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Objective: To investigate the causal relationship between lipidome and

malignant melanoma of skin (MMOS), while identifying and quantifying the role

of metabolites as potential mediators.

Methods: A two-sample Mendelian randomization (MR) analysis of lipid species

(n=7174) and MMOS was performed using pooled data from genome-wide

association studies (GWAS). In addition, we quantified the proportion of

metabolite-mediated lipidome effects on MMOS by two-step MR.

Results: This study identified potential causal relationships between 11 lipids and

MMOS, and 40 metabolites and MMOS, respectively. Phosphatidylethanolamine

(18:0_18:2) levels mined from 179 lipids by MR Analysis increased the risk of MMOS

(OR: 1.962; 95%CI:1.298,2.964; P=0.001). There is no strong evidence for a

relationship between genetically predicted MMOS and phosphatidylethanolamine

(18:0_18:2) levels (P=0.628). The proportion of gene predictions for

phosphatidylethanolamine (18:0_18:2) levels mediated by 1-stearoyl-

(glycosylphosphatidylinositol) GPI (18:0) levels was 12.40%.

Conclusion: This study identifies 1-stearoyl-GPI (18:0) levels as a potential mediator

that may mediate the causal relationship between phosphatidylethanolamine

(18:0_18:2) levels and MMOS, This provides direction for the investigation of

MMOS, but further research of other possible potential mediators is still needed.
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1 Introduction

Cutaneous melanoma (CM) is a malignant tumor that originates

from melanocytes in the skin. CM usually presents as a black or

brown mole or nevus-like lesion that may extend into deeper tissues

and other organs. Melanoma of the skin is usually caused by exposure

to ultraviolet radiation from natural light and indoor tanning, and its

incidence is increasing annually, especially in Caucasian populations

(1). Epidemiological estimates based on global cancer data indicate

that there were 325,000 new cases of CM and 57,000 melanoma-

related deaths in 2020. Based on 2020 incidence estimates, the

number of new melanoma cases and melanoma-related deaths

worldwide will increase to 510,000 and 96,000, respectively, in 2040

(2). Currently, the main markers that are used for the diagnosis and

detection of melanoma are S100, HMB-45, Melan A, MITF, SOX 10,

microRNA, exosomes, and Melanoma-Inhibiting Activity (MIA) (3).

Surgical excision is the treatment of choice for patients with newly

diagnosed early-stage cutaneous melanoma, while immunotherapy,

kinase inhibitors, and chemotherapy may be considered for patients

with advanced disease (4).

It has been shown that adipocytes increase the invasion and

proliferation of melanoma cells in vivo and in vitro and that

adipocyte-derived lipids are transferred to melanoma cells via the

FATP/SLC27A family of lipid transporter proteins that are

expressed on the surface of tumor cells. Pharmacological blockade

of the FATP protein with the small molecule lipofermata prevents

lipid translocation into melanoma cells and reduces melanoma

growth and invasion (5). Via quantitative lipid profiling of plasma

samples from 151 patients with melanoma, a recent study revealed

that the levels of free fatty acids (FFAs) and lactosylceramides

(LCERs) were significantly decreased in patients with metastatic

melanoma, demonstrating that plasma lipid profiles may be an

important predictor of clinical outcome in patients with melanoma

and may also be an indicator of patient survival (6). Hye-Youn Kim

et al. identified potential biomarkers in melanoma cells with

different metastatic abilities by metabolic and lipidomic analyses;

the results revealed that aminomalonic acid may be a novel

biomarker and that the enhanced metastatic potential of

melanoma is accompanied by an increase in phosphatidylinositol

(PI) species (7). These findings indicate that lipids and metabolites

may be strongly associated with skin melanoma.

Some estimates indicate that there are hundreds of thousands of

species of lipids (8). The 179 lipids that were included in this study

were chosen based on a recent study by Ottensmann, L. et al. (9).

