downstream oncogenic molecules through the circRNA-miRNA

−mRNA axis, playing a crucial role in the progression of squamous

cell carcinoma (17). The levels of specific exosomal circRNAs, which

are correlated with tumor development in specific patients, have

demonstrated potential as early diagnostic and prognostic

biomarkers. These circRNAs circulate in bodily fluids via

exosomes, enabling noninvasive detection. Additionally, exosomal

circRNAs can influence the tumor microenvironment by facilitating

communication between tumor cells and surrounding cells (such as

immune and endothelial cells), regulating cancer cells’ ability to evade

the immune system, and affecting angiogenesis (88). Exploring these

mechanisms could provide insights for the development of new

anticancer strategies. Drug resistance remains a critical factor in the

failure of therapies for the treatment of squamous cell carcinoma.

Some exosomal circRNAs have been shown to induce resistance in

cancer cells to chemotherapy or radiotherapy by modulating

intracellular signaling pathways (89). Therefore, the study of these

circular RNAs not only aids in understanding the resistance

mechanism but also may provide new approaches for overcoming

this resistance.

While exosomal circRNAs hold great potential as cancer

biomarkers, their detection and identification still face

technological challenges, particularly in terms of sensitivity and

specificity in low-abundance samples (90). Moreover, the overlap of

circular structures and sequences with their linear mRNA

counterparts makes accurate assessment of circular RNA

expression and function challenging. The mechanisms by which

exosomal circRNAs contribute to cancer development are

extremely complex and involve not only gene regulation and

protein expression and function but also potentially unknown

pathways, necessitating extensive and in-depth studies from the
Frontiers in Oncology frontiersin05
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TABLE 1 Continued

Biological
function

Potential
function

RF

Promote EMT,
Oncogenic functions

Therapeutic target (66, 67)

Tumor suppressor Therapeutic target (68)

Promotes
cisplatin resistance

– (48, 57, 58)

Increase
cisplatin sensitivity

Prognosis (54)

Promotes
proliferation

Therapeutic target (69, 70)

Promotes
proliferation

Prognosis
and biomarker

(71, 72)

Oncogenic functions Therapeutic target (57, 58, 73)

Promotes
proliferation
accelerates cell
cycle transition

Therapeutic target (74, 75)

Accelerates cell
cycle transition

Therapeutic target (57, 58, 76)

Oncogenic functions Therapeutic target (77)

Inhibit autophagy
Therapeutic target
and biomarker

(78)

Oncogenic functions Therapeutic target (79)

Oncogenic functions
Therapeutic target
and biomarker

(80)

Oncogenic functions – (81)

Oncogenic functions Therapeutic target (82, 83)

451
Promote EMT,

Oncogenic functions
Therapeutic target (84)

Promoted metastasis
and EMT

Prognosis (84, 85)

Promotes
immune escape

Therapeutic target (86)
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Cancer type CircRNAs Chromosome
Gene
symbol

Splicing
type

Expression Targets/effectors

circEPSTI1 chr13 EPSTI1 EIciRNAs up miR-942–5p

circ_0000140 chr1 KIAA0907 EIciRNAs down miR-31, LATS2

circ_0109291 chr19 ZNF714 EIciRNAs up miR-188–3p

circ-PKD2 chr4 PKD2 EIciRNAs down miR-646, Atg13

LSCC

circZNF609 chr15 ZNF609 EIciRNAs up miRNA-134–5P/EGFR

circCDR1as chrX CDR1 EIciRNAs up miR-7

hsa_circ_0006232 chr6 TRERF1 EIciRNAs up PTEN

circMYLK chr3 MYLK EIciRNAs up miR-195/cyclin D1

circ-CCND1 chr11 CCND1 EIciRNAs up miR-646/CCND1

circ_0000218 – – – up miR-139–3p/Smad3 axi

circPARD3 chr10 PARD3 EIciRNAs up PRKCI-Akt-mTOR

circCORO1C chr12 CORO1C EIciRNAs up let-7c-5p

hg19_circ_0005033 – – – up miR-4521

NPC

circ-NOTCH1 chr9 NOTCH1 EIciRNAs up miR-34c-5p/c-Myc

circCAMSAP1 chr9 CAMSAP1 EIciRNAs up SERPINH1/c-Myc

circRPMS1 – RPMS1 – up miR-203, miR-31, and miR

circCRIM1 chr2 CRIM1 EIciRNAs up –

circBART2.2 – – – up IRF3
s

-
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molecular to the systems biology level. Furthermore, the

mechanisms by which circRNAs are enriched during the

formation of exosomes remain unclear. Although exosomal

circRNAs show potential in cancer diagnosis and therapy, their

translation from basic research to clinical application faces multiple

challenges, including but not limited to the validation of

biomarkers, confirmation of therapeutic targets, and assessment

of the safety and efficacy of corresponding treatment strategies.

8 Conclusion

Exosomal circRNAs have emerged as promising biomarkers

and therapeutic targets in the study of squamous cell carcinoma.

These molecules are integral to the onset, progression, and

therapeutic response of tumors, providing innovative avenues for

cancer diagnosis, prognostic assessment, and the formulation of

new therapeutic approaches. Nonetheless, significant challenges

persist, encompassing technological limitations, lack of

comprehensive insight into their biological mechanisms, and

barriers to clinical implementation. Future research needs to

address these issues to fully harness the potential of exosomal

circRNAs in the treatment of squamous cell carcinoma.
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