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Hepatocellular carcinoma (HCC), a type of liver cancer, ranks as the sixth most

prevalent cancer globally and represents the third leading cause of cancer-

related deaths. Approximately half of HCC patients miss the opportunity for

curative treatment and are then limited to undergoing systemic therapies.

Currently, systemic therapy has entered the era of immunotherapy, particularly

with the advent of immune-checkpoint inhibitors (ICIs), which have significantly

enhanced outcomes for patients with advanced HCC. Neoadjuvant treatment for

HCC has become a possibility—findings from the IMbrave 050 trial indicated that

ICIs offer the benefit of recurrence-free survival for high-risk HCC patients post-

resection or local ablation. However, only a small fraction of individuals benefit

from systemic therapy. Consequently, there is an urgent need to identify

predictive biomarkers for treatment response and outcome assessment. This

study reviewed the historical progression of systemic therapy for HCC,

highlighting notable therapeutic advancements. This study examined the

development of systemic therapies involving conventional drugs and clinical

trials utilized in HCC treatment, as well as potential predictive biomarkers for

advanced and/or locally advanced HCC. Various studies have revealed potential

biomarkers in the context of HCC treatment. These include the association of

dendritic cells (DCs) with a favorable response to neoadjuvant therapy, the

presence of enriched T effector cells and tertiary lymphoid structures, the

identification of CD138+ plasma cells, and distinct spatial arrangements of B

cells in close proximity to T cells among responders with locally advanced HCC

receiving neoadjuvant cabozantinib and nivolumab treatment. Furthermore,

pathological response has been associated with intratumoral cellular triads

consisting of progenitor CD8+ T cells and CXCL13+ CD4+ T helper cells

surrounding mature DCs in patients receiving neoadjuvant cemiplimab for

resectable HCC. Despite no widely recognized predictive biomarkers for HCC
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individualized treatment, we believe neoadjuvant trials hold the most promise in

identifying and validating them. This is because they can collect multiple samples

from resectable HCC patients across stages, especially with multi-omics,

bridging preclinical and clinical gaps.
KEYWORDS

hepatocellular carcinoma, IMbrave150 trial, immunotherapy, immune-checkpoint
inhibitors, neoadjuvant therapy
Introduction

Hepatocellular carcinoma (HCC), which comprises the vast

majority of liver cancer cases and fatalities, ranked as the sixth most

frequently diagnosed cancer and third leading cause of cancer-

related mortalities, according to 2020 estimates (1). Currently, the

hepatitis B virus (HBV) and hepatitis C virus (HCV) are the

primary global risk factors for HCC (2). However, among all

HCC cases, the proportion of HBV- and HCV-related cases is

declining, while there is an increasing trend in HCC cases caused by

metabolic dysfunction-associated fatty liver disease (MAFLD).

Metabolic syndrome, obesity, type II diabetes, and non-alcoholic

fatty liver disease are significant risk factors contributing to the

emergence of MAFLD-related HCC (3).

Due to a lack of symptoms in early-stage patients, HCC is often

diagnosed at an advanced stage, which diminishes the possibility of

curative treatment options (4). Furthermore, there is a significant

risk of tumor recurrence after curative treatment, as evidenced by

reported 5-year recurrence rates ranging from 40% to 70% (5).

Systemic therapy plays a pivotal role in treating advanced HCC. In

this context, the historical progression of systemic therapy for HCC,

spanning from cytotoxic chemotherapy to immunotherapy, was

reviewed, highlighting the notable therapeutic advancements that

were achieved. However, a significant proportion of patients with

advanced HCC experience therapeutic resistance and disease

progression after receiving treatment. Consequently, there is an

urgent need to identify predictive biomarkers for treatment

response and outcome assessment. This will facilitate the

selection of patients who are most likely to derive benefits from

specific therapeutic approaches, thereby optimizing treatment

outcomes, minimizing avoidable toxicities, and conserving

healthcare resources.

There are two approaches to obtaining predictive biomarkers.

The first relies on inferring predictive biomarkers based on the

expression levels of therapeutic targets, which are subsequently

validated. However, due to a substantial gap between forward

translation results and clinical application over the past few

decades, this approach has encountered significant challenges and

can be considered relatively unsuccessful. The second involves

obtaining samples, such as blood, urine, or tissue specimens, from
02
patients who have demonstrated responsiveness to a treatment. By

comparing these samples with those from non-responsive patients,

predictive biomarkers can be identified.

Nevertheless, the exploration of predictive biomarkers is greatly

hindered by several factors, including the fact that HCC diagnosis

does not necessarily rely on histopathology; systemic therapy is

primarily administered to late-stage patients; tumor biopsy

collection during trials is lacking; and only a limited number of

patients undergo such regimens at individual clinical sites. As a

result, there is currently no universally recognized set of predictive

biomarkers for HCC. However, the advent of the immunotherapy

era, particularly the upcoming preoperative neoadjuvant period,

enables the obtainment of on-treatment longitudinal biopsy

samples. This, coupled with well-designed biomarker-driven

preoperative neoadjuvant trials and the rapid development of

technologies such as single-cell genomics, epigenomics,

transcriptomics, spatial transcriptomics, and multi-omics

sequencing, holds great potential for advancing the development

of novel treatment strategies and achieving better identification of

patients who are likely to benefit from immunotherapy.
Era of cytotoxic chemotherapy

In situations where no other treatment options are available,

cytotoxic chemotherapy is considered to be a viable approach,

despite the lack of substantial evidence supporting its purported

survival benefits (6). Notably, doxorubicin (DOX), one of the

earliest chemotherapeutic drugs utilized for HCC treatment,

belongs to this category (7). Whether used as monotherapy or

combination therapy, the objective response rate (ORR) of HCC to

DOX treatment does not surpass 20%. Nevertheless, this did not

hinder its status as a first-line chemotherapeutic agent for several

years until the advent of sorafenib.

Subsequent advancements in cytotoxic chemotherapy have

predominately focused on comparing the treatment efficacy of

alternative therapies with DOX. However, the emergence of

several DOX derivatives (8–10) designed to reduce cardiotoxicity

did not significantly improve therapeutic outcomes. Similar

situations were observed with 5-fluorouracil (11) and its
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derivatives (12, 13), as well as typical platinum-based

chemotherapeutic agents (14, 15). However, the emergence of 5-

fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) (16) led to

notable results in terms of overall survival (OS) among the Chinese

population, despite the absence of a significant survival benefit.

Consequently, the National Comprehensive Cancer Network

(NCCN) 2021 guidelines recommend the FOLFOX4 regimen for

advanced or metastatic HCC patients with elevated bilirubin levels.

Although the latest versions of the NCCN guidelines in 2023 (17)

and European Society for Medical Oncology guidelines in 2021 (18)

no longer include cytotoxic chemotherapy, FOLFOX4 was

administered to patients with locally advanced or metastatic HCC

before sorafenib became available.

Palliative care may still be recommended in guidelines for

economically underdeveloped regions worldwide, as exemplified

by the Chinese Health Commission’s Guidelines for the Diagnosis

and Treatment of Primary Liver Cancer (2022 Edition) (19).

Cytotoxic chemotherapy has limited efficacy for locally advanced

or metastatic HCC, as only a small fraction of patients experience

significant palliative effects, and the toxicity associated with

chemotherapy often outweighs its potential benefits. Moreover,

patients with advanced HCC frequently present with severe

cirrhosis, poor performance status, and various complicating

factors, such as portal vein tumor thrombosis, which contribute

to an exceedingly poor prognosis when subjected to cytotoxic

chemotherapy (20).

During the era of cytotoxic chemotherapy, the investigation of

predictive biomarkers for HCC prognosis was constrained. In a

study conducted by Patt et al. (21), 31% (five out of 16) of HCC

patients with low serum alpha-fetoprotein (AFP) levels (≤50 ng/

mL) and those with tumors involving 50% or less of the liver

demonstrated a sustained partial response to the regimen of

intravenous 5-FU and subcutaneous rIFN-alpha-2b. Conversely,

Choi et al. (22) reported that serum AFP levels did not demonstrate

a correlation with response to doxorubicin cytotoxic chemotherapy.

Instead, HbsAg-positive patients showed a significantly higher

likelihood of response, highlighting the absence of a universally

recognized predictive biomarker.
Era of multitarget kinase inhibitors

Sorafenib, an oral multitarget tyrosine kinase inhibitor (TKI)

with anticancer activity and safety benefits that have been

corroborated by rea l -wor ld ev idence , emerged as a

groundbreaking treatment in 2007. Its remarkable performance in

the SHARP (23) and ORIENTAL (24) trials led to U.S. Food and

Drug Administration (FDA) approval of its use as the first-line

treatment for unresectable HCC in patients without prior systemic

therapy. Subsequently, a significant focus was placed on sorafenib,

with numerous trials comparing and evaluating novel first-line

agents against it to enhance the prognosis of HCC patients.

Following the FDA’s approval of lenvatinib (25), regorafenib (26),

cabozantinib (27), and ramucirumab (28) for first- or second-line

HCC treatment due to their clinical and survival benefits (Figure 1),

several trials were conducted comparing these novel agents,
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including sunitinib (29), brivanib (30), cediranib (31), linifanib

(32), and dovitinib (33), with sorafenib. However, none of these

trials achieved the predefined primary endpoints. Nonetheless,

sorafenib used as the first-line monotherapy for advanced HCC

increased the median OS from 10.7 months (SHARP trial) to 14.7

months (CheckMate-459), further consolidating its position as a

first-line treatment.

Targeted therapy with sorafenib has demonstrated significant

potential for enhancing the prognosis and OS of patients with

advanced HCC. Consequently, since its inception, there has been

substantial interest in identifying predictive biomarkers for HCC

patients undergoing sorafenib treatment, although no universally

recognized predictive biomarkers have been identified thus far.

Sorafenib exerts its therapeutic effects by inhibiting the

extracellular-signal-regulated kinase (ERK)-independent activities

of Raf1, thereby causing tumor cell apoptosis, and suppressing the

activity of receptor tyrosine kinases (RTKs) such as vascular

endothelial growth factor receptors (VEGFR) 1, 2, and 3, as well

as platelet-derived growth factor receptor beta (PDGFR-b), thereby
inhibiting tumor angiogenesis and promoting apoptosis (23, 34,

35). Moreover, sorafenib hampers the tumor cell proliferation

involved in tumorigenesis in vitro by targeting other RTKs,

including c-Kit, Flt-3, and RET. Consequently, the first predictive

biomarker that comes to mind is the therapeutic target of sorafenib.

However, since sorafenib is indicated for patients with advanced

HCC, obtaining HCC tissue samples for exploring predictive

biomarkers is challenging, which has resulted in limited studies,

most of which relied upon blood rather than tissue samples. Results

from in vitro experiments on HCC cell lines are limited, as the

inhibitory effect of sorafenib on tumor growth involves inhibiting

tumor angiogenesis.

Kim et al. conducted a study involving 220 HCC patients treated

with sorafenib, in which they examined the expression of seven

actionable genes (VEGFR2, PDGFR-b, c-Kit, Raf1, EGFR, mTOR,

and FGFR1) in tumor tissues compared to those in adjacent normal

tissues. They found that the combination of mTOR, VEGFR2, c-Kit

and c-RAF was the most significant predictor of response to

sorafenib, resulting in a tumor response rate of 15.6% (36). Chu

et al. performed immunohistochemical analyses of biopsy tissues

from 93 HCC patients treated with sorafenib, focusing on the

expressions of VEGFR-2, PDGFR-b, and c-Met. Their findings

indicated that high expression of PDGFR-b was associated with

poor prognosis, while elevated expression of c-Met may predict the

therapeutic efficacy of sorafenib in HCC patients (37). Abou-Alfa

et al. analyzed immunochemically stained phosphorylated ERK

(pERK) levels in pretreatment biopsies and blood-cell RNA

expression in 137 HCC patients treated with sorafenib, discovering

that patients with higher baseline pERK expression had a longer

median time to progression (TTP) (38). However, Personeni et al.

found that pERK expression levels did not influence TTP. Their study

involving 44 patients with advanced HCC who received sorafenib

showed that the expression levels of myeloid cell leukemia-1 (Mcl-1)

and pERK were associated with reduced OS through the expression

of Mcl-1, activated/phosphorylated extracellular signal-

regulated kinase (pERK) 1/2, and activated/phosphorylated

AKT (pAKT) in pretreatment tumor specimens (39).
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El Shorbagy et al. conducted a prospective, randomized study

involving 80 advanced measurable HCC patients who received

either sorafenib plus metformin (arm A) or sorafenib alone (arm

B). They evaluated the plasma and tissue levels of VEGF and HIF-1a
and found that low VEGF and HIF-1a plasma levels were

significantly associated with better treatment response and longer

OS, whereas high expressions of VEGF and HIF in HCC tissue were

linked to poor treatment outcomes and shorter OS (40).

Single nucleotide polymorphisms (SNPs) in VEGF and VEGFR

genes have shown correlations with progression-free survival (PFS)

and OS. For instance, the study conducted by Scartozzi et al.

demonstrated that VEGF-A rs2010963 and VEGF-C rs4604006

were independent factors affecting PFS and OS when analyzing

148 samples (tumor or blood samples) from HCC patients treated

with sorafenib and tested for VEGF-A, VEGF-C, and VEGFR-1, -2,

and -3 SNPs (41). MiRNA-related research has also yielded

significant findings. Vaira et al. observed that high levels of miR-

425–3p were associated with TTP and PFS in their investigation of

miRNA expression in tumor and cirrhotic liver biopsies from 84

HCC patients treated with sorafenib (42). Similarly, Gyöngyösi et al.

discovered that elevated miR-224 expression was correlated with

increased PFS and OS, based on their analysis of total RNA

extracted from diagnostic fine-needle aspiration biopsy cytological

smears of 20 advanced-stage HCC patients prior to sorafenib

treatment (43).

Although plasma biomarkers are considered the most suitable

candidates for evaluating sorafenib efficacy, only a limited number

of trials, such as the SHARP trial, have produced results with

borderline significance. One notable example is AFP, which is

secreted by approximately 50% of all HCCs. The SHARP trial

revealed that high baseline AFP plasma levels (>200 ng/mL) had a

negative impact on OS (23). This finding was recently validated by a

pooled analysis combining data from the SHARP trial and the Asia–

Pacific trial, where an AFP level >400 ng/mL was identified as a

prognostic factor for poorer OS by Bruix et al. (44). Moreover, the

SHARP trial identified angiopoietin-2 (Ang-2) as the only
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biomarker prognostic for both OS and TTP. Low baseline plasma

concentrations of Ang-2 and VEGF were associated with improved

median survival. However, none of these biomarkers significantly

predicted response to sorafenib (23). Similar results were reported

by Miyahara et al., who found that high baseline levels of serum

cytokines, including Ang-2, granulocyte colony-stimulating factor

(G-CSF), hepatocyte growth factor (HGF), and leptin were

correlated with poor treatment effects of sorafenib in HCC

patients (45). Tsuchiya et al. demonstrated that a decrease in

plasma VEGF concentration at 8 weeks after initiating sorafenib

treatment may predict favorable OS based on serial measurements

in 63 patients with advanced HCC before and during sorafenib

treatment (46).

Following sorafenib, lenvatinib is the only multitarget tyrosine

kinase inhibitor (TKI) currently approved by the U.S. FDA for the

first-line treatment of unresectable advanced HCC. Predictive

biomarkers for lenvatinib have primarily focused on its main

targets, including VEGFR 1–3, FGFR 1–4, PDGFRa, as well as

proto-oncogenes RET and KIT. Lenvatinib exhibits a distinct kinase

inhibitory profile and binding mode compared to sorafenib (47–

51). Furthermore, recent research indicates that lenvatinib activates

innate and acquired anti-tumor immunity (52). In an analysis

involving 407 patients conducted by Finn et al., higher baseline

serum levels of VEGF, FGF21, and Ang-2 were found to be

potentially prognostic for shorter OS. The study also observed a

decrease in Ang-2 levels from baseline specifically in the lenvatinib

group, suggesting that TIE-2 signaling was influenced by lenvatinib

but not sorafenib. Additionally, gene expression analysis of tumor

tissue from 58 patients revealed that the enrichment of VEGF and

FGF pathways was associated with improved OS in the lenvatinib

arm compared to the intermediate group. Lenvatinib-treated

patients in the Wnt subgroup, utilizing 13 canonical cancer

pathways including b-catenin and DNA-repair pathways,

exhibited different OS outcomes (53). Similar findings were

reported by Chuma et al., who conducted a prospective cohort

study involving 101 patients and found that increases in serum
FIGURE 1

This figure illustrates the evolution U.S. Food and Drug Administration approved therapies for advanced hepatocellular carcinoma. ORR, objective
response rate; OS, overall survival.
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FGF19 levels and decreases in serum Ang-2 levels early in treatment

were associated with a response in patients receiving lenvatinib and

were correlated with longer PFS (54). In a study by Liu et al., which

included 46 unresectable advanced HCC patients with AFP levels

≥20 ng/mL, it was observed that early responders to lenvatinib

based on AFP levels achieved significantly higher ORR and disease

control rates compared to non-responders (55).

The results of other second-line treatments, such as the TKIs

regorafenib, cabozantinib, and ramucirumab, have not yielded eye-

catching predictive biomarker outcomes. Please refer to Table 1 for

further details.
Era of immunotherapy

Subsequent to multitarget kinase inhibitor (MKI) treatment,

immunotherapy has shown clinical efficacy and a more favorable

toxicity profile in the management of advanced HCC, with a

particular emphasis on ICIs. The primary targets for ICIs

encompass cytotoxic T lymphocyte-associated molecule-4 (CTLA-

4), programmed cell death receptor-1 (PD-1), and programmed cell

death ligand-1 (PD-L1). In May 2020, the FDA approved

atezolizumab, an anti-PD-L1 antibody, and the VEGF-

neutralizing antibody bevacizumab for the first-line treatment of

patients with unresectable or metastatic HCC (Figure 1), marking

the beginning of the era of immunotherapy for advanced HCC. The

renowned IMbrave150 trial demonstrated a median OS of 19.2
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13.4 months in the sorafenib arm (63). In terms of ORR,

atezolizumab plus bevacizumab achieved 30% compared to 11%

with sorafenib (64). Furthermore, pembrolizumab, an anti-PD-L1

antibody, and nivolumab plus ipilimumab, a combination of anti-

PD-L1 and anti-CTLA-4 antibodies, have also been approved for

the first-line treatment of patients with locally unresectable or

metastatic HCC (65, 66).

The theoretical foundation for utilizing ICIs and anti-VEGF

antibodies in HCC treatment rests upon three key concepts: the

“cancer-immunity cycle” theory (67, 68), “normalization cancer

immunotherapy” (69), and “normalizing tumor vasculature” (70),

which is alternatively referred to as “normalization of the tumor

microenvironment (TME)” (71). When exploring predictive

biomarkers for HCC, two prominent candidates come to mind:

PD-L1 and tumor-infiltrating lymphocytes (TILs). PD-L1 is

expressed by various cell types, including cancer cells,

macrophages, B cells, DCs, and tumor stroma. In some cancer

types, such as non-small-cell lung cancer, intratumoral PD-L1

staining appears to be somewhat correlated with outcomes.

However, this correlation is not true for HCC. In the CheckMate

040 trial, tumor cell PD-L1 expression at 1% or higher was

associated with improved OS (p=0.032) for nivolumab in the

overall patient population, including both sorafenib-treated and

sorafenib-naive individuals (65). However, the same conclusion was

not reached in the CheckMate 459 trial (72). This discrepancy can

be attributed to intratumoral heterogeneity in PD-L1 expression,

which is often missed in small-specimen biopsies. Moreover,

different antibodies used for PD-L1 detection exhibit varying

affinities and specificities, whereas the use of different detection

assays, inter-assay and/or inter-observer heterogeneity, and non-

standardized criteria and cut-offs for positivity may also contribute

to diverse findings (73–75).

As previously mentioned, obtaining tumor tissues from patients

with advanced or metastatic HCC undergoing ICI treatment is

highly challenging. However, acquiring peripheral blood samples is

comparatively easier and less invasive, making them more feasible

for exploring biomarkers. Serum levels of soluble PD-L1 (sPD-L1)

appear to be correlated with outcomes in patients with HCC, in

which elevated levels of sPD-L1 are indicative of poorer prognosis;

however, the results have been inconsistent (76–81). Intratumoral

TILs are considered key players in immunotherapy. In the

CheckMate 040 trial, Sangro et al. conducted an analysis using

immunohistochemistry and RNA sequencing, which revealed

increased levels of CD3 and CD8 TILs, while macrophages

exhibited a non-significant trend towards improved OS (82).

Another study by Ng et al., which analyzed 49 patients with

advanced HCC treated with an immune checkpoint blockade,

assessed CD38 expression through immunohistochemistry (IHC),

multiplex immunohistochemistry/immunofluorescence (mIHC/

IF), and multiplex cytokine assays. This study demonstrated that

a high proportion of CD38+ cells responded to the immune

checkpoint blockade and was associated with superior median

PFS and OS (83). Another commonly studied predictive

biomarker is the level of AFP in peripheral blood. Zhu et al.

conducted analyses using data from the GO30140 study and the
TABLE 1 Targets, receptors, and potential predictive biomarkers for the
response of HCC patients to targeted therapy (excluding results from
preclinical animal models and HCC cell lines).

Multikinase
inhibitor

Target
receptors

Potential
predictive
biomarkers

References

Sorafenib VEGFR1–3,
PDGFR-b,
c-Kit,
Flt-3, RET

AFP, mTOR, VEGFR2,
c-Kit, c-RAF, PDGFR-
b, Mcl-1, pERK,
VEGF-A, VEGF-C,
miR-425–3p, miR-224,
Ang-2, HGF/c-Met, G-
CSF, leptin

(23, 36–38)
(39–44) (45, 46)

Lenvatinib VEGFR1–3,
FGFR1–4,
PDGFRa,
RET, c-Kit

AFP, HIF-1 a, VEGF,
FGF21, Ang-2,
FGF19, NLR

(53–56)

Regorafenib VEGFR1–3,
FGFR1,
PDGFR-b,
KIT, RET,
B-RAF

AFP, LAP TGF-b1,
Ang1, cystatin B, LOX-
1, miP-1a, miR30A,
miR122, miR125B,
miR200A, miR374B,
miR15B, miR107,
miR320B, miR645, SII

(57–59)

Cabozantinib VEGFR2,
MET, AXL,
RET,
FLT3, KIT

AFP (60, 61)

Ramucirumab VEGFR2 AFP (62)
AFP, alpha-fetoprotein; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-
inflammation index.
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IMbrave150 trial, identifying that changes in AFP cutoffs of ≥75%

and ≤10% from baseline at 6 weeks could be utilized to distinguish

between responders and disease control. Moreover, both AFP

cutoffs were associated with extended OS and PFS, especially in

patients with hepatitis B virus etiology (84).

Several other peripheral blood-derived predictive biomarkers

exhibited similar positive effects. For instance, the neutrophil-to-

lymphocyte ratio and platelet-to-lymphocyte ratio were correlated

with decreased OS and PFS, while not affecting ORR or disease

control rates (85–92). Long-term responders who received

regorafenib plus nivolumab immunotherapy showed enrichment in

MKI67+ proliferating CD8+ T cells and a higher probability of M1-

directed monocyte polarization in peripheral blood mononuclear

cells (93). Additionally, in the setting of atezolizumab/bevacizumab

(Atezo/Bev) combination immunotherapy for unresectable HCC,

patients with elevated cell-free tumor DNA (cfDNA) levels

displayed notably diminished overall response rates and shorter

progression-free survival as well as overall survival compared to

those with low cfDNA levels. While the presence or absence of

circulating tumor DNA (ctDNA) did not forecast therapy efficacy, the

identification of a TERTmutation in ctDNA and AFP levels ≥400 ng/

mL independently served as indicators of unfavorable overall survival

outcomes associated with the therapy (94). Circulating cfDNA with

the initial CXCL9 (<333 pg/mL) accurately forecasted early

progression in patients undergoing immunotherapy with the

atezolizumab and bevacizumab combination (95). PD-L1+

circulating tumor cells (CTCs) were accurate differential cancer

staging biomarkers between early- and advanced-stage HCC and

were associated with immunotherapy response (96). Furthermore, in

a small subset of 10 patients with HCC who were receiving anti-PD-1

antibodies, the presence of PD-L1+ CTCs was predominantly

observed in patients with locally advanced or metastatic disease

and independently prognosticated OS (97).

Intra-tumor predictive biomarkers provide a better reflection of

the actual conditions within the tumor when compared to

peripheral blood-derived predictive biomarkers. The immune

environment and immune processes in the tumor are highly

complex and dynamically change during different stages of

disease progression. Therefore, it is imperative to explore

predictive biomarkers for HCC within the TME in order to

gradually understand the intricacies of HCC and its immune

response. The emergence of rapidly evolving single-cell

sequencing technologies, encompassing methods such as single-

cell genome, epigenome, transcriptome, and multi-omics

sequencing, has facilitated this exploration. Zheng et al.

conducted single-cell RNA sequencing on 5,063 T cells isolated

from the peripheral blood, tumor, and adjacent normal tissues of six

HCC patients. They discovered the presence of CD4+ T cells within

the tumor and the expansion of regulatory T cells (Tregs) from

adjacent normal tissue into the TME. Furthermore, they observed

the transformation of effector CD8+ T cells into exhausted CD8+ T

cells, with CD8+FOXP3+ regulatory T cells specifically existing in

the HCC microenvironment and promoting this transition. These

cells demonstrated a transitional state known as pre-exhaustion

CD8+ T cells, which are characterized by the expression of GZMB,

GNLY, and KLRG1 markers. It is speculated that the antibody
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blockade of the PD-1 pathway primarily acts on these pre-

exhaustion CD8+ T cells. Additionally, they identified cytolytic

CD4+ T cells (CXCR6, TBX21, and CXCR3) and mucosal-

associated invariant T cells (MAIT) as potential therapeutic

targets. Moreover, they found a higher proportion of exhausted

CD8+ T cells in late-stage compared to early-stage HCC, suggesting

a correlation between disease progression and further deterioration

of systemic immune status (98). Zhang et al. discovered that

LAMP3+ DCs expressed maturation markers (LAMP3, CD80,

and CD83) and the migration marker CCR7. These LAMP3+

DCs originated from cDC2 and cDC1 through maturation

processes. They exhibited a unique capacity to regulate

lymphocytes in the TME through cross-talk and migrate to

lymph nodes (LNs). Importantly, LAMP3+ DCs were correlated

with dysfunctional T cells. The researchers also identified higher

levels of the lymphocyte recirculation chemokines CCL19 and

CCL21 in HCC tumors compared to adjacent liver tissue, which

promoted the migration of LAMP3+ DCs from the tumor to

LNs (99).

Dammeijer et al. elucidated that PD-L1+ conventional DCs

(cDCs), rather than macrophages within tumor-draining lymph

nodes (TDLNs) or the tumor itself, could activate early-effector T

cells. As such, TDLNs have emerged as potential primary targets for

PD-1/PD-L1 checkpoint blockade, ultimately amplifying the

induction of anti-tumor T cells (100). Subsequently, utilizing

murine tumor models, Prokhnevska et al. demonstrated that

tumor-specific CD8+ T cells (PD1+ CD45RA− TCF1+) were

activated in TDLNs but did not exhibit an effector phenotype

until migration into the tumor occurred. Furthermore, additional

co-stimulation from antigen-presenting cells facilitated effector

differentiation (101). Beltra et al. established a four-cell-stage

developmental framework for exhausted CD8+ T (Tex) cells.

They identified two TCF1+ progenitor subsets, one characterized

as tissue-restricted and quiescent, while the other was more

accessible through the bloodstream. These subsets gradually lost

TCF1 expression as they underwent division and transitioned into a

third intermediate Tex subset. The intermediate subset exhibited

partial re-engagement of effector functions and demonstrated an

increased response to the PD-L1 blockade; however, it eventually

transformed into a fourth subset characterized as terminally

exhausted (102). Chu et al. further detailed the roadmap of T cell

exhaustion, which elucidated changes in key transcription factors

(PD1, Cxcr5, Tcf7, T-bet, Tox, Ki67) throughout this process (103).

The aforementioned research results contributed to filling in the

gaps in the previously proposed “cancer-immunity cycle” theory

(67, 68), and enhanced our comprehension of the activation,

development, and exhaustion processes of CD8+ T cells

(Figure 2), thus potentially leading to the discovery of target

genes that are amenable to modulation.

The initial activated tumor-specific CD8+ T cells in TDLNs

enter the HCC TME via the bloodstream and subsequently undergo

induction into non-functional exhausted CD8+ T cells. Questions

surrounding this are whether this process can be prevented, and if it

is possible to achieve “normalization of the TME” (71). There is a

crucial need to normalize the structure of the TME, which would

require the utilization of anti-VEGFA agents to rectify abnormal
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changes in blood vessels within HCC. This approach aims to

achieve “normalization of the TME” (71) by normalizing the

tumor vasculature. The administration of low doses of anti-VEGF

monoclonal antibodies can normalize blood vessels, reprogram the

TME from immunosuppression to potentiation, specifically

polarize macrophages towards an M1-like (immunostimulatory)

phenotype, and facilitate the trafficking and activation of cytotoxic

T lymphocytes (CTLs) in experimental tumors, thereby enhancing

the efficacy of ICIs (104, 105). Unfortunately, effective

normalization, referred to as the “normalization window,” is

time-limited. The duration of this window period for HCC

remains unknown and varies among individuals, posing a

challenge to its clinical application (71). Additionally, various

other approaches are actively under investigation to achieve

vascular normalization, including targeting Ang-Tie signaling,

oncogenic signaling in cancer cells, and even CD4+ T-cells (106).

In addition, a tumor barrier within the TME consists of numerous

stromal cells that may contribute to the failure of tumor rejection. One

such factor is the tumor-necrosis factor superfamily member known as

LIGHT (TNFSF-14), which serves as a ligand for the lymphotoxin-b
receptor expressed on stromal cells and the herpes viral entry mediator

expressed on T cells. Targeting LIGHT in treatment not only recruits

naive T cells but also selectively expands tumor antigen-specific T cells

within tumor tissues, thereby fostering a T cell-inflamed

microenvironment and overcoming tumor resistance to checkpoint

blockade therapy (107–109).

Therefore, the exploration of predictive biomarkers for HCC

and immunotherapy stems from the aforementioned investigation

into the HCC TME. Delving into further details is beyond the scope
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of this discussion. Please refer to Table 2 for additional information

on the exploration of predictive biomarkers in the HCC TME

through immunotherapy.
Era of preoperative
neoadjuvant therapy

The preoperative neoadjuvant period, which began with the

exploration of MKIs (113), is not solely a progression of the

immunotherapy era. However, the advent of immunotherapy has

greatly benefited an increasing percentage of HCC patients. As the

paradigm shifts towards reverse and forward translation research,

neoadjuvant therapy for HCC has become a possibility. While

organoids or organotypic explant cultures can partially capture

the dynamics of tumor-associated T cells or the “cytotoxic revival”

of T cells after immunotherapy (114), they cannot fully replicate the

impact of the extratumoral environment on tumor immunity.

Animal models remain crucial for dynamically analyzing the

multidimensional processes involving multiple organs and

diseased tissues. Disregarding the underwhelming success rate of

current translational medicine based on animal models would be

unwise. Therefore, a combination of reverse and forward

translation in fundamental and translational immunology

research holds great potential for improving the clinical success

rates of immunotherapy (115–118).

Immunotherapy of localized tumors necessitates systemic

involvement. This requirement is evident in the “cancer-

immunity cycle” (67, 68), which involves the participation of
FIGURE 2

In summary, the theory of anti-PD-L1 and anti-VEGF antibody treatments in HCC aims to achieve “normalization of the TME” through a method of
“normalizing the tumor vasculature.” Manipulating the anti-VEGF antibody restores vascular permeability, enhances perfusion, improves oxygenation,
and reduces the acidic milieu of the TME. This mitigates immune suppression and initiates a transition: The conversion of TAMs from an M2-type
immune suppression state to an M1-type anti-tumor state, and the activation of NK cells into an anti-tumor state. Concurrently, the anti-PD-L1
antibody facilitates normalized T-cell adhesion within the vascular endothelium, thereby enabling T-cell infiltration into the TME. Alongside this,
other immune and non-immune cells that have regained functionality via the anti-PD-L1 antibody contribute to “normalization of the tumor
microenvironment,” which intensifies the “cancer-immunity cycle,” culminating in “normalized cancer immunotherapy.” CAF, cancer-associated
fibroblasts; HCC, hepatocellular carcinoma; NK, natural killer; PD-l1, programmed cell death ligand-1; TDLN, tumor-draining lymph nodes; TAMs,
tumor-associated macrophages; TME, tumor microenvironment; VEGF, vascular endothelial growth factors.
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tumor-draining lymph nodes (TDLNs) and peripheral blood

circulation (Figure 2). Tumor eradication requires immune

activation in the periphery. For instance, Spitzer et al. discovered

that early post-therapy upregulation of PD-L1 protects distal

tumors from systemic immunity (119). Additionally, Reticker-

Flynn et al. found that LN colonization induces extensive

alterations in the local immune repertoire in a syngeneic

melanoma mouse model of LN metastasis, where LN metastases

induce antigen-specific Tregs that promote distant metastasis (120).

In the global, open-label, phase 3 IMbrave050 trial investigating

adjuvant atezolizumab plus bevacizumab versus active surveillance

in high-risk HCC patients, Qin et al. observed significantly

improved recurrence-free survival with adjuvant atezolizumab

plus bevacizumab (121). Thus, the premise of immunotherapy for

HCC involves extending immunotherapies to early HCC cases with

a risk of early recurrence, resectable locally advanced HCC, or the

adjuvant setting, where immunotypes may be less restrictive and

potentially more adaptable. Adopting a “reverse translational

approach” to obtain longitudinal samples from patients can

provide insights into evolving immune responses in the TME.

Immune profiling of pretreatment and on-treatment longitudinal

biopsy samples can offer crucial information regarding changes in

relevant targets within specific patient cohorts. Correlative data

linking clinical outcomes with target expressions can elucidate the

functional impact of these targets. Subsequently, these targets can be

evaluated in immunocompetent preclinical models to guide rational

combination therapy strategies in future clinical trials (122).

Neoadjuvant immunotherapy offers numerous advantages. It

can induce T cell expansion and is particularly beneficial at earlier

stages of cancer, when T cell function is less compromised.

Moreover, the routine biopsy of surgical specimens allows for

convenient assessment of treatment effects. Additionally,

immunotherapy has the potential to reduce tumor size before

surgery, potentially enhancing surgical outcomes (123).

Neoadjuvant checkpoint inhibitors can effectively promote the de

novo induction of T cell-mediated immunity by recognizing

primary tumor antigens, expanding pre-existing antitumor T

cells, and fostering the development of a diverse repertoire of

tumor-specific T cells more efficiently than in the adjuvant

setting, after tumor removal. These tumor-specific memory T

cells exhibit superior capability in recognizing micrometastases

that are not visible to the naked eye, thereby reducing the risk of

recurrence following radical surgery (124, 125).
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For the implementation of preoperative ICI neoadjuvant

treatment in HCC, reliable predictive biomarkers are essential for

identifying suitable patient groups. However, as research on the

TME in HCC deepens, it becomes evident that relying on a single

biomarker is insufficient for predicting treatment response. The

updated “cancer-immunity cycle” in 2023 introduced the concept of

local small cycles to complement multi-cell cooperation within the

TME. Specifically, T cells encounter antigen-presenting cells,

particularly DCs, dispersed within the tumor parenchyma, tumor-

associated lymphoid aggregates, or morphologically identifiable

tertiary lymphoid structures (TLSs), leading to their expansion,

differentiation, and subsequent direct killing of tumor cells (68).

Therefore, by comparing the “cancer-immunity cycle” (67, 68),

“normalization cancer immunotherapy” (69), and “normalizing

tumor vasculature” (70)—also referred to as “normalization of the

TME” (71)—we aim to explore predictive biomarkers for HCC.

Neoadjuvant research in HCC has emerged as the most favorable

approach for investigating potential biomarkers. Preoperative

neoadjuvant clinical trials for HCC have been approved and are

currently underway. Please refer to Table 3 for further details. From

these clinical trials, it is evident that a series of key factors must be

considered to ensure the scientific validity and clinical relevance of

research outcomes. Firstly, these clinical trials must ensure an

adequate sample size, as studies with small sample sizes may lack

representativeness, thus limiting the generalizability of results.

Secondly, patient selection and exclusion criteria affect the

generalizability of research results. It is essential to consider the

impact of different etiologies on the effectiveness of neoadjuvant

therapy in HCC patients. Long-term follow-up and survival data are

crucial for a comprehensive assessment of treatment efficacy.

Furthermore, stringent randomization, blinding, and control

group setup form the basis for assessing bias risks and ensuring

the quality of the study design. Transparency regarding funding

sources and researchers’ declarations is essential for identifying

potential conflicts of interest and reporting biases. Considering

these factors collectively can provide a robust evidence base for

clinical practice and guide future research directions. Although

there are limited published results from preoperative neoadjuvant

clinical trials in HCC, the credibility of these results is substantial.

We will provide a summary of the findings that have been published

thus far.

Xia et al. analyzed 18 patients with resectable HCC undergoing

camrelizumab plus apatinib neoadjuvant therapy, then discovered
TABLE 2 Potential targets and predictive biomarkers within the HCC TME for US FDA-Approved First-Line and Subsequent-Line
immunotherapy treatments.

Biomarkers Agent Benefits Source Reference

Pre-existing immunity (CD8 and CD4 T cells, Tregs,
B cells and dendritic cells)

Atezolizumab,
bevacizumab

Associated with better response and
longer PFS

Tissue/
bulkRNA-seq

(110)

TIB, consisting of SPP1+ macrophages and CAFs
positioned in proximity to the tumor boundary

Anti-PD-1 Significantly higher in non-responders
than in responders

Tissue/scRNA-
seq and ST

(111)

TIH Durvalumab,
tremelimumab,
pembrolizumab

Higher cluster number associated with
substantially shorter survival

Tissue/
scRNA-seq

(112)
CAFs, cancer-associated fibroblasts; PFS, progression-free survival; scRNA-seq, single-cell RNA-sequencing; TIB, tumor immune barrier; TIH, intratumor heterogeneity.
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that a high expression of DCs could serve as a predictor for a

favorable response to neoadjuvant therapy. They further observed

that higher levels of DCs after neoadjuvant therapy were associated

with a reduced likelihood of relapse. Additionally, they found that

post-perioperative treatment with ctDNA positivity was more

prevalent among patients without major pathological reactions,

indicating the potential of ctDNA as a predictive marker for early
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recurrence (126). Ho et al. studied 15 patients with locally advanced

HCC receiving neoadjuvant cabozantinib and nivolumab, and

observed an enrichment of T effector cells, tertiary lymphoid

structures, CD138+ plasma cells, and a distinctive spatial

arrangement of B cells among responders compared to non-

responders. Specifically, the proximity of B and T cells to

proliferative macrophages expressing higher levels of PD-L1 was a
TABLE 3 Neoadjuvant and/or adjuvant treatment clinical trials for hepatocellular carcinoma.

NCT
Number

Agent Perioperation
Study
Status

Conditions Phases Study Type
Start
Date

NCT03510871 Nivolumab, ipilimumab Preoperative UNKNOWN Hepatocellular carcinoma 2 INTERVENTIONAL 2019–2-12

NCT03337841 Pembrolizumab
Preoperative,
postoperative

UNKNOWN Hepatocellular carcinoma 2 INTERVENTIONAL 2017–11-10

NCT03630640 Nivolumab
Preoperative,
postoperative

ACTIVE,
NOT
RECRUITING

Hepatocellular carcinoma 2 INTERVENTIONAL 2018–10-11

NCT06003673 Tislelizumab, lenvatinib Preoperative RECRUITING Hepatocellular carcinoma 4 INTERVENTIONAL 2023–7-1

NCT05471674 Nivolumab Preoperative COMPLETED
Hepatocellular carcinoma;
liver cancer

2 INTERVENTIONAL 2020–7-3

NCT05908786
Atezolizumab,
bevacizumab,
tiragolumab, tobemstomig

Preoperative RECRUITING Carcinoma, hepatocellular 1|2 INTERVENTIONAL 2023–12-5

NCT04658147 Nivolumab, relatlimab
Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 1 INTERVENTIONAL 2021–5-28

NCT04224480 Pembrolizumab
Preoperative,
postoperative

ACTIVE,
NOT
RECRUITING

Hepatocellular carcinoma 1 INTERVENTIONAL 2019–12-10

NCT04727307
Atezolizumab,
bevacizumab

Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2021–1-26

NCT03867370 Toripalimab, lenvatinib
Preoperative,
postoperative

TERMINATED Hepatocellular carcinoma 1|2 INTERVENTIONAL 2019–4-26

NCT04954339
Atezolizumab,
bevacizumab

Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2021–10-29

NCT04857684
Atezolizumab,
bevacizumab

Preoperative RECRUITING Hepatocellular carcinoma 1 INTERVENTIONAL 2021–6-18

NCT05440864 Tremelimumab
Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2023–10-26

NCT05701488
Durvalumab,
tremelimumab

Preoperative,
postoperative

RECRUITING
Hepatocellular carcinoma,
hepatocellular cancer

1 INTERVENTIONAL 2023–4-21

NCT03299946 Cabozantinib, nivolumab Preoperative COMPLETED Hepatocellular carcinoma 1 INTERVENTIONAL 2018–5-14

NCT05389527
Pembrolizumab,
lenvatinib

Preoperative,
postoperative

ACTIVE,
NOT
RECRUITING

Hepatocellular carcinoma 2 INTERVENTIONAL 2022–9-30

NCT05137899
Atezolizumab,
bevacizumab

Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2022–10-18

NCT04425226
Pembrolizumab,
lenvatinib

Pre- and post-
liver transplant

RECRUITING Hepatocellular carcinoma NA INTERVENTIONAL 2020–8-6

NCT04297202
Apatinib, SHR-1210 (anti-
PD-1 inhibitor)

Preoperative,
postoperative

UNKNOWN Hepatocellular carcinoma 2 INTERVENTIONAL 2019–12-1

NCT05185531 Tislelizumab
Preoperative,
postoperative

ACTIVE,
NOT
RECRUITING

Hepatocellular carcinoma 1 INTERVENTIONAL 2022–3-1

(Continued)
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notable characteristic of tumors that responded to cabozantinib and

nivolumab. Conversely, the proximity of B and T cells to

macrophages exerting immunosuppression through arginase-1

was a critical feature of tumors resistant to cabozantinib and

nivolumab. These findings suggest the coordinated contribution
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of B cells to antitumor immunity in HCC (127). Magen et al.

identified pathological responses in patients characterized by

intratumoral cellular triads consisting of progenitor CD8+ T cells

and CXCL13+ CD4+ T helper cells surrounding mature DCs

(referred to as “mregDC”) by analyzing of 20 patients with
TABLE 3 Continued

NCT
Number

Agent Perioperation
Study
Status

Conditions Phases Study Type
Start
Date

NCT05185505
Atezolizumab,
bevacizumab

Pre- and post-
liver
transplantation

RECRUITING
Hepatocellular carcinoma,
hepatocellular cancer

4 INTERVENTIONAL 2023–1-30

NCT03916627 Cemiplimab, fianlimab
Preoperative,
postoperative

RECRUITING

Non-small cell lung
cancer, hepatocellular
carcinoma, head and neck
squamous cell carcinoma

2 INTERVENTIONAL 2019–7-23

NCT05621499 Sintilimab, lenvatinib Preoperative
NOT
YET
RECRUITING

Hepatocellular carcinoma NA INTERVENTIONAL 22-Nov

NCT04930315 Apatinib, camrelizumab
Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2021–9-15

NCT05225116 Sintilimab, lenvatinib Preoperative RECRUITING Hepatocellular carcinoma 1 INTERVENTIONAL 2023–1-8

NCT04123379
Nivolumab, BMS-813160
(CCR2/5-inhibitor), BMS-
986253 (Anti-IL-8)

Preoperative,
postoperative

ACTIVE,
NOT
RECRUITING

Non-small cell lung
cancer,
Hepatocellular carcinoma

2 INTERVENTIONAL 2020–3-5

NCT05807776 Tislelizumab, lenvatinib
Preoperative,
postoperative

NOT
YET
RECRUITING

Resectable
hepatocellular carcinoma

2 INTERVENTIONAL 2023–4-1

NCT04850040
Apatinib,
camrelizumab, oxaliplatin

Preoperative
NOT
YET
RECRUITING

Resectable
hepatocellular carcinoma

2 INTERVENTIONAL 2021–5-6

NCT04615143 Tislelizumab, lenvatinib
Preoperative,
postoperative

RECRUITING
Recurrent
hepatocellular carcinoma

2 INTERVENTIONAL 2020–12-1

NCT04653389 Sintilimab
Preoperative,
postoperative

TERMINATED Hepatocellular carcinoma 2 INTERVENTIONAL 2020–12-26

NCT05578430 Cadonilimab
Preoperative,
postoperative

NOT
YET
RECRUITING

Hepatocellular carcinoma 2 INTERVENTIONAL 2023–1-1

NCT04443322 Durvalumab, lenvatinib
Pre-
liver
transplantation

RECRUITING Liver carcinoma NA INTERVENTIONAL 2020–9-19

NCT05194293 Durvalumab, regorafenib Preoperative RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2023–6-29

NCT05339581
Pembrolizumab,
sintilimab, camrelizumab,
tislelizumab, lenvatinib

Preoperative
NOT
YET
RECRUITING

Liver cancer,
hepatocellular carcinoma

NA INTERVENTIONAL 2022–5-20

NCT04850157
Pembrolizumab,
sintilimab, camrelizumab,
tislelizumab, lenvima

Pre-
liver
transplantation

UNKNOWN Hepatocellular carcinoma 2 INTERVENTIONAL 2021–4-20

NCT05613478 Camrelizumab, apatinib
Preoperative,
postoperative

RECRUITING Hepatocellular carcinoma 3 INTERVENTIONAL 2022–11-1

NCT04521153 Camrelizumab, apatinib Preoperative RECRUITING Hepatocellular carcinoma NA INTERVENTIONAL 2021–3-25

NCT05920863 Tislelizumab, lenvatinib Preoperative RECRUITING Hepatocellular carcinoma 2 INTERVENTIONAL 2023–7-1

NCT04888546
Anlotinib, TQB2450
(anti-PD-L1 antibody)

Preoperative RECRUITING Hepatocellular carcinoma 1|2 INTERVENTIONAL 2021–4-30
fr
NA, No clear information on the staging of clinical trials on ClinicalTrials.gov.
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resectable HCC receiving neoadjuvant cemiplimab. Notably, these

niches were more prevalent in tumors from responders even before

the initiation of treatment (128). Zhang et al. investigated 15

patients with potentially resectable HCC participating in a single-

arm, open-label, phase 1 clinical trial of neoadjuvant cabozantinib

and nivolumab by utilizing spatial transcriptomics. They found that

the TME of responding tumors exhibited the enrichment of

immune cells and cancer-associated fibroblasts (CAF) with pro-

inflammatory signaling compared to non-responders. They also

observed that B cells could serve as the initial trigger for tumor cell

killing by cytotoxic immune cells and the recruitment of other

effector immune cells. Additionally, HCC-CAF interactions were

more prevalent in the responding tumors and were associated with

extracellular matrix remodeling (129). Marron TU et al. enrolled 21

patients with resectable HCC (stage Ib, II, and IIIb). This represents

the largest reported clinical trial to date of neoadjuvant anti-PD-1

monotherapy for HCC. All patients received neoadjuvant

cemiplimab, and 20 patients underwent successful resection. Of

the 20 patients with resected tumors, four (20%) had significant

tumor necrosis. Three (15%) of 20 patients had a partial response,

and all other patients maintained stable disease. The authors believe

that the observed pathological responses to cemiplimab in this

cohort support the design of larger trials to identify the optimal

treatment duration and definitively establish the clinical benefit of

preoperative PD-1 blockade in patients with HCC (130). Kaseb AO

et al. enrolled 27 patients with resectable HCC. In this phase 2

randomized, open-label study, 13/27 randomized patients were

treated with nivolumab and 14/27 with nivolumab plus

ipilimumab. 7/27 patients had surgical cancellations, but not due

to treatment-related adverse events (AEs). 6/20 resected patients

(33%; 3 in each treatment arm) achieved a major pathological

response (MPR defined as 100% necrosis (complete response, CR)

plus >60% necrosis). 5/6 MPR patients achieved CR. After a median

follow-up of 24.6 months (95% CI: 21.6, 34.1), no recurrence was

observed in patients with MPR, while 7/14 patients without MPR

developed recurrence (131).

The results obtained from the exploration of predictive biomarkers

in neoadjuvant HCC were mostly based on the combination of several

markers, which differed noticeably from previous findings and

highlighted the concept of tertiary lymphoid structures. Current

research on TLSs in HCC is primarily retrospective and focuses on

prognostic biomarkers, but can provide certain guidance for

neoadjuvant clinical trials in HCC. Furthermore, Magen et al.

discovered that patients who responded to neoadjuvant cemiplimab

already exhibited intratumoral cellular triads prior to surgery (128). In

their pathological review of 273 patients who underwent surgical

resection for HCC, including both intra-tumoral and non-tumoral

tissues, Calderaro et al. found that the presence of intra-TLSs was

associated with a reduced risk of early HCC relapse after surgery.

Additionally, these intra-tumoral TLSs may indicate the presence of

ongoing and effective anti-tumor immune responses (132). In a study

involving 462 HCC patients, Li et al. demonstrated an inverse

correlation between the presence of TLSs and the risk of early tumor

recurrence (133). Moreover, they found that a high density of

peritumoral TLSs was associated with a TME characterized by an
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active immune response and improved patient survival, thus serving as

a promising prognostic biomarker for HCC (134).
Discussion

In the process of summarizing the results of HCC predictive

biomarkers, we did not include the results from studies utilizing

HCC cell lines and preclinical animal models due to the significant

gap in forward translation. Similarly, we did not include results

related to anti-drug antibodies, relative dose intensity, and hand–

foot skin reactions, because these results are specific to drug usage

and do not serve the purpose of being predictive biomarkers for

patient selection. Additionally, Albumin–Bilirubin grading and

Child–Pugh grading were not assessed, as patients with higher

grades tend to have better prognosis even without any anticancer

treatment. Due to limitations in time and space, only the classic

treatment drugs and approaches used in the history of HCC

systemic therapy were included, and many other topics, such as

TME subtyping, MAIT cells, bispecific T-cell engagers (135, 136),

tumor vaccines, and immune therapies beyond PD-L1 (137), were

not discussed.

The exploration of HCC predictive biomarkers is intertwined

with the history of advancements in medical technology and drug

development. The discovery of pharmacological agents represents

the culmination of expertise in forward translation research, leading

to an improved understanding of HCC. Thanks to the development

of these drugs, the treatment efficacy for advanced HCC has

significantly improved, and an increasing number of patients are

benefiting from immunotherapies. Although efforts have been made

to explore the predictive biomarkers for these therapies, satisfactory

markers have not yet been identified. However, relying on one or

two biomarkers alone is insufficient for fulfilling the task of HCC

predictive biomarkers. Therefore, a shift from previous forward

translation to reverse translation research is necessary to validate

the results obtained from reverse translation via mechanistic

investigations conducted in forward translation. This may be the

future’s primary research direction and the most promising path for

the discovery of HCC predictive biomarkers.

In summary, no treatment can reverse the progression of HCC.

Therefore, in the era of immunotherapy, it is more likely that patients

with pre-existing antitumor immune cycles will be identified and their

immune responses strengthened by the addition of immunotherapy

and anti-angiogenic treatments. This transformation will turn a weak

trickle of antitumor immune response into a robust flow, leading to

immune normalization both systemically and within the tumor,

resulting in tumor attenuation, shrinkage, and improved resolution

of macroscopically invisible tumors. In the future, it is possible that

leveraging multi-omics technologies and comparing pre- and post-

treatment samples of body fluids, blood, LNs, and tumor tissues in

well-designed neoadjuvant clinical trials will help identify predictive

biomarkers that confirm the “cancer-immunity cycle” (67, 68),

“normalizing tumor vasculature” (70), and “normalization of the

TME” (71). This approach represents the most promising path for

discovering predictive biomarkers for HCC.
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Glossary

AFP Alpha-Fetoprotein

CAF Cancer-Associated Fibroblasts

cDCs Conventional Dendritic Cells

cfDNA cell-free tumor DNA

CR complete response

CTCs Circulating Tumor Cells

ctDNA Circulating Cell-Free Tumor DNA

CTLs Cytotoxic T Lymphocytes

CTLA-4 Cytotoxic T Lymphocyte-Associated Molecule-4

DCs Dendritic Cells

DOX Doxorubicin

ERK Extracellular-Signal-Regulated Kinase

FDA Food and Drug Administration

HBV Hepatitis B Virus

HCV Hepatitis C Virus

HCC Hepatocellular Carcinoma

ICIs Immune-Checkpoint Inhibitors

IHC Immunohistochemistry

LNs Lymph Nodes

MAFLD Metabolic Dysfunction-Associated Fatty Liver Disease

MAIT Mucosal-Associated Invariant T Cells

MKIs Multitarget Kinase Inhibitors

MPR major pathological response

ORR Objective Response Rate

OS Overall Survival

PDGFR-b Platelet-Derived Growth Factor Receptor Beta

PD-1 Programmed Cell Death Receptor-1

PD-L1 Programmed Cell Death Ligand-1

pERK Phosphorylated Extracellular Signal-Regulated Kinase

PFS Progression-Free Survival

RTKs Receptor Tyrosine Kinases

SNPs Single Nucleotide Polymorphisms

TACE Transarterial Chemoembolization

TDLNs Tumor-Draining Lymph Nodes

Tex Exhausted CD8+ T Cells

TILs Tumor Infiltrating Lymphocytes

TKI Tyrosine Kinase Inhibitor

TLSs Tertiary Lymphoid Structures
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TME Tumor Microenvironment

Tregs Regulatory T Cells

TTP Time to Progression

VEGFR Vascular Endothelial Growth Factor Receptors.
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