Via univariate and multivariate genome-wide analyses, these

authors revealed genetic links between diseases and lipids.

Metabolites are products of metabolic reactions, and they are

influenced by a variety of factors, including genetics, diet, gut

microbes and a variety of diseases (10, 11). The 1400 metabolites

that were included in this study were chosen based on Yiheng Chen

et al. (12). Through a series of large-scale GWASs, these authors

inferred causal relationships between metabolite levels and multiple

traits or diseases. In this article, we explored the possible causal

relationships among the lipidome, metabolites and malignant
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melanoma of skin using Mendelian randomization analysis, and

we identified potential metabolites that may be useful for early

diagnosis and therapeutic targeting based on previous studies.
2 Methods

2.1 Data sources

In this study, the GWAS participants were all of European

ancestry. We obtained GWAS data on lipids from a recent study by

Ottensmann L et al. (9) that included 771 Finnish individuals. The

data can be obtained from http://ftp.ebi.ac.uk/pub/databases/gwas/

summary_statistics/GCST90277001-GCST90278000/. Data of

malignant melanoma of skin (MMOS) were obtained from

FinnGen and included 98 patients and 218694 controls; these

data can be obtained from https://gwas.mrcieu.ac.uk/. Genetic

associations of plasma metabolites were obtained from the study

by Yiheng Chen and colleagues; these data were from European

populations and are available at http://ftp.ebi.ac.uk/pub/databases/

gwas/summary_statistics/GCST90199001-GCST90200000/ (12).
2.2 Selection of instrumental variables and
data harmonization

First, we selected SNPs as potential candidate IVs following the

criterion of P<1×10-5 in a 10000 kb window. Additionally,

independent SNPs needed to have a low correlation with other

SNPs in the region (R2<0.001). Second, effect SNPs were extracted

from the outcome GWAS dataset with the filtering criterion of

MAF>0.01. Next, valid IVs were identified after harmonizing

exposure and outcome effects and removing SNPs with F < 10 or

failing to harmonize. To calculate the F value, we use the latest and

most accurate method: F = R2(N-K-1)/K(1-R2). R2 is the cumulative

variance of exposure, K is the total number of IVs, and N is the total

number of samples. It is generally assumed that with an F-statistic

>10, the correlation is strong enough to prevent weak instrument

bias (13–15). In addition, we used PhenoScanner (http://

www.phenoscanner.medschl .cam.ac.uk/) to search for

relationships between IVs and phenotypes, and then removed IVs

associated with confounders.
2.3 Statistical analysis

Effective IVs were assessed by MR using inverse variance

weighted (IVW), weighted mode, simple mode (SM), weighted

median, and MR−Egger regression, heterogeneity was assessed

using Cochran’s Q and funnel plots, and pleiotropy was assessed

using MR−Egger intercept analysis while visualizing the MR results

(16, 17). All the statistical analyses for this study were performed in R

v4.2.3 using the “TwoSampleMR”, “VariantAnnotation”, “gwasglue”,

“ieugwasr”, “grid”, “readr”, “forestploter”, and “p.value” R packages.
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2.4 Primary analysis and mediation analysis

Figure 1 shows the basic principles of mediated Mendelian

analysis. This study used one of the mediated Mendelian

randomization methods: two-step MR. Two-step MR is also

known as network MR, which is similar to the coefficient product

method. It calculates two estimates of MR i) the causality of

exposure on mediator and ii) the causality of mediator on

outcome (18). Two-step MR also requires that there is no causal

relationship of the mediator on exposure. Finally, multiplying these

two estimates gives the indirect effect, and subtracting the indirect

effect from the total effect gives the direct effect (19). We first

explored the causal role of the 179 lipids on MMOS (Supplementary

Material 1). Lipidomes associated with MMOS were screened based

on a P value of the IVW method <0.01, a P value of pleiotropy

>0.05, and the consistent direction of the ORs of the five methods.

Finally, one eligible lipidome was obtained (Supplementary

Material 2). Reverse MR was then performed with this lipidome

as the outcome and the skin malignant melanoma as the exposure,

and the results of the reverse MR showed that there was no causal

relationship between MMOS and this lipid species; thus, it could be

used for subsequent analysis (Supplementary Material 3). We then

explored the causal relationships of 1400 metabolites with MMOS

(Supplementary Material 4) and screened for metabolites that were

associated with the disease based on a P value of the IVW method

<0.001, a P value of pleiotropy >0.05, and the consistent direction of

the ORs of the five methods (Supplementary Material 5).

We further explored whether metabolites mediate the causal

pathway from the lipidome to MMOS by two-step MR. The beta

value for the causality of lipidome on metabolites was defined as

beta 1. The beta value for the causality of metabolites on MMOS was

defined as beta 2. The beta value for the causality of lipidome on

MMOS was defined as the beta ALL. The mediating effect is equal to

beta1*beta2. The direct effect is equal to the total effect minus the

mediating effect (20).
3 Results

We performed a two-sample Mendelian randomization analysis

between 179 lipids and MMOS and found a causal relationship

between 11 lipids species and MMOS. The results of the Mendelian

randomization analysis of the 179 lipids and MMOS are presented
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in Supplementary Material 1, their heterogeneity and pleiotropy

results are presented in Supplementary Materials 6 and 7,

respectively, and the forest plots, scatter plots, funnel plots, and

leave-one-out analysis plots of the MR results are presented in

Supplementary Materials 8–11, respectively, all of which indicate

that the 11 lipids and MMOS have a causality is robust. Then, we

analyzed 1 lipidome to assess its causal effects on MMOS based on

the conditions mentioned above (Supplementary Material 2).

Subsequent reverse MR analysis was performed, and the lipidome

was preserved for subsequent analysis (Supplementary Material 3).

We also performed a two-sample Mendelian randomization

analysis between 1400 metabolites and MMOS and found a

potential causal relationship between 40 metabolites and MMOS.

The results of the Mendelian randomization analysis of the 1400

metabolites and MMOS are presented in Supplementary Material 4,

and their heterogeneity and pleiotropy results are presented in

Supplementary Materials 12 and 13, suggesting that the causal

relationship between these 40 metabolites and MMOS is robust.

We also screened 10 metabolites that were associated with MMOS

for subsequent analysis based on a P value of the IVW method

<0.001, a P value of pleiotropy >0.05, and the consistent direction of

the ORs of the five methods (Supplementary Material 5).
3.1 Association of the lipidome
with metabolites

Phosphatidylethanolamine (18:0_18:2) levels were causally

associated with only 1 metabolite (1-stearoyl-GPI (18:0) levels) in

10 metabolites. A total of 28 SNPs were included in the MR analysis:

IVW OR: 1.059, 95% CI: [1.003, 1.119], P = 0.039; MR−Egger OR:

1.001, 95% CI: [0.904, 1.126], P = 0.876; weighted mean OR: 1.081,

95% CI: [1.004, 1.165], P = 0.040; SM OR: 1.028, 95% CI: [0.890,

1.187], P=0.709; weighted mode OR: 1.079, 95% CI: [0.979, 1.190],

P=0.139 (Figure 2; Supplementary Material 14). Although the three

methods other than IVW and weighted median did not show

statistical significance, their ORs were in the same direction, while

neither heterogeneity nor pleiotropy was statistically significant;

thus, it can be concluded that there is a causal relationship between

phosphatidylethanolamine (18:0_18:2) levels and 1-stearoyl-GPI

(18:0) levels. Supplementary Material 15 shows the scatterplot,

forest plot, funnel plot, and leave-one-out analysis of this MR

analysis to demonstrate the stability of the results.
3.2 Association of metabolites with MMOS

Among 1400 metabolites, we analyzed whether there was a causal

relationship between 1-stearoyl-GPI (18:0) levels and MMOS

(Supplementary Material 5). A total of 18 SNPs were included in the

study, and the IVW method was used as the primary method of

analysis. The OR for IVWwas 4.295 (95%CI [1.677, 11.002], P=0.002).

The results of the remaining four methods were as follows: MR−Egger

OR: 2.570, 95% CI: [0.203, 32.515], P = 0.477; weighted mean OR:

4.181, 95% CI: [1.196, 14.619], P = 0.025; SM OR: 8.633, 95% CI:
FIGURE 1

The basic principles of mediated Mendelian analysis.
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[1.125, 66.253], P=0.054; weighted mode OR: 5.185, 95% CI: [0.771,

34.860], P=0.109 (Figure 2; SupplementaryMaterial 16). The directions

of the ORs for all fivemethods were consistent, and the Pvalue for IVW

was <0.05. Moreover, neither heterogeneity nor multiplicity showed

statistical significance (Supplementary Material 16). The visualization

of the MR analysis of the effect of 1-stearoyl-GPI (18:0) levels on

MMOS is shown in Supplementary Material 17, and the results once

again demonstrate the robustness of the results. Additionally, we

believe that the level of 1-stearoyl-GPI (18:0) is a potential risk factor

for MMOS.
3.3 Association of the lipidome with MMOS

Based on the screening criteria mentioned above, we identified 1

lipidome with a potential causal relationship with MMOS.

There fore , we aga in per formed an MR ana ly s i s o f

phosphatidylethanolamine (18:0_18:2) levels on MMOS to

determine the total effect. MR analysis revealed that the

phosphatidylethanolamine (18:0_18:2) level is a risk factor for

MMOS, with an OR of 1.962 for the IVW approach (95% CI:

1.298, 2.964; P=0.001). The results of the remaining four methods

did not show statistical significance (Figure 2; Supplementary

Material 18). Neither heterogeneity nor pleiotropy was statistically

significant (Supplementary Material 18). Scatterplots, forest plots,

funnel plots, and leave-one-out analyses all showed that the results

were stable (Supplementary Material 11).
3.4 Proportion of the association between
the lipidome and MMOS mediated
by metabolites

We analyzed the levels of 1-stearoyl-GPI (18:0), which is a mediator

of the pathway from phosphatidylethanolamine (18:0_18:2) to MMOS.

We found that increased phosphatidylethanolamine (18:0_18:2) levels
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were associated with elevated 1-stearoyl-GPI (18:0) levels, which in turn

were associated with an increased risk of melanoma. As shown in

Figure 3, our study demonstrated that 1-stearoyl-GPI (18:0) levels

accounted for 12.40% of the elevated risk of MMOS associated with

phosphatidylethanolamine (18:0_18:2) (P<0.05).
4 Discussion

CM is one of the most aggressive and deadly types of skin

cancer, and its global incidence rates continue to rise, placing a

heavy burden on healthcare systems worldwide (21). It has been

shown that there is a relationship between lipids and melanoma (5,

22, 23). Additionally, a Mendelian randomization study showed no

association between polyunsaturated fatty acids (PUFAs) and

increased or decreased risk of melanoma (24). However, these

studies on lipids and melanoma are insufficient because they did

not consider the large number of lipids that exist. Therefore, the aim

of this study was to use a new statistical method, namely, Mendelian

randomization, in combination with the current up-to-date lipid

GWAS database to illustrate the causal relationship between 179

lipids and CM and to demonstrate whether the relationship is
FIGURE 2

MR results of phosphatidylethanolamine (18:0_18:2) levels on 1-stearoyl-GPI (18:0) levels, 1-stearoyl-GPI (18:0) levels on MMOS and
phosphatidylethanolamine (18:0_18:2) levels on MMOS.
FIGURE 3

1-stearoyl-GPI (18:0) levels accounted for 12.40% of the elevated
risk of MMOS associated with phosphatidylethanolamine (18:0_18:2)
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mediated through a certain metabolite. Our findings revealed a

potential association between phosphatidylethanolamine

(18:0_18:2) levels and an elevated risk of CM, 12.40% of which

was mediated through 1-stearoyl-GPI (18:0) levels.

