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Effects of intratumoral
microbiota on tumorigenesis,
anti-tumor immunity, and
microbe-based cancer therapy
Jingwei Zheng and Hao Chen*

Department of Pathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of
Medical Sciences and Peking Union Medical College, Nanjing, China
Intratumoral microbiota (IM) has emerged as a significant component of the

previously thought sterile tumor microenvironment (TME), exerting diverse

functions in tumorigenesis and immune modulation. This review outlines the

historical background, classification, and diversity of IM, elucidating its pivotal

roles in oncogenicity, cancer development, and progression, alongside its

influence on anti-tumor immunity. The signaling pathways through which IM

impacts tumorigenesis and immunity, including reactive oxygen species (ROS),

b-catenin, stimulator of interferon genes (STING), and other pathways [NF-kB,
Toll-like receptor (TLR), complement, RhoA/ROCK, PKR-like ER kinase (PERK)],

are discussed comprehensively. Furthermore, we briefly introduce the clinical

implications of IM, emphasizing its potential as a target for novel cancer

therapies, diagnostic biomarkers, and prognostic indicators. Notably, microbe-

based therapeutic strategies such as fecal microbiome transplantation (FMT),

probiotics regulation, bacteriotherapy, bacteriophage therapy, and oncolytic

virotherapy are highlighted. These strategies hold promise for enhancing the

efficacy of current cancer treatments and warrant further exploration in

clinical settings.
KEYWORDS
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1 Introduction

The tumor microenvironment (TME), encompassing cancer cells, stromal cells,

immune cells, and soluble factors such as cytokines and chemokines, plays a pivotal role

in cancer progression and therapeutic outcomes. Understanding the regulatory

mechanisms governing the immune compartment within the TME is crucial for
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advancing cancer treatment strategies. Recently, the discovery of

intratumoral microbiota (IM) has added a new dimension to our

understanding of the TME (1–3). Despite its low biomass ranging

from 0.1% to 10%, IMs have emerged as significant contributors to

the tumor ecosystem, profoundly influencing tumorigenesis, cancer

progression, and responses to cancer therapy (4).

Over the past decades, propelled by technological advancements,

researches into IMs have revealed common characteristics and

highlighted their complex interplay within the TME. The implications

of IM extend beyond mere association; they have been implicated in

tumor diagnosis, prognosis, and treatment guidance (1–3). As the field

rapidly evolves, an updated review is warranted to consolidate current

knowledge and identify emerging trends.

n this review, we first provide a concise overview of the

historical context, classification, and diversity of IM. We then

introduce their roles in carcinogenesis, cancer development, and

progression, emphasizing their influence on anti-tumor immunity

and the underlying signaling pathways. Furthermore, we discuss the

clinical implications of IM, including their potential as targets for

cancer therapy, diagnostic biomarkers, and prognostic indicators.

Finally, we propose innovative microbe-based strategies for cancer

treatment aimed at broad clinical applications. By synthesizing

these insights, this review aims to underscore the transformation

potential of IM research in reshaping our approach to

cancer management.
2 The history, classification, and
diversity of intratumoral microbiota

The concept of IMs as integral components of the TME has

evolved significantly over time, tracing its roots back to discoveries

made in the mid-19th century. Early microbiologists identified live

microorganisms within tumors, yet due to technological limitations

and prevailing skepticism, these findings initially faced resistance in the

scientific community. A pivotal breakthrough occurred in 1911 with

the discovery of the Rous Sarcoma virus, marking one of the first

recognized examples of oncogenic viruses within tumors (5).

Subsequent decades witnessed the identification of various viruses

linked to cancer, such as Epstein-Barr virus (EBV), Hepatitis B virus

(HBV), Hepatitis C virus (HCV), and Human papillomavirus (HPV).

These discoveries underscored the diverse viral contributions to

tumorigenesis. The identification of bacteria as oncobacteria gained

prominence following the groundbreaking revelation in 1983 of

Helicobacter pylori (H. pylori) as a causative agent in gastric cancer

(3, 6). Beyond bacteria, Chlamydia trachomatis (C. trachomatis)

emerged as another microbial species implicated in the pathogenesis

of cervical cancer, squamous cell carcinoma, and ovarian cancer (7).

Recent advancements, exemplified by Nejman et al.’s comprehensive

analysis in 2020, have expanded the understanding of IMs to include a

wide spectrum of bacterial species across various human tumor types

(8). Concurrent studies by Narunsky-Haziza and Dohlman et al.

further elucidated the role of fungi within tumors, highlighting their

potential impacts on cancer diagnosis and prognosis (9, 10).
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In addition to viruses and bacteria, the IM spectrum encompasses

bacteriophages and protozoa, though these are not extensively

discussed in this review. Notably, the composition and abundance of

IMs exhibit significant variability within different cancer types,

subtypes, and stages. For instance, lung cancer exhibits a distinct

microbial colonization influenced by environmental factors, whereas

breast cancer harbors a remarkably diversemicrobiome (8, 11).Huang

et al. highlighted higher levels of Gammaproteobacteria in cancerous

tissues compared to normal tissues, along with significant increases in

Streptococcaceae and Lactococcus in cirrhotic hepatocellular

carcinoma (HCC), suggesting their potential as biomarkers (12).

Fusobacterium and enterotoxigenic Bacteroides fragilis (ETBF) have

implications in colorectal cancer (CRC) progression. CRC tissues

exhibit higher abundances of Lactococcus, Bacteroides,

Fusobacterium, Prevotella, and Streptococcus, while Pseudomonas

and E. coli-Shigella are enriched in adjacent normal tissues (13).

Moreover, studies have indicated varying intratumor microbiome

profiles in cancer recurrence, emphasizing the dynamic nature of

IMs in cancer progression. In conclusion, understanding the historical

context, diverse classifications, and dynamic nature of intratumoral

microbiota is crucial for unraveling their intricate roles in

carcinogenesis and disease progression across different cancer types.
3 The roles of IMs in tumorigenesis,
cancer development and progression

Bacteria associated with cancer have long been regarded as

being opportunistic, but it became clear in the late 20th century that

bacteria can directly cause cancer (5). An oncogenic bacterial

“driver-passenger” model has been proposed to explain the role

of IMs in tumorigenesis (14–16). Oncoviruses such as HPV, HBV,

and HCV can also act as “drivers,” exerting various effects on cancer

immunosurveillance and cancer progression. Herein, we focus on

bacteria as examples to elucidate this model.

Endogenous “driver bacteria,” such as Escherichia coli group B2

strains capable of producing enterotoxin-induced single-stranded

DNA breaks, can aggregate into non-anchor colonies within

infected cells, thereby increasing mutation frequencies (17).

Certain microbial metabolites, like hydrogen sulfide (H2S)

produced by resident sulfate-reducing bacteria such as

Fusobacterium nucleatum and E. coli, generate reactive oxygen

species (ROS) that disrupt host DNA (18). Pathogens like

Chlamydia trachomatis and Helicobacter pylori, associated with

gynecological and gastric cancers respectively, inhibit homologous

recombination and induce error-prone non-homologous end-

joining, thereby compromising host DNA repair processes. Other

bacteria such as Hungatella hathewayi and Fusobacterium

nucleatum induce epigenetic modifications of the host genome by

upregulating DNA methyltransferases through mechanisms that

are not fully understood, leading to hypermethylation and silencing

of tumor-suppressor genes (including CDX2 and MLH1), thereby

promoting tumorigenesis (19–21). Enterotoxigenic Pseudomonas

fragilis (ETPF) can sustain persistent Th-17-type inflammatory
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stimulation, gradually decreasing in number due to this stimulation

and being replaced by opportunistic “passenger bacteria” that can

dominate the existing ecological niche, disrupt local innate immunity,

and ultimately contribute to tumor progression (22). Staphylococcus

haemolyticus (S. haemolyticus) is considered a “passenger” bacterium,

promoting epithelial cell differentiation and forming biofilms on

exposed basement membrane collagen fibers within disrupted

colonic wall structures (23). Models explain the occurrence of

Clostridium-induced CRC, a silent disease affecting various age

groups worldwide, with heightened mucosal biofilm levels harboring

specific microbial species interacting with mucosal immune and

microbial communities, imparting partial oncogenic properties (24).

5-fluorouracil (5-FU), afirst-linechemotherapeuticagent forCRC, can

serve as an inhibitor of F. nucleatum isolates from CRC but does not

work for CRC-isolated E. coliwith the capacity tomodify 5-FU.When

E. coli exists, it attenuates 5-FU virulence against F. nucleatum and

human CRC epithelial cells which are otherwise sensitive to 5-FU,

thereby leading to resistance to chemotherapeutic agents and

promoting tumor progression (25). Collectively, these studies

underscore a robust link between intratumoral microbiota and

carcinogenesis, as well as cancer progression.

Tumor metastasis remains the leading cause of cancer-related

mortality. IM contributes to cancer metastasis through multiple

mechanisms across various cancer types: ① Co-migration with

primary cancer cells: Fusobacterium has been detected in both

primary tumors and matched distant metastases of colorectal cancer

(26).②Disruption of the gