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Lung cancer is the most common malignant tumor in China. Its incidence and

mortality rate increase year by year. In the synthesis treatment of lung cancer,

radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has

become the major limiting factor in prescription dose escalation. Conventional

RT is designed to minimize radiation exposure to healthy lungs without

considering the inhomogeneity of lung function, which is significantly non-

uniform in most patients. In accordance with the functional and structural

heterogeneity of lung tissue, functional lung avoidance RT (FLART) can reduce

radiation exposure to functional lung (FL), thus reducing RILI. Meanwhile, a dose-

function histogram (DFH) was proposed to describe the dose parameters of the

optimized image-guided RT plan. This paper reviews lung function imaging for

lung cancer RT plans. It also reviews the clinical applications of function-guided

RT plans and their current problems and research directions to provide better

guidance for clinical selection.
KEYWORDS

radiotherapy, lung function imaging, lung functional image-based radiotherapy,
radiation-induced lung injury, clinical benefit
1 Introduction

As the most prevalent malignancy worldwide, lung cancer is the main cause of death.

Up to 77% of patients require RT during treatment (1). In some patients, RILI is significant.

RILI caused by excessive radiation doses to healthy lungs is a limiting factor regarding

radiation doses, treatment appropriateness, quality of life following treatment, and the

appropriateness of newly introduced adjuvant immunotherapy (2). Modern advanced RT

technologies, including intensity-modulated radiation therapy (IMRT) (3), volumetric

modulated arc therapy (VMAT) (4), stereotactic body radiation therapy (SBRT) (5), and

proton radiation therapy (PRT) (6), can meet conformal requirements of target volume and
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dose limitation requirements of normal tissues. Modern RT

techniques aim to minimize the radiation dose to healthy lungs

without considering the regional distribution of the lung function.

Many lung cancer patients have significant regional differences in

lung function due to smoking and chronic lung complications (7),

and different parts and functional states respond differently to

radiation; Studies have shown that the better the functional

status, the more sensitive it is to radiation (8, 9). Functional

images obtained with imaging techniques, such as magnetic

resonance imaging (MRI) (10), computed tomography (CT) (11),

and nuclear medicine (12), provide physiological information that

can be used in RT planning. Studies have shown that the correlation

between radiation pneumonitis (RP) and features calculated from

functional images (13, 14) is better than that of conventional dose

and volume histogram (DVH) features (15, 16). The traditional

DVH algorithm regards the whole structure as a functionally

uniform whole, ignoring functional and structural heterogeneity

(15). DFH, as the evaluation parameter of functionally guided RT

planning, groups the number of each sample point associated with

the physiological or functional status. This is done using the dose

and ventilation value in each pixel calculated to obtain DFH (13). It

is possible to evaluate FLART plans using DFH parameters such as

the mean lung function-weighted dose (f-MLD) and function-

weighted Vx (fV5, fV10, and fV20) (16–19). DFH was calculated

from perfusion (Q) and ventilation (V) values and the dose for each

voxel (20–23), where f-MLD is obtained by weighting each dose

voxel based on its V or Q value, and fV20 is defined as the

percentage of total V or Q contained in the volume receiving a 20

Gy dose (24). As reported by Yamamoto et al. (25, 26), functional

image-guided RT plans aim to selectively avoid irradiation of the

functional regions of the lung. This reduces the probability of lung

toxicity after RT while meeting standard dose limits for critical

organs. This review focuses on functional imaging techniques

commonly used in the literature. It also focuses on the research

progress based on functional image-guided RT plans and some

current problems faced. Additionally, some novel RT techniques

that can be combined with adaptive radiation therapy (ART) are

reviewed for FLART plans.
2 Nuclear medicine image-
guided FLART

Lung functional measurements and mapping are used to

evaluate lung cancer RT plans. Various lung functional imaging

have been studied for lung cancer RT, such as nuclear medicine

imaging, including single-photon emission computed tomography

(SPECT) (2, 27, 28) and positron emission tomography/computed

tomography (PET/CT) (17, 29). SPECT and PET/CT can provide

lung Q and V information and perform three-dimensional (3D)

imaging. Studies recommend the use of lung functional imaging for

guiding lung cancer RT (2, 17, 21, 27–29). This is aimed at

minimizing the radiation dose in functionally normal lung

regions while maintaining the therapeutic dose at the planning

target volume (PTV).
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2.1 SPECT

SPECT is a recognized functional imaging modality for

diagnosing and monitoring lung diseases (30), and SPECT-based

Q imaging was the earliest reported form of lung functional imaging

(22). SPECT can be used for lung Q- and V-imaging. Radioactive

tracers commonly used in SPECT V imaging include gas (133Xe and
81mKr), aerosol (99mTc-DTPA), and solid (99mTc-Technegas)

tracers. Radioactive Q tracers commonly employ technetium-

99m-labeled macroaggregated albumin (99mTc-MAA) (31– 32).

2.1.1 Lung functional imaging based on SPECT
The imaging quality of V was influenced by the size of the

tracer. Patients with potential airway diseases have a higher risk of

central and focal peripheral radioactive tracer deposition. As a

result, SPECT-based functional imaging most commonly uses Q

imaging (33). According to Hoover et al. (21), the area under the

curve (AUC) values of DFH parameters weighted by Q were

consistently higher than those weighted by V and their

corresponding standard DVH parameters. Radioactive Q tracers

enter the human body through the veins, circulate with the blood to

the vascular bed tissue in the lungs through heart Q, and reflect the

Q status of pulmonary blood flow. If a capillary embolism occurred

in the lungs, the imaging agent was retained. Lung Q imaging can

measure blood circulation in the lungs and is commonly used in

clinics to display regional functional information (2). This

viewpoint was also supported by previous animal experiments

(34). Furthermore, several surgical studies in human patients have

shown a reasonable correlation between the percentage of Q lungs

resected and the percentage of lung function decline (35, 36).

Patients receiving lung RT usually undergo CT and SPECT at the

treatment site, and the structure to be evaluated is determined by

continuously drawing contours on the CT scan images (22). The 3D

images of Q were segmented based on pixel values, with higher pixel

values corresponding to higher Q areas in the lungs, thus

representing higher functionality (37).

2.1.2 FLART plans based on SPECT Lung
functional imaging

SPECT uses radioactively labeled tracers to image lung

circulation, where the Q region is equivalent to a normal

functioning lung (2). In the evaluation of lung function, Q has

shown predictive potential for RILI in lung cancer and other

cancers involving lung RT (17, 38–40). An FL contour was

created for each patient from the SPECT signal, and these

contours were transferred from SPECT to the planning CT using

image registration and cropped to depict the total lung volume (2).

SPECT images can be integrated into numerical optimization

because the count rate is linearly correlated with Q, and the

regional function approximates linearly with regional Q (41).

Based on published literature, the most commonly used threshold

in SPECT functional zoning was 30% (42–46), followed by 50% (17,

47, 48) and 70% (17, 48, 49). Dhami et al. (50) found that 70% of the

maximum Q threshold in SPECT imaging was most correlated with

RP clinical endpoints. Meanwhile, Hoover et al. (21) weighted the
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areas exceeding 30% of the maximum Q count in SPECT with FL

using dynamic blood flow images. The remaining lung tissue, which

accounted for less than 30% of function, was called the non-

functional lung (NFL). In the study by Shioyama et al. (47),

SPECT adopts functional plans with thresholds of 50% and 90%.

Compared to the anatomical plans, the median decrease in f-MLD

was 2.2 Gy (17.6-14.5) and 4.2 Gy (16.0-111.8), respectively. Similar

results have also been shown in other studies (43, 44, 49). It was

possible to correlate pulmonary toxicity with lung function subunit

quantities that exceed a certain threshold dose by scaling the

volume of individual voxels according to the local SPECT

intensity (21). The fusion of the Q image with the original

treatment plan generated a baseline DFH, which displayed the

relationship between radiation dose and functional region volume.

Furthermore, treatment plan optimization could be attained by

reducing the average Q-weighted lung dose derived from the

histogram of the blood-flow-driven Q function (51). Additionally,

Christian et al. (52) proposed minimizing the dose to the FL volume

outlined on the Q-map as a planning objective.

2.1.3 Clinical benefits from FLART based on
SPECT lung functional imaging

Despite these differences, all studies indicated that FLART could

improve lung function protection, at least in a specific subset of

patients (e.g., patients with large Q defects) (53). This improvement

was usually reflected in reducing certain DVH parameters of the

total lung (16, 24, 54) or certain DVH parameters of the FL (15, 16,

25). Earlier studies have shown that Q-weighted optimization-

guided RT plans reduce RILI in patients with large Q defects in

non-small cell lung cancer (NSCLC) (47, 51), but the reduction is less

significant in patients with small Q defects. Studies by Farr et al. (55)

demonstrated that f-MLD and MLD predicted the AUC of G2+RP at

0.812 and 0.716, respectively, and fV20 and V20 predicted the AUC of

G2+RP at 0.792 and 0.716, respectively. Another study has yielded

similar results (21).
2.2 PET/CT

With the rapid development of medical imaging technology, the

application of PET/CT functional imaging in tumor RT is becoming

increasingly widespread. With PET/CT, images are generated that

integrate the anatomical structure and functional metabolism of

patients under the same conditions, thus providing a more accurate

imaging basis for treatment (56, 57). Compared to SPECT, PET has

higher resolution and sensitivity, can provide more physiological

and functional information, and lowers radioactive drug radiation

doses (58–60). It can also be fused with imaging technologies such

as CT or MRI to provide more comprehensive diagnostic

information and can even be combined with four-dimensional X-

ray CT (4DCT) to obtain 4D V and Q information (61–64).

2.2.1 Lung functional imaging based on PET/CT
PET imaging uses the decay mechanism of radioactive isotopes.

During the decay process, radioactive isotopes release positrons that
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undergo annihilation when they encounter electrons, resulting in

the production of two gamma rays. These rays are emitted at an

180-degree angle, and PET scanners detect the relative positions of

these rays to reconstruct an image of the distribution of radioactive

tracers inside the body. Previous studies have mainly used PET

tracers, such as 15O, 13N, and 11C for pulmonary physiology

research. However, due to their short half-lives, they are gradually

being replaced by galligas and gallium-68 macroaggregated albumin

(68Ga-MAA) for lung V/Q studies (64–67). PET V imaging was

performed first, followed by lung Q imaging, all without moving the

patient as in the SPECT V/Q program using aerosols. 68Ga was first

used for PET Q imaging in 1976 by Chesler et al. (68), who injected

radiolabeled albumin microspheres containing 68Ga into dogs to

obtain 3D reconstructed images. In 2010, Kotzerke et al. (69) first

described the use of galligas for V-PET imaging. However, owing to

the influence of respiratory motion, there may be significant

misalignment between PET and CT. PET/CT images can be

improved by using the respiratory gate technique (4D PET/CT),

which reduces artifacts caused by respiratory motion during

imaging (64). In a study by Siva et al. (44), the operational

procedure for performing V/Q imaging using 4D PET/CT was

described. Patients first inhaled galligas and underwent V imaging

with a respiratory tracking system used during the scan. Patients

were instructed to breathe freely while simultaneously undergoing a

low-dose 4DCT chest acquisition. The scan ranges for both 4D PET

and 4DCT include the entire lung field. After the lung V-PET scan,

approximately 40 MBq of 68Ga-MAA was intravenously injected,

and 4D PET Q imaging was performed in the same field of view. A

meta-analysis showed that Q imaging has more potential than V

imaging for improving lung dose parameters in RT plans (33).
2.2.2 FLART plans based on PET/CT lung
functional imaging

One of the main steps in constructing FLART plans is

delineating the FL volume and integrating it into the RT plan as

organs at risk (OARs). Currently, the most commonly used method

of functional contouring utilizes the relative threshold method

based on the maximum pixel value (pmax) and the threshold

method relative to the whole lung function (WLF). Based on

these two methods, current research has applied V/Q PET/CT to

IMRT (17), VMAT (70), and SBRT (71) for FLART studies. Siva

and Bucknell et al. (17, 70) used a visual adaptation method with a

70% SUV threshold to divide the lung into high Q lung capacity

(HPLung) and high V lung capacity (HVLung). Nevertheless, Siva

et al. found HVLung was much smaller than HPLung, so they

derived V lung volume (VLung) as an approximation of HPLung

volume, as previously reported by Munawar et al. (48). The results

showed that the MLD of HPLung decreased by 13.0%, and the V5,

V10, and V20 doses decreased by 13.2%, 7.3%, and 3.8%,

respectively. The 50% SUV threshold, however, resulted in many

small-volume regions throughout the entire lung rather than a

continuous volume, limiting RT’s adaptive capabilities. Therefore,

the selection of a threshold for FL definition is crucial, and there is

currently no clear indicator to define an appropriate threshold.

Recently, Pinot et al. (72) developed a relative whole-lung
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functional threshold segmentation method for PET/CT Q imaging

that allowed overlapping contours and was relatively unaffected by

hotspots, providing reliable and consistent functional volumes. FL

volume was defined as the minimum volume within the anatomical

volume that contained 50%, 70%, and 90% of total activity. By

prioritizing protection of the FL region, SBRT planning significantly

reduced MLD and the percentage of lung volume receiving 5-20 Gy.

2.2.3 Clinical benefits from FLART based on PET/
CT lung functional imaging

The evaluation of lung Q is particularly relevant to RILI because

the vascular endothelium, like lung cells, is considered to be one of

the most sensitive tissues in the lung to radiation (73). Preserving

intact lung parenchyma Q during RT may reduce radiation-induced

vascular damage and reduce the risk of RP. Previous studies have

reported a strong correlation between PET/CT lung function and

pulmonary function testing (PFT) parameters (74). Furthermore,

PET/CT diagnosed pulmonary embolism (PE) is more accurately

than conventional lung V/Q scanning and identifies changes in lung

function during RT, allowing timely adjustments to the RT plan (75,

76). A recent study validated the feasibility of using 68Ga-4D-V/Q

PET/CT during RT for ART (70). According to the study, FL

volume may change during the treatment process, and some

patients may benefit from adjusting their RT plans in the fourth

week of treatment to preserve the high-Q or high-V lung regions.

This study suggests that FL volume changes during the treatment

process. Further prospective research is needed to determine which

patients can benefit the most from this mid-term adjustment.
Frontiers in Oncology 04
2.3 Current problems and research
direction of nuclear medicine image-
guided FLART

Although lung function requires the Q and V of alveoli, V

abnormality is more common than Q abnormality in the lungs (17).

V images containedmore noise thanQ due to significantly reduced lung

activity (70). Unless more specific indicators were available, Q imaging

could reasonably be used to assess lung function. According to Forghani

et al. (77), 25% of stage III lung cancer patients had low consistency on

SPECT/CT V/Q. Another study found significant differences in

response to V and Q doses in 20–30% of patients (78). Kimura et al.

(79) found greater clinical correlation with RP using combined Q/V

imaging than when using only V or Q imaging. To promote real lung

function, it is necessary to maintain an appropriate ratio between V and

Q. There are also potential drawbacks to V/Q SPECT technology. The

most significant problem is the difficulty in image registration, especially

in the lungs, where patients breathe during SPECT and CT imaging,

leading to differences in the two images (22). PET/CT combined with

4DCT improves image quality and registration accuracy (61, 63, 64). In

addition, a certain area of the lungs may experience reduced

functionality due to proximal vascular obstruction. A lung region

might regain functionality after the obstruction is removed during RT

(22, 80). In this case, DFH underestimated radiation’s functional impact.

Therefore, prospective clinical experiments will be needed to examine

how FL changes during RT, and when RT plans need to be adjusted.

Summary of the study on FLART based on nuclear medicine functional

imaging is presented in Table 1.
TABLE 1 Detailed description of nuclear medicine-guided RT research, including patient characteristics, planning techniques, and clinical benefits.

Reference Patients Characteristics
Imaging type
Planning technique

Definition FL
Benefit of FL sparing
(% difference
between means)

Siva et al. (17) 20

Age (med) 68
NSCLC 100%
Stage I-II 35%
Stage III 55%
Stage IV 10%

PET/CT
V Gallium-68
Q 68Ga-MAA
IMRT

High V/Q 70% of max
V/Q 50% of max

**
fMLD (Q) ↓ 1.7 Gy,
fV5 Gy (Q) ↓ 13.2%,
fV10 Gy (Q) ↓ 7.3%,
fV20 Gy (Q) ↓ 3.8%.

St-Hilaire et al. (24)

15 (13
patients
accepted
SPECT Q)

Age NS
NSCLC 53%
SCLC 20%
Stage III 100%

SPECT
Q 99mTc-MAA
IMRT

SPECT cost function.

**
Median reduction:
fMLD ↓ 0.9 Gy,
fV10 Gy ↓ 2.2%.

McGuire et al. (37) 5
Age NS
NSCLC NS
Stage NS

PET/CT
Q 99mTc-MAA
IMRT

According to the degree of
regional perfusion, the lung is
divided into four lung zones.

fV20 Gy ↓13.6%,
fV30 Gy ↓10.5%.

Wang et al. (43) 39
Age (med) 61
NSCLC 100%
Stage III 100%

SPECT
Q 99mTc-MAA
IMRT

30% of max.

**
fV10 Gy ↓ 5.21%,
fV20 Gy ↓ 4.25%,
fV30 Gy ↓ 2.38%,
fV35 Gy ↓ 10.5%.

(Continued)
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3 CT image-guided FLART

Using inhalation gas tracers or intravenous contrast agents for

imaging can result in increased radiation exposure and scan times

(65). While CT-based V imaging provides additional benefits by

providing functional information without additional imaging tests

(16, 80). The most common CT techniques used in lung functional

imaging research include 4DCT (14, 16, 19, 26, 44), multi-detector

CT (MDCT) (82, 83), dual-energy CT (DECT) (84, 85), and CT-

enhanced imaging, which uses inert gases. In the past, CT imaging
Frontiers in Oncology 05
was slow and difficult to apply in clinical practice. With advances in

imaging technology, MDCT, which includes multiple detector

arrays, has improved imaging quality, scanning modes, and

clinical applications (86, 87). However, compared to 4DCT and

DECT, MDCT has certain limitations in terms of imaging quality,

tissue resolution, radiation dose, respiratory motion artifacts, and

tissue composition analysis (88–90). Therefore, 4DCT and DECT

are gradually replacing MDCT as preferred choices in clinical

practice. Use of CT lung functional imaging for the FLART

project research as shown in Table 2.
TABLE 1 Continued

Reference Patients Characteristics
Imaging type
Planning technique

Definition FL
Benefit of FL sparing
(% difference
between means)

Siva et al. (44) 14

Age (med) 66
NSCLC 100%
Stage I–II 43%
Stage III 50%
Stage IV 7%

4D PET/CT
Q 68Ga- MAA
3DCRT

Perfused: all lung with
uptake, well Q 70% of max

**
Median reduction:
fMLD ↓0.8 Gy,
fV20 Gy ↓5.3%.

Yin et al. (45) 10
Age NS
NSCLC 100%
Stage NS

SPECT Q
IMRT vs 3DCRT

30% of max

**
3DCRT: fV5 Gy ↓ 6.50%,
fV20 Gy ↓ 14.02%,
fV30 Gy ↓ 22.30%;
IMRT: fV5 ↓ 3.05%,
fV20 Gy ↓ 14.16%,
fV30 Gy ↓ 4.87%.

Shioyama et al. (47) 16

Age (med) 62
NSCLC 100%
Stage III 69%
Stage IV 19%

SPECT
Q 99mTc MAA
IMRT

50% and 90% of max.

**
FL90: fV5Gy ↓ 11.7%,
fV10 Gy ↓ 12%,
fV20 Gy ↓ 6.8%.

Munawar et al. (48) 10
Age NS
NSCLC 100%
Stage III 100%

SPECT
V 99mTcTechnegas
IMRT

50% and 70% of max

Optimization to SPECT V
caused;
FMLD by 3 Gy if <5% of
FL50 overlapped PTV.

Lukovic et al. (49) 21
Age NS
NSCLC 100%
Stage III 100%

SPECT V
IMRT

70% of max.
fV10 Gy (HV) ↓ 4.5%,
fV20 Gy (HV) ↓ 3%.

Christian et al. (52) 6
Age NS
NSCLC 100%
Stage NS

SPECT
Q 99mTc-MAA
3DCRT

80% of the max.
fV20 Gy ↓ 16% (One patient
with bilateral upper lobe
perfusion deficits.)

Bucknell et al. (70) 25

Age NS
NSCLC 100%
Stage I–II 32%
Stage III 24%
Stage IV 20%

68Ga-4D-V/Q PET/CT
VMAT

A 70th centile threshold

**
fV5 Gy ↓ 2.5% (HQ),
↓ 2.1% (HV);
fV20 Gy ↓ 0.9% (HV)

Lucia et al. (71) 60
Age (med) 69
NSCLC 42%
Stage NS

PET/CT
Q 68Ga-MAA
SBRT

50%, 70%, and 90% of the max.

**
A significant reduction of the
MLD and V5 Gy to V20 Gy in
all functional volumes.

Lee et al. (81) 8

Age (med) 72.5
NSCLC 100%
Stage II 12.5%
Stage III 87.5%

SPECT/CT
Q 99mTc-MAA
VMAT, PBS

70% of max.

**
VMAT: fMLD ↓ 7.6 Gy,
PBS VS VMAT:
fMLD ↓ 3.7Gy,
fV5 Gy ↓ 27%,
fV10 Gy ↓ 17%
**, denotes statistically significant result; Q, perfusion; V, ventilation; HQ, high perfusion areas; HV, high ventilation areas; NS, non-specified; FL, functional lung; fVx, functional volume
receiving ≥ x Gy; Vx, lung volume receiving ≥ x Gy; fMLD, functional mean lung dose; MLD, mean lung dose; 99mTC-MAA, technetium Tc-99m albumin aggregated; 68Ga-MAA, human albumin
macroaggregates labeled with Ga-68; RP, radiation pneumonitis; Med, median.
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TABLE 2 Detailed description of CT-guided RT research, including patient characteristics, planning techniques, and clinical benefits.

Reference Patients Characteristics
Imaging type
Planning technique

Definition FL
Benefit of FL sparing
(% difference
between means)

Huang et al. (11) 36

Age (med) 66
NSCLC 100%
Stage II 8%
Stage III 87%
Stage IV 5%

XeCT V
IMRT 47%
VMAT 53%

Visually defined.

**
Mean relative reduction 29%
for ≥G2 RP.
fV20 Gy ↓ 12%, fMLD ↓ 13%

Faught et al. (13) 70

Age NS
NSCLC 100%
Stage I-II 24%
Stage III 70%

4DCT V
IMRT 59%
3DCRT 41%

15% of max.

**
Mean absolute reduction
7.1% for ≥G2 and 4.7%
≥G3 RP.

O’Reilly et al. (15) 74

Age NS
NSCLC(100%)
G2+ RP 33%
Stage III 100%

4DCT V
Photon 50%
Proton 50%

6%, 45%, and 60% of max.
**
fV20Gy (HV) was a
significant indicator for RP.

Yaremko et al. (18) 21
Age (mean) 69
NSCLC 100%
Stage III 100%

4DCT V
IMRT

90% of max.

**
fMLD ↓ 2.9 Gy,
fV5 Gy ↓ 16.6%,
fV10 Gy ↓ 11.7%,
fV20 Gy ↓3.4%

Waxweiler et al. (19) 25
Age NS
NSCLC 100%
Stage III 100%

4DCT V
VMAT

Auto segmentation of any
lung with no less than a
15% reduction in V

**
Structure based:
fMLD ↓ 2.8 Gy, fV5 Gy ↓
13.7%,
fV10 Gy ↓ 14.9%, fV20 Gy ↓
5.6%, fV30 Gy ↓ 2.9%

Yamamoto et al. (25) 1
Age NS
NSCLC 100%
stage III 100%

4DCT V
VMAT

FL regions based on image/
voxel method.

**
fV20 Gy ↓ 5%

Yamamoto et al. (26) 15

Age (mean) 75
NSCLC 100%
Stage I-II 73%
Stage III 45%
Stage IV 7%

4DCT V
IMRT, VMAT

Three FL regions based on
probability
density function.

**
IMRT: fV20 Gy ↓ 3.5%
fMLD ↓ 1.8 Gy;
VMAT: fV20 Gy ↓ 2.3%
fMLD ↓ 2 Gy.

Li et al. (53) 17

Age (med) 67
NSCLC 100%
Stage III 29.4%
Stage IV 70.6%

4DCT V
HT

50%, 40%, 30%, 20%, and
10% of
Max.

**
Mean absolute reduction:
Risk of Func_planTop40/50 ↓
7.39%/8.6%.
FV5 Gy, fV20 Gy, and fMLD
of Func_planTop30/40/50,
and fV10 of Func_planTop40/
50 were significantly lower.

Vinogradskiy et al. (80) 118

Age NS
NSCLC 100%
Stage I 36%
Stage III 64%

4DCT V
SBRT

FL regions based on
probability
density function.

fMLD (Stage III) ↓ 0.8Gy,
fMLD (Stage I) ↑ 1.1Gy.

Bahig et al. (85) 20

Age NS
NSCLC 68%
Stage I 72%
Stage III 28%

DECT Q
SBRT, IMRT

Lung volume was divided
into six different functional
sub-regions based on
iodine concentration.

**
Absolute reduction:
IMRT: fMLD ↓ 1.5Gy,
V20 Gy ↓ 3%;
SABR: fMLD ↓ 0.5Gy,
V20 Gy ↓ 1%.

Yamamoto et al. (91) 14
Age (med) 74
NSCLC 100%
Stage III 100%

4DCT V
IMRT (adaptive or
non-adaptive)

FL regions based on image/
voxel method.

**
fMLD (adaptive) ↓ 5%,
fMLD (non-adaptive) ↓ 3.6%.

(Continued)
F
rontiers in Oncology
 06
 frontiersin.org

https://doi.org/10.3389/fonc.2024.1429837
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2024.1429837
3.1 4DCT

4DCT imaging was developed to provide tumor motion

information and improve RT planning. Further, 4DCT images

include variations in air content caused by respiration in the lung

parenchyma, which can be used to produce lung V images (18).

Images from SPECT V/Q (35–37, 97), PET/CT (17, 29, 44, 98), MRI

(99, 100), and PFT (91, 101) confirmed the validity of 4DCT V.

Numerous studies have detailed the methods (102, 103) and

validation (103, 104) of 4DCT V imaging as well as its potential

clinical applications as a functional imaging modality (26, 105–

107). Through 4DCT scanning, maximum inhalation and

exhalation images can be obtained to generate lung function

maps (91) and measure breathing retention (98).

3.1.1 Lung functional imaging based on 4DCT
In the free-breathing state, 4DCT was used to collect ten-time

phases of a complete breathing cycle. CT images with phase or

amplitude resolution were used to calculate the V for each voxel in

the lungs (102, 103, 108). By calculating the local air content change

for each voxel, a 3D graph of the V function is generated (19).

According to the literature, there are three main 4DCT V-imaging

algorithms (VIA), which are based on density (Hounsfield units),

Jacobian matrix, and region. Among them, the density VIA was

described by Guerrero et al. (109), based on the physical density
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changes between the exhalation and inhalation peak CT images,

using deformable image registration (DIR) and underlying CT

density information to generate static 3D V images. Reinhardt

et al. (102) introduced the Jacobian matrix VIA, which quantified

regional volume changes of lung voxels by utilizing the determinant

of the Jacobian matrix obtained from DIR spatial transformation.

Besides, Kipritidis et al. (110) proposed a region-based VIA,

estimating V situation by evaluating the 4D regional averaged

time-product of air and tissue densities at each voxel without

DIR. However, the correlation between the V images generated

by these algorithms and clinical gold standards [including 99mTc-

SPECT (111) and 68Ga-Galligas PET (112)] varies significantly (97,

113). According to studies, region-based algorithms have a higher

correlation with 68Ga-Galligas PET and less variability, but they are

prone to motion blur and limited in spatial resolution, possibly

limited to lung voxels within HU values of (-1000, -600) (110).

Further, region-based algorithms require much more computation

time because they require 10 phase matrices, unlike the two other

algorithms (114). Compared with the other two algorithms, the

Jacobian matrix algorithm is much less accurate (91, 110). While

Eslick et al. (115) demonstrated good consistency between CT

density changes and PET lung V images. As 4DCT imaging

becomes more common in patients with lung cancer, using 4DCT

V imaging does not require additional doses or economic costs (92).

To confirm its clinical applicability, these clinical trials are
TABLE 2 Continued

Reference Patients Characteristics
Imaging type
Planning technique

Definition FL
Benefit of FL sparing
(% difference
between means)

Vinogradskiy et al. (92) 67

Age (mean) 65
NSCLC 79%
SCLC 21%
Stage I-II 12%
Stage III 76%
Stage IV 12%

4DCT V
IMRT

15% of max.

**
fMLD ↓ 1.4Gy, fV5 Gy ↓
3.4%,
fV10 Gy ↓ 6.4%, fV20 Gy
↓3.5%,
fV30 Gy ↓ 1.8%;
The rate of grade ≥2 RP was
14.9% (10 of 67 patients).

Utsumi et al. (93) 12

Age (mean) 69
NSCLC 83%
SCLC 17%
Stage I-II 16%
Stage III 83%

XeCT V
VMAT

Three equal areas were
separated by the FL CT
value histogram.

**
fMLD ↓ 0.27 Gy (Total
function), ↓ 0.32 Gy (High),
↓ 0.27 Gy (Moderate), ↓ 0.2
Gy (Low)

Ieko et al. (94) 13
Age(mean)75.1
NSCLC 92%
Stage I-II 77%

4DCT V
3DCRT, VMAT, PT

20% of max.

**
Compared with 3D-CRT and
VMAT, PT resulted in a
significant reduction in
fMLD, fV5 Gy, and fV10 Gy.

Huang et al. (95) 8

Age (med) 69
NSCLC 100%
Stage III 75%
Stage IV 25%

4DCT V
IMRT, IMPT, DSPT

Based on the Jacobian
method, the regional V
map was obtained to
divide the lung volume
into three equally volumed
functional regions.

**
Compared with IMRT,
V5 Gy(Total lung) ↓ 34%
(DSPT), ↓ 38.8% (IMPT);
fV5 Gy (HV) ↓ 4.3% (IMPT),
fV20 Gy (HV) ↓ 3.1% (IMPT)

Huang et al. (96) 11
Age (med) 56
NSCLC 55%
Stage III 100%

4DCT V
IMRT

80%, 70%, and 60% of max
**
fV20 Gy ↓ 2.7%
**, denotes statistically significant result; Q, perfusion; V, ventilation; HV, high ventilation areas; NS, non-specified; FL, functional lung; fVx, functional volume receiving ≥ x Gy; Vx, lung volume
receiving ≥ x Gy; fMLD, functional mean lung dose; MLD, mean lung dose; RP, radiation pneumonitis; Med, median.
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investigating the use of 4DCT V imaging to prioritize the protection

of high-functioning lung regions (NCT02528942, NCT02773238,

NCT02002052, NCT02308709, and NCT02843568).

3.1.2 FLART plans based on 4DCT Lung
functional imaging

Treatment plans focused on FL commonly employ optimization

techniques based on structure and images. Structure-oriented

approaches optimize treatments by setting functional contours

based on 4DCT images of lung volume. This methodology has

been verified alongside alternative lung functional imaging methods

(15–18, 25–27, 100). As functional images are transformed into

binary masks, the process of generating functional contours may

eliminate heterogeneous functional data (92). By contrast, image-

based techniques enable the inclusion of all functional image data in

optimization processes through 4DCT images of lung volumes (24,

51). Research has indicated that both structure-based and image-

based optimization methods have comparable predictive impacts

on RP, with superior performance over standard approaches (116).

However, structure-based techniques are compatible with any

modern treatment planning system (TPS), but image-based

methods need a more sophisticated TPS (19).In structure-based

methods, there are two main approaches: the first uses threshold-

based segmentation FL. Another method divides the lung into six

regions, calculates average V values, and compares them to the

overall average to identify functional defect regions (116).

Functional defect regions are areas where V decreases compared

to a completely homogeneous lung in nuclear medicine (117).

Function-based methods commonly use thresholding to partition

functional regions, requiring careful consideration of thresholds.

Through DIR and quantitative image analysis, V values were

computed from 4DCT V images to derive DFH. A functional

volume receiving dose is indicated by the vertical axis, while the

“hottest” functional volume is indicated by the horizontal axis

(118). V values derived from 4DCT V images were transformed

into percentiles, enabling the selection of a suitable threshold for

categorizing lungs into high or low functional areas (13, 15, 25, 91).
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Notably, the precise threshold for lung functionality in CTV images

remains undefined. In a systematic review and meta-analysis of

FLART (119), the range of lung function definitions varied from

20% to 90%. Among these studies, multiple definitions of lung

function were used. The most commonly used maximum level lung

function percentages were 70% and 30%, followed by 50% and 60%.

Literature often categorizes lung tissue into high- or low-functional

areas (HFA or LFA) (13, 15, 25, 92, 120). Based on two thresholds,

Yamamoto et al. (26) divided the lung into three equally-sized

functional areas: HFA (>66%∼100%), intermediate functional lung

area (>33%∼66%), and LFA (0∼33%). Result indicated a significant

reduction in HFA dosage, but no improvement in intermediate

functional areas or LFA dosage, with a majority of the dosage

transferred from HFA to intermediate functional areas and LFA

(Figure 1). By utilizing the FLART plan to evade HFA, the

treatment dose is minimized to the greatest extent possible;

however, no specific strategy was employed to safeguard LFA

(121). Yamamoto et al. (25) noted that the decrease in HFA

parameters was not a result of an overall reduction in lung dose,

but rather a deliberate avoidance of HFA. Planning strategies

focused on avoiding HFA may lead to an escalation in the dose to

the LFA, which still retains some level of functionality. Once the

dose surpasses a certain threshold, the resulting damage

becomes irreversible.

3.1.3 Clinical benefits from FLART based on 4DCT
Lung functional imaging

By acquiring functional data directly from a patient’s 4DCT

simulation, 4DCT V provided a distinct advantage over SPECT

imaging in treatment planning (16, 80). Moreover, the higher

resolution of 4DCT V images simplifies the process of image

fusion compared to SPECT (122), thus increasing its acceptance

by clinicians and lung cancer patients. With the use of 4DCT-based

functional planning, radiation doses are reduced in various

treatment plans, such as IMRT (16, 25–27, 35, 48), VMAT (16,

26, 81, 93), and PT (94, 95). In plans using functional planning of

IMRT and VMAT, fMLD was significantly reduced by 1.8 Gy and
FIGURE 1

Comparisons between anatomical and functional treatment plans of mean dose (mean ± standard deviation) and percentage of volume receiving
≥5, ≥20, ≥40 or ≥50 Gy (Vx) for the three functional lung regions. Reproduced from reference (26) with permission from Elsevier, copyright 2011.
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2.0 Gy, respectively (26). Several FLART studies have shown that

the mean reduction in f-MLD can be 2.5 Gy, with a maximum

reduction of up to 10 Gy (17, 18, 24, 26, 48). Additionally, fV5 can

be decreased by 10-16% (17, 18, 96) and fV20 by 3-9% (37, 47, 99,

123). Ieko et al. (94) conducted a study evaluating the impact of

4DCT V imaging-guided PRT on SBRT, comparing it with VMAT

and 3D-CRT. PRT resulted in significant reductions in f-MLD and

fV5. Clinical findings indicate that fV20 and f-MLD are the most

predictive indicators of RP (Table 3) (19, 119). FLART has been

shown to reduce the incidence of ≥2-grade RP from 25% to 12%

compared to historical controls (92).
3.2 DECT

Recent research has not only utilized 4DCT for FLART

planning but also evaluated the feasibility of DECT in FLART

planning (84, 85). The DECT setup comprises two X-ray tubes

generating high- and low-energy X-ray beams, respectively. By

employing these X-ray beams with varying energies, two sets of

CT images are acquired from scanning the target. Materials with

different decay coefficients can be identified and quantified by X-

rays of different energies. Prior studies have primarily used DECT

for diagnostic purposes, differential diagnosis, characterization of

tumor differentiation and gene expression, staging, and the

assessment of prognosis (124). Serving as an innovative imaging

technique, DECT surmounts traditional CT constraints in tissue

characterization (125, 126). Furthermore, the administration of

iodine contrast agents enhances DECT imaging for lung Q

assessment, while inert gases like xenon (Xe) and krypton (Kr)

are utilized for lung V imaging (84, 127–129).
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3.2.1 Lung functional imaging based on DECT
Quantification of lungQ involves the measurement of pulmonary

blood volume (PBV), which is delineated as the proportion of

capillary volume relative to lung mass (130). 68Ga-MAA PET/CT

imaging accurately assesses PBV. Nonetheless, PET/CT imaging

methodologies are more advanced and unavailable in many

medical facilities, restricting their widespread application.

Gaudreault et al. (131) demonstrated that DECT imaging enhanced

by iodine contrast agents could serve as a substitute for PET/CT

imaging in evaluating lung Q. In the study by Kerl et al. (132), the

operation procedure for DECT Q imaging was described. During

injection, a high concentration of iodine-based contrast agent is

injected within a specified time by optimizing injection parameters.

A mixture of contrast agent and physiological saline is injected in

stages at a specific rate. Finally, DECT images are acquired during the

late arterial phase. Additionally, Bahig et al. (85) generated iodine

concentration maps using the double material decomposition

technique. The method leverages the dual energy information from

DECT images to compute iodine concentration through the

establishment of a calibration curve for the production of the lung

Q agent map. Research has shown that DECT is a reliable alternative

to the direct measurement of local Q in lung parenchyma (133, 134).

Even so, iodine contrast agents can pose challenges related to

precision and consistency, such as artifacts and patient-specific

injection dosages (135–137).

Apart from enabling iodine contrast-enhanced Q imaging with

DECT, it can also facilitate V imaging with an enhanced Xe and Kr.

Xe, a stable and radiopaque inert gas naturally found in the

atmosphere. With inhaled Xe-enhanced DECT (Xe-DECT), three-

material decomposition is utilized to differentiate Xe from other

substances (such as air and soft tissue) and to describe and quantify
TABLE 3 Standard and functional measurements of individuals with RP (grade 0-1) and RP (grades 2–5).

Parameter Standard Functional segmented Functional SPECT-weighted

RP group Grade 0–1 Grade 2–5 p Grade 0–1 Grade 2–5 p Grade 0–1 Grade 2–5 p

MLD (Gy) 11.1 14.33 0.01 8.04 16.56 0.01 9.92 15.95 <0.01

V5 (%) 41.05 46.9 0.14 38.66 48.36 0.01 40.77 50.66 0.03

V10 (%) 28.27 34.02 0.07 22.74 36.24 <0.01 26.17 37.1 0.01

V20 (%) 18.98 25.48 0.01 11.61 27.83 <0.01 16.23 26.76 <0.01

V30 (%) 13.34 19.4 <0.01 8.13 23.86 <0.01 10.92 21.66 <0.01

Parameter Standard Functional segmented Functional SPECT-weighted

OR 95% CI p OR 95% CI p OR 95% CI p

MLD (Gy) 0.82 0.63–1.063 0.13 1.53 1.2–2.0 <0.01 1.4 1.1–1.8 <0.01

V5 (%) 0.97 0.9–1.05 0.5 1.1 1.01–1.2 0.02 1.1 0.99–1.1 0.05

V10 (%) 0.95 0.86–1.06 0.41 1.1 1.03–1.2 0.01 1.1 0.99–1.1 0.05

V20 (%) 0.94 0.84–1.05 0.25 1.2 1.04–1.3 <0.01 1.1 1.02–1.2 0.02

V30 (%) 1.12 1.0–1.3 0.04 1.2 1.1–1.4 <0.01 1.2 1.1–1.4 0.01
fro
MLD, mean lung dose; Vx, volume of lung receiving; OR, odds ratio; CI, confidence interval; RP, radiation pneumonitis. Reproduced from reference (55) with permission from Elsevier, copyright
2015. Significant p-values (p < 0.05) are indicated in bold.
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V abnormalities in terms of absorption characteristics (138–140).

Xe-DECT can be performed using dynamic or static scanning

protocols (140). Dynamic CT scans are generated by providing

high levels of oxygen (O2) followed by a mixture of 30% Xe and 70%

O2 to maintain consistent coverage throughout the wash-in and

wash-out phases of Xe (141–143). Conversely, the static acquisition

protocol involves capturing images of the entire lung at distinct

time intervals. Notably, the static DECT method is prized for its

significant reduction in radiation exposure (141, 144). Nonetheless,

many researchers preferred the dynamic scanning method for

assessing V dynamics by tracking changes in contrast gas

concentrations and distributions (138, 143). In addition to

displaying normal lung V maps, Xe-DECT can evaluate regional

lung V in chronic obstructive pulmonary disease (COPD), asthma,

bronchiolitis obliterans, bronchial atresia, and PE (138). However,

Xe-DECT was limited in clinical settings by radiation exposure and

adverse effects, including drowsiness, headache, and nausea (145).

Research has explored stable Kr or a combination of Xe and Kr

for lung V imaging to mitigate the high costs and side effects of Xe

(128, 146). Kr concentrations exceeding 70% were shown to be

effective in replacing Xe in DECT lung V imaging in rabbits,

although drawbacks were also noted (147). Previous studies on

conventional CT and DECT have shown that Kr can serve as an

inhalation contrast agent for human and animal radiographic

imaging (128, 147, 148). Similar to Xe-DECT, patients inhale a

mixture of Kr and O2 in a certain ratio and hold their breath during

DECT scanning while taking a deep breath. By differentiating

substances, Kr V images with varying degrees of enhancement

can be obtained. This indicates changes in the V situation through

CT density changes. Using 80% Kr and 20% O2 as a contrast agent

for DECT V imaging was found to be well tolerated by patients with

severe emphysema by Hachulla et al. (128). The results indicated

significantly higher attenuation levels in the normal lung than in the

emphysematous region, suggesting Kr is a promising contrast agent.

As a contrast agent, Kr has some inherent disadvantages, such as

certain radioactive properties, a relatively short half-life, and a lower

atomic mass, which makes Kr less stable than Xe. Therefore, the

assessment of the local V situation poses certain difficulties (149).

3.2.2 FLART plans based on DECT Lung
functional imaging

The use of Xe and Kr for lung V imaging has been demonstrated

in prior studies, but mostly in research settings. FLART planning with

Xe and Kr for DECT V imaging has limited studies due to limitations

and side effects. Studies have shown that DECT-iodine mapping can

provide extensive functional data in patients undergoing lung RT,

aiding FLART planning through systematic and personalized

optimization (85). Studies have confirmed the association between

iodine-enhanced DECT V imaging and PET (127, 131). Functional

segmentation is a critical component of FLART planning. Bahig et al.

(85) conducted a study in which pulmonary iodine images were

obtained via DECT scanning. The lung function was divided into six

equally spaced subregions according to the range of iodine

concentration from minimum to maximum. Each subregion was

treated as a weighted structure (OARs) influencing overall lung
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function via weight modifications. The results showed a strong

correlation between the relative lung lobe function measured by

DECT and the results obtained from SPECT/CT imaging. The

average differences between V5 and MLD in anatomical and FL

volumes were 16% (p = 0.03) and 15% (p = 0.047), respectively.

Lapointe et al. (84) conducted a study where the lung was manually

divided into five subregions comprising the upper and lower lobes of

both the left and right lungs. The differential function (dF) of each
subregion compared to the entire lung was determined based on

iodine concentrations assigned to individual voxels within the

functional area. They found strong agreement between SPECT/CT

and DECT images in terms of calculated differential functions for

lung subvolumes. This underscores the promising potential of

employing DECT in RT to preserve FL tissue. There was currently

limited research on using DECT for FLART. Future research is hoped

to verify its feasibility for the FLART program and explore its

potential clinical benefits.

3.2.3 Clinical benefits from FLART based on
DECT Lung functional imaging

By scanning the treatment site with contrast agent, the DECT-

iodine map can be obtained directly for RT plan, providing precise

anatomical and functional correlation without additional radiation

exams. Research demonstrated that DECT-iodine mapping

effectively identified Q defects in PE (150–152) and lung

parenchymal diseases (153, 154). Pansini et al. (153) examined

DECT-iodine maps in 57 patients (including 37 with emphysema).

They found that areas with decreased iodine distribution correlated

significantly with emphysema. The severity of Q changes was

related to parenchymal damage. In addition, Aoki et al. (155)

established the effectiveness of DECT arterial stage iodine uptake

as a predictive biomarker for lung cancer recurrence after SBRT. In

the case of radiation damage changing over time, DECT Q imaging

provides similar information to PET Q imaging and is an

economical alternative to PET imaging (127). Despite the limited

clinical validation of DECT in RT, the literature acknowledges its

potential applications, including improved dose calculation

accuracy (156, 157), decreased metal artifacts (158), and

enhanced tumor delineation and tissue characterization (159, 160).
3.3 Current problems and research
direction of CT image-guided FLART

Research indicates that about 70% of lung cancer patients exhibit

regional functional variability that favors functional avoidance

(35, 52). There are two important factors for FLART: functional

structural heterogeneity and spatial dose distribution. When a

patient’s lung function is consistent, no particular area requires

prioritized protection. Functional avoidance may preferentially

expose the defective area instead of the functional region, if a

patient shows a heterogeneous image with significant Q and V

defects (35). An assessment of functional defect size is necessary for

evaluating the relevance of functional information in treatment

planning, particularly when the defect exceeds approximately 25%
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of total lung volume. Study by Katsuta et al. (16) indicated that DFH

calculation was frequently performed in advanced NSCLC, especially

for patients with significant irradiation lung volumes and a greater

rate of RP. And in advanced-stage NSCLC RT, patients with FL in

close proximity to the tumor are particularly suitable for RP

prediction using DFH characteristics (161). Yamamoto et al. (26)

showed that FLART performed best in patients with substantial

overlap between FL and PTV, whereas it performed poorly in

patients with less overlap. However, 4DCT V imaging does have

limitations, such as inaccurate registration (162) and numerical

instability (163), as well as suboptimal correlation with other lung

functional imaging techniques (97). 4DCT functional imaging is also

limited by its focus on V volume calculation without providing Q

information. However, research indicated that approximately 20% of

lung cancer patients can exhibit varying V and Q distributions (77).

Currently, DECT can simultaneously acquire both lung V and

Q data. Nevertheless, using Xe and iodine contrast agents to acquire

V and Q DECT images simultaneously might increase radiation

exposure and prolong scanning time (164, 165). Similarly, using

both Xe and iodine enhancement in a single scan presents

difficulties because their atomic numbers are close (iodine at 53,

Xe at 54), suggesting similar DECT spectral attenuation properties

(166). Moreover, research exists on Kr and iodine-enhanced DECT,

since iodine exhibits significant attenuation variations with

increasing contrast agent doses in CT imaging, suggesting a

potentially significant impact on Kr analysis based on substance

decomposition theory (129). Further research is required to

determine and optimize the dose of contrast agents in mixed

contrast. Iodinated contrast agents are mandatory for Q DECT

implementation, which limits its applicability in patients with

contraindications. Furthermore, the presence of an iodine

threshold for functional zoning requires additional clinical

evidence. A functional imaging approach reveals significant

differences in DFH compared with traditional anatomical

dosimetry, which could clarify the limitations of conventional

DVH parameters. The future research aims to improve lung

function preservation with weighted functional volumes.
4 MR image-guided FLART

MRI offers several benefits over CT, including detailed soft

tissue images, lowering radiation exposure, and enabling multi-

angle analysis of tissue (65, 120). Nevertheless, lung MRI presents

many challenges due to its low proton density, rapid signal decay

(caused by multiple air-soft tissue interfaces), and motion artifacts

(167). The advancement of imaging technology has led to the

development of new MRI techniques aimed at addressing these

limitations. Several recent studies have demonstrated the feasibility

of lung MRI assessment with Fourier-resolved MRI (FD-MRI)

(168) (169) and MRI using hyperpolarized (HP) gases (169, 170),

fluorinated gases, and oxygen (171, 172).
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FD-MRI represents a novel method for the simultaneous non-

contrast-enhanced imaging of lung V and Q (169). This technique

utilizes rapid 2D TrueFISP pulse sequences to efficiently capture

lung images, removing the need for ECG or respiratory triggers. A

non-rigid image registration algorithm is employed to address

respiratory motion. Furthermore, the Fourier analysis of time

variations in image intensity can distinguish between blood

signals and lung parenchyma signals, enabling the computation of

V and Q-weighted images. Compared to traditional methods that

utilize contrast agents or radiotracers, this method provides

considerable advantages. There is a significant correlation

between FD-MR imaging and short-term reproducibility of PFTs

(173). An animal experimental study assessing regional lung V and

blood flow Q confirmed the consistency in qualitative assessment

between FD-MR imaging and SPECT/CT (174). However, FD-MRI

provides only indirect information about V and Q, and its

sensitivity may be inferior to that of directly imaged HP gas

MRI (175).

HP gas MRI accurately determines the location and severity of V

deficiencies in the lungs (176). The commonly used HP gases forMRI

research are 3He and 129Xe gases. These gases serve as inhalable MRI

contrast agents and can provide rich supplementary information

about lung function and lung microstructure (177, 178). HP 3HeMRI

serves as a valid alternative to SPECT for the evaluation of V (16, 27).

Smith (20) and Hughes et al. (179) have provided comprehensive

protocols for the acquisition of MRI data utilizing 3He. The high-

pressure treatment of 3He gas using spin-exchange optical pumping

technology can substantially increase the magnetization of 3He

by a factor of 104 to 105. The patient was directed to inhale 1 liter

of a mixture comprising 3He and medical nitrogen (N2). Static

volume images of 3He were acquired using rapid gradient echo

imaging over a period of 16 seconds. Matthew et al.’s study (180)

provides qualitative and quantitative evidence for 3He MRI and

4DCT Vmaps, showing good spatial consistency. HP gas 3He MRI

may not be widely used due to cost and limited global

helium supplies.

In comparison to 3He, 129Xe has significant natural reserves.

This guarantees stable long-term availability and strengthens its

economic viability. In addition, 129Xe has a high solubility and can

dissolve in lung tissue and blood, forming a “dissolved phase.”

During the dissolution process, approximately 200 ppm of chemical

shifts are produced, and MRI technology can separate the gaseous
129Xe from the dissolved 129Xe for imaging (181). The latest MRI

technology can obtain 3D 129Xe images of lung parenchyma, blood,

and alveoli in a single breath-hold scan (182). This allows for

simultaneous lung V, Q, and gas exchange assessment. To perform
129Xe MRI, HP 129Xe gas needs to be prepared first. The patient

needs to inhale a mixture of 129Xe and N2 gases and undergo a 3D

radial pulse sequence acquisition within a breath-hold time of 15

seconds to obtain distribution images of gaseous and dissolved
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phase 129Xe (171). By using HP 129Xe MRI technology, non-invasive

information about lung V and gas exchange can be obtained,

providing a valuable physiological basis for functional planning

in RT.

Recent advancements indicate that, alongside HP gas,

fluorinated gas and O2 are also applicable for functional imaging

in MRI. Fluorinated gas MRI (19F-MRI) generally requires patients

to inhale a mixture of standard O2 with perfluoropropane (PFP)

(183) or sulfur hexafluoride (SF6) (184), followed by imaging

conducted during breath-holding (171). In contrast to HP
3He/129Xe gas MRI, 19F-MRI does not necessitate prior treatment

of the gas with hyperpolarization and utilizes non-toxic, naturally

abundant fluorinated gases as contrast agents. It is capable of

conducting multiple breath imaging and analyzing the inhalation/

exhalation kinetics of the gas (185–187). Currently, 19F-MRI is

restricted to V imaging. Enhancements in image quality, signal-to-

noise ratio, and additional repeatability and validation studies are

necessary to solidify its evidence base for clinical applications.

Oxygen-enhanced MRI (OE-MRI) is a technique that utilizes the

influence of O2 on the T1-weighted signal intensity of the lungs to

assess lung function (188, 189). T1-weighted images are acquired

under standard breathing conditions with 21% O2, followed by the

patient inhaling 100% pure oxygen for subsequent T1-weighted

imaging. The distinction between the two indicates the conditions

of lung V and oxygen supply (172, 190).
4.2 FLART plans based on MR lung
functional imaging

In MRI studies of functional imaging, HP gas MRI is the sole

method employed for the FLART plan. FLART uses 3He MRI scans

to acquire 3He static V images, providing respiratory function

information and delineat ing functional lung regions.

Semiautomatic k-means clustering is used to identify and segment

V defects, while functional region information is incorporated into

the RT plan to prevent irradiation of FL as well (180, 191). Yaremko

et al. (192) defined the moderately-to-highly V region as normal V

lung (NVL), while V lung (VL) encompassed the entire lung. The

FL volume was delineated from breath-hold CT deformation to the

planning CT. The findings indicated that in FLART plans, V20 and

MLD of VL and NVL were significantly decreased by 3.0 ± 0.8%, 3.5

± 1.0%, 1.0 ± 0.5 Gy, and 1.2 ± 0.7 Gy, respectively. In the existing

literature, FLART plans using 3He MRI are unproven for clinical

outcomes and prognosis, necessitating further study. The

aforementioned method is capable of generating both the gaseous

and dissolved phases of 129Xe. According to the signal intensity of
129Xe MRI images, Ding et al. (171) classified lung volume into “V

regions” and “V defect regions.” The RT plan prioritized the

reduction of radiation dose to the V regions. The finding

indicated that emphasizing the reduction of radiation dose in the

V regions derived from 129Xe MRI gas exchange distribution maps

could markedly decrease indices such as V5, V10, and V20,

consequently lowering the risk of RILI. Rankine et al. (191)

normalized the V and gas exchange images using linear scaling
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and calculated percentile values for voxels within and outside the

lung. A voxel value within the lung was considered 99th percentile,

while a voxel value outside of the lung, such as background, was

designated as 1%. A threshold with a relative function interval of

10% was used to generate equal functional contours, which were

then transferred to the planning CT via deformable registration.

Compared to V-based FLART plans, gas exchange-based FLART

plans decreased the dose more effectively to regions with high gas

exchange and may significantly lower the incidence of RILI. Gas

exchange metrics improve plan quality evaluation moderately over

V-guided planning. A preliminary study revealed a moderate

correlation (R = 0.53 ± 0.02) between lung 129Xe uptake in the

blood prior to RT and 129Xe V in three patients with NSCLC, which

diminished to R = 0.39 ± 0.07 following treatment (170).

Additionally, notable differences were observed in the effective

uniform dose, V20, V10, and V5, with values of 1.5 ± 1.4 Gy, 4.1 ±

3.8%, 5.0 ± 3.8%, and 5.3 ± 3.9%, respectively. Thus, V alone may

not represent actual regional lung function and FLART may have

limitations when using V images independently. A precise lung

function assessment using 129Xe-MRI is recommended for

optimizing RT.
4.3 Clinical benefits from FLART based on
MR lung functional imaging

FD-MRI eliminates contrast agents and breath-holding,

resulting in reduced operational costs and enhanced patient

comfort. It possesses significant potential for the diagnosis and

monitoring of lung diseases (193, 194). Research indicated that this

method may be utilized in the diagnosis and treatment assessment

of lung diseases, including lung cancer and PE, offering non-

invasive lung functional data for clinical application (175). With

inhaled MRI contrast agents, such as HP gases 3He and 129Xe, lung

structure and function can be better understood, enabling disease

classification, treatment response assessment, early diagnosis, and

long-term monitoring (195, 196). Furthermore, HP gas V MRI can

detect airway obstruction and show significant V changes in

emphysema and more advanced COPD (197, 198). Research has

demonstrated a correlation between 129Xe gas exchange function

and abnormal carbon monoxide diffusing capacity (DLCO), a

clinically recognized gas exchange indicator (199, 200). As a

result of its low operating cost and lack of costly polarization

devices, 19F-MRI is increasingly used in clinical research. 19F-MRI

allows repeated imaging of breath and gas inhalation and exhalation

dynamics analysis. A significant correlation has been found between

19F-MRI-measured V defects and FEV1 in COPD cohorts (201).

Conversely, OE-MRI is applicable in the detection of multiple lung

diseases, including asthma (202), COPD (203), and interstitial lung

diseases (204), as well as in assessing the effects of bronchodilators

and inhaled corticosteroids (205). It demonstrates comparability

with quantitative CT in evaluating lung functional damage and

disease severity (202–204). According to the existing literature, HP

gas MRI is applicable in FLART planning and demonstrates

potential for enhancing the dosage parameters of FL.
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4.4 Current problems and research
direction of MR image-guided FLART

The research summary on the MRI-guided FLART project is

presented in Table 4. Research demonstrates a weak to moderate

correlation between V and local red blood cell displacement. Defining

lung function as V or red blood cell displacement reveals notable

differences in dose falloff histogram and effective uniform dose (170).

Gas exchange information is distinct from V information, and this

significant finding will inform future research in this area. This

approach will facilitate future prospective trials that directly compare

these two functional planning techniques and assist in identifying

which patients are most likely to benefit from gas exchange-guided

FLART. Furthermore, research indicated that a reduction in red blood

cell displacement, defined as the ratio of regional gas exchange to V,

correlates with clinical deterioration (206). In light of the fact that Xe

must reach the alveoli before interacting with red blood cells,

integrating alveolar gas exchange data into functional indices would
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improve their predictive capability for RILI, potentially matching or

surpassing V-weighted indices. In spite of this, a gas exchange-weighted

index that predicts symptomatic RP better than DVH remains

undeveloped, suggesting future research opportunities. There have

been no studies that have directly compared multiple MRI-based

lung functional imaging techniques to identify the optimal method

for assessing lung V/Q or evaluating both parameters. Additionally,

there should be patient population studies to help clinical practitioners

make adaptive selections.
5 ViewRay/Unity and Reflexion: new
RT technology

5.1 MRI-guided RT

RT based on functional imaging aims to preserve lung function by

protecting FL regions first. During the treatment process, however,
TABLE 4 Detailed description of MRI-guided RT studies for lung function, including patient population characteristics, planning techniques, and
clinical benefits.

Reference Patients Characteristics
Imaging type
Planning technique

Definition FL
Benefit of FL sparing
(% difference
between means)

Ireland et al. (100) 6
Age NS
NSCLC 100%
Stage NS

3HeMRI V
IMRT

FL was defined as the
intersection of the lung
CT volume with well-
ventilated lung
segmented from the
registered 3He images.

**
Median reduction:
fV20 Gy (HV) ↓ 3.1%,
fV20 Gy (Total) ↓ 1.6%

Rankine et al. (170)

17 (13
healthy
volunteers,
1
emphysem)

Age (mean) 68
NSCLC 18%
Stage III 18%

129XeMRI
V, Gas exchange

ROIs were generated to
identify the lowest-33%,
middle-33%, and
highest-33% of each
functional volume for V
and RBC transfer.

V and gas exchange: the average
magnitude of the differences in
fEUD, fV20Gy, fV10Gy, and
fV5Gy were 1.5 ± 1.4 Gy, 4.1% ±
3.8%, 5.0% ± 3.8%, and 5.3%
± 3.9%.

Ding et al. (171) 10
Age (med) 58
NSCLC 100%
Stage NS

129Xe MRI V IMRT

Four classes were
segmented based on the
signal intensity of the
HP xenon‐129 images

**
fV5 Gy ↓ 3.5%,
fV10 Gy ↓ 2.7%,
fV20 Gy ↓ 1.5%

Hart et al. (177) 10
Age NS
NSCLC 100%
Stage NS

3HeMRI V
VMAT

FL was segmentedusing
a fuzzy c-means
clustering algorithm.

**
Median reduction:
fV10 Gy ↓ 1.3%, fV20 Gy ↓ 0.8%
fMLD Gy ↓ 0.3Gy

Rankine et al. (191) 11
Age NS
NSCLC 100%
Stage NS

129XeMRI
V, Gas exchange
IMRT(45%)
VMAT(55%)

For V and gas exchange
maps, a series of
isofunction contours
were created using
thresholds spaced at
intervals of 10%
relative function.

**
Gas exchange-guided FLART
demonstrated clinically
significant reductions in model-
predicted toxicity, more than the
accompanying V-guided plans
and DVH-based
re-optimizations.

Yaremko et al. (192) 27

Age (mean) 69
NSCLC 100%
Stage III 93%
Stage IV 7%

3HeMRI V
CRT

Segmentation of FL was
performed using
semiautomated methods

**
Absolute reduction:
fV20 Gy ↓ 2.4% (AV), ↓ 3.0%
(VL), and ↓ 3.5% (NVL)
fMLD ↓ 0.8 Gy (AV), ↓ 1.0Gy
(VL), and ↓ 1.2 Gy (NVL)
**, denotes statistically significant result; Q, perfusion; V, ventilation; NS, non-specified; FL, functional lung; FLART, functional lung avoidance radiotherapy; AV, anatomic lung; NVL, normally
ventilated lung; VL, ventilated lung; gEUfD, generalized equivalent uniform functional dose; fVx, functional volume receiving ≥x Gy; Vx, lung volume receiving ≥x Gy; fMLD, functional mean
lung dose; MLD, mean lung dose; RP, radiation pneumonitis; Med, median.
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airways reopen due to shrinking of the tumor (207). As tumor anatomy

or function changes, adaptive methods are required because the

original treatment plan may irradiate lung tissues that were non-

functional but are now functional (80). With the development of linear

accelerators, MRI-guided linear accelerators (MRLs) with excellent soft

tissue resolution have emerged (208–210). MRL can acquire real-time

MR images during the treatment process for adjusting treatment plans

to accommodate actual positional changes in tumors and normal

tissues (211). This MRI-guided RT is called MR-guided RT

(MRgRT) and can be used for SBRT of tumors (210). The MRL

system includes two main models: ViewRay MRIdian and Elekta

Unity. The MRIdian system uses a low magnetic field strength of

0.345 T, while the Unity system uses a conventional magnetic field

strength of 1.5 T. Highermagnetic field strength can improve signal-to-

noise ratio and imaging quality but may increase geometric distortion

compared to low-field systems (210).

5.1.1 ViewRay MRIdian
MRIdian employs 60Co or 6MV linear accelerators and features a

distinctive multi-leaf collimator design to improve the accuracy and

adaptability of RT (212, 213). The system utilizes tracking and gating

techniques to monitor tumor position in real-time, thereby ensuring

treatment accuracy. It also optimizes target coverage and minimizes

doses to OARs through daily online imaging and plan adjustments

(210). A phase I study assessed the feasibility of MR-guided SBRT for

super-central lung tumors (214). Results indicated that adaptive re-

planning was required in 4 of 10 treatments to achieve target coverage

and adhere to OAR dose limits. All five patients in this study attained

local disease control within six months, with no occurrences of grade 3

or higher toxic reactions. In comparison to conventional linear

accelerators, the MRIdian system offers enhanced visualization of the

spinal cord and lumbosacral nerves, resulting in superior dose

distribution quality in spinal SBRT (215). Additional studies have

documented clinical experiences with MRgRT for both primary and

non-primary lung tumors; however, there is a scarcity of clinical

outcome reports specifically for NSCLC (216–218). Research

indicated that adaptive MRgRT enhances the dose distribution to

OARs and improves target coverage relative to non-adaptive methods

(219, 220). Additionally, single-fraction image-guided MR-guided

SBRT for lung has been documented (221). The integration of

single-fraction treatment with real-time image guidance will improve

the precision and effectiveness of treatment.

5.1.2 Elekta Unity
In February 2023, Unity received FDA approval for tumor tracking

to facilitate ART. The Unity system employs a magnetic field strength

of 1.5 T, facilitating multiparametric imaging and the application of

diagnostic MRI pulse sequences at this field strength (212). The

utilization of high magnetic fields enhances MR image quality,

facilitating the reduction of PTV margins, promoting the sparing of

OARs, and increasing equivalent toxicity doses (222). Like the

MRIdian system, Unity facilitates tracking and gating techniques,

enabling plan adjustments via daily online imaging (223). Besides

SBRT, the system is capable of performing IMRT, thereby improving

treatment accuracy and effectiveness (224). Unity received approval for

tumor tracking only last year, resulting in a limited number of studies
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regarding its application in ART. Prior research has demonstrated the

system’s feasibility in spinal SBRT (225). A prospective, multi-

institutional, international cohort study registered on clinical trials

(NCT04075305) is currently underway to further validate its clinical

application. Additional clinical data is anticipated to validate the

feasibility of its application in ART planning.
5.2 Biology-guided RT (BgRT) -
Reflexion X1

Further research on ART indicates that, alongside MRgRT for

ART, biology-guided RT (BgRT) is also applicable. The BgRT system

utilizes the PET signal from the tumor to direct real-time radiation

delivery and can enhance the RT plan according to the tumor’s

biological characteristics (225–227). The BgRT mode received FDA

approval for patients treatment in February 2023. The Reflexion X1

system represents the inaugural development for BgRT, with its

application restricted to the head and neck, chest, abdomen, and

pelvic regions (228). The system includes a 6MV linear accelerator, a

16-row kilovolt CT for anatomical positioning, and two megavolt PET

detectors for the detection of patient penetrating radiation (229, 230).

The X1 machine scans patients after injecting the tracer at the same

dosage as the actual treatment to generate PET and CT data needed for

treatment planning. PET can processes signals emitted from tumor sites

in real-time, allows simultaneous RT for multiple lesions throughout

the body (225). Even amid variations in contrast agent and patient

movement, the X1 system delivered doses accurately and robustly

under static and dynamic conditions (231). Pham et al. (232)

demonstrated that the X1 system can produce clinically acceptable

IMRT/SBRT plans comparable or superior to Eclipse VMAT.However,

the X1 plan requires an extended irradiation duration, necessitating a

trade-off between plan quality and efficiency. The standard treatment

workflow for BgRT is in development, and a comprehensive process

map will assist clinical professionals in the effective, safe, and high-

quality implementation of this new technology (233).
5.3 Current problems and
research direction

The use of MRL in ART may be advantageous based on current

research. MRL combined with the previously mentioned MR

functional imaging techniques can help facilitate implementation of

the FLART plan by providing lung function information. Also,

combining FLART with ART plans may allow RT plans to be

adjusted in real time based on functional information provided by

MR images. Both MRIdian and Unity systems exhibit certain

limitations in the treatment of lung cancer. Firstly, lung tissue’s low

proton density, differences in magnetization among tissues, and

motion-induced artifacts contribute to suboptimal MR imaging

outcomes (234, 235). The hardware differences between MR-linear

accelerators and conventional diagnostic MRI systems have an impact

on image quality and data acquisition (222). Furthermore, MRI does

not yield electron density information; therefore, synthetic CT images

must be generated using techniques such as volumetric density
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assignment, atlas-based methods, or artificial intelligence (236–238).

The reliability of this method in the chest area is inadequate (238). As

compared to MRIdian, Unity’s strong magnetic field influences

secondary electron propagation, resulting in a higher dose at the air-

tissue interface. Therefore, adjustments to the irradiation field are

necessary to mitigate this electron return effect (234, 235). Further,

respiratory and cardiac motion can affect the positioning and dose

accuracy of tumor targets (239). While both systems can track motion

around a target area, only MRIdian can modify irradiation time based

on tumor imaging in real-time (222). Moreover, neither system can

perform 4D MR imaging, limiting precision in multi-target treatment.

In contrast, BgRT does not require respiratory motion

management as tumor motion is relatively static in the 60-RPM

(round-per-minute) ring platform (233). The uptake of the PET

tracer, primarily fluorodeoxyglucose-FDG, provides functional

information regarding the lungs (240). BgRT facilitates ART through

real-time monitoring of the PET signal during treatment (231).

Functional information derived from PET images can inform BgRT,

potentially enabling adaptive FLART plans. Nonetheless, PET-based

BgRT technology encounters numerous issues and challenges in

clinical applications. Firstly, the spatial resolution of PET is

significantly lower than that of anatomical imaging, which does not

meet the accuracy requirements of contemporary RT (241). As a result,

PET is ineffective at accurately delineating target areas and fails to

deliver non-uniform doses to dynamic target regions. Furthermore,

BgRT relies on a high tumor signal-to-background noise ratio (TBR);

however, FDG uptake is also present in healthy tissues, and TBR may

diminish during treatment (231). Thus, cases with inadequate FDG

uptake should be treated with conventional CT imaging. Injections of

PET tracer and waiting for activity distribution before each treatment

extend treatment duration and decrease patient tolerance and RT

center efficiency (227). Additionally, medical technicians must have

advanced skills and collaborate among various departments during

BgRT treatment. Finally, BgRT equipment incurs higher costs due to

the inclusion of PET, while the PET tracers used during treatment

increase costs further, hindering widespread application. The

evaluation of BgRT’s cost-effectiveness and target population should

be conducted from a health economics perspective.
6 Summary

FLART has been incorporated into clinical trials. The clinical

results indicate that FLART effectively reduces HFA dosage, thereby

decreasing the incidence of RILI, which supports its clinical feasibility.

Nonetheless, numerous practical issues require attention for FLART.

Evaluating the suitability of patients for FLART is one aspect of the

process. Establishing a comprehensive set of inclusion criteria is

essential, encompassing tumor grading, target area size and volume,

the relationship and overlap with FL, and underlying lung conditions

such as smoking and COPD. Furthermore, different clinical studies

have different criteria for classifying FL, and thresholds used in RT

plans depend on their own patient cohorts. To be comprehensively

applied in clinical practice in the future, guidelines and standardized

thresholds must be developed. Presently, the majority of FLART plans

predominantly assesses a single lung function imaging modality, either
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Q or V. Different physiological phenomena, including airway

reopening, tumor vessel obstruction, and related thoracic disorders,

can result in variations in patient responses to V or Q dosage. In cases

of V and Q mismatch, it is advisable to utilize a combination of

imagingmodalities. However, this patient population is relatively small,

as the majority can be sufficiently assessed through either V or Q

dosage response alone. The present emphasis of FLART research is

primarily on HFA. The literature provides limited information on the

assessment of dose volume and functional weight, as strategies to

minimize HFA exposure inherently lead to increased LFA dosage.

Nonetheless, LFA is not completely non-functional; certain regions

may experience temporary loss of functionality, but they may fail to

recover once the radiation dose reaches a critical threshold, resulting in

irreversible lung damage. Consequently, the development of new

technologies is essential for the real-time adjustment of RT planning

through the continuous monitoring of OARs, tumor volume, and lung

function. The image quality of cone-beamCT from conventional linear

accelerators is inadequate for delivering lung function data. The

integration of MRI and PET with linear accelerators has enhanced

image quality, and research studies indicate the potential of combining

FLART with ART. Further clinical research is required to validate its

feasibility. Additionally, the DFH index employed in the study solely

represents the dose parameters for FL, and reducing the DFH index

impacts only the dose in FL, rather than the entire lung. Consequently,

a novel functional weighting algorithm is required to enhance both

HFA and LFA through the assignment of weights according to

functional significance. The DFH derived from the novel weighted

optimization algorithm will represent the integrated whole lung dose

function, akin to the conventional DVH. The DFH index serves as an

intuitive tool for assessing RT planning and forecasting the likelihood

of post-radiotherapy toxicity. Further clinical evaluation of new DFH

indices, guided by the weighted optimization algorithm, is necessary to

establish guidelines and progressively integrate FLART as a routine

option for RT.
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