To date, we are the first to explore the causal relationship

between metabolite-mediated lipids and CM through a mediated

Mendelian approach. It was also demonstrated that 1-stearoyl-GPI

(18:0) levels mediate this effect. A study by John S Fletcher et al.

revealed that increased phosphatidylethanolamine in the

membranes of cancer cells, possibly due to structural changes in

the cytoskeleton of proteins, may also have effects on cancer, such as

by increasing membrane fluidity and increasing motility (25). In

addition, the cholesterol/phospholipid ratio, arachidonic acid

content, and polyunsaturated fatty acid content of the membranes

of highly metastatic B16-F10 melanoma cells were lower than those

of B16-F1 melanoma cells, and the phosphatidylcholine/

phosphatidylethanolamine ratio was higher than that of B16-F1

melanoma cell membranes; these results indicate that the

membrane lipid composition of B16-F10 melanoma cells is

different from that of B16-F1 melanoma cells, and this may help

to explain the molecular basis for the different metastatic properties

of these cell lines in vivo (26). CM can colonize and metastasize

remotely, and these processes are largely based on lipid-based cell

membrane scaffolds. Thus, Arantza Perez-Valle and his colleagues

identified 32 lipid biomarkers of melanoma that are associated with

benign-malignant transformation by UHPLC-mass spectrometry of

human melanocytic cells; these biomarkers included phosphatidyl

ethanolamine, phosphatidylcholine, phosphatidylinositol, and

phosphatidylglycerol (23).

Raf kinase inhibitor protein (RKIP) is a member of the

phosphatidylethanolamine-binding protein (PEBP) family and is

an inhibitor of the Raf/MEK/ERK signaling pathway (27, 28). PEBP

has sites for binding phospholipids, morphine and nucleotides, and

it has been demonstrated that phosphatidylethanolamine is a

specific ligand for PEBP, but the affinity between the two is low

(29–32). RKIP expression has been associated with a variety of

cancers, such as prostate cancer (33), hepatocellular carcinoma (34),

breast cancer (35), and melanoma (36). Downregulation of RKIP

leads to activation of the Ras/Raf/ERK/MRK signaling pathway,

causing malignant transformation of melanocytes and contributing

to migration and invasion of melanoma cells (37).

In this study, we found that 1-stearoyl-GPI (18:0) levels mediated

the causal relationship between phosphatidylethanolamine

(18:0_18:2) levels and MMOS. However, our study has several

limitations. First, we included only European populations in our

study, making this study much less generalizable. Second, we used

looser thresholds and p values, which increases the risk of false

positives. Third, we used summary-level statistics rather than

individual-level data in our study. As a result, we were unable to

further explore causal relationships between subgroups such as sex,

race, etc. Fourth, our findings suggest that 1-stearoyl-GPI (18:0) levels

mediated a genetic prediction rate of 12.40%, although this difference

was statistically significant and relatively low. Therefore, additional
Frontiers in Oncology 05
subsequent studies are needed to quantify other mediators. Fifth, the

types of lipids in our chosen dataset remain small compared to those

that were identified. Finally, we only explored the causal relationship

between lipids and MMOS, and we did not categorize the

disease according to skin location or further explore other

melanoma subtypes.
5 Conclusion

In conclusion, this study identified a causal relationship

between phosphatidylethanolamine (18:0_18:2) levels and MMOS

and identified the 1-stearoyl-GPI (18:0) level as a potential mediator

that may mediate this relationship. This study provides a direction

for researchers to explore mechanisms underlying melanoma;

however, most of the effects of phosphatidylethanolamine

(18:0_18:2) levels on melanoma remain unclear, and further

research into other possible potential mediators is needed.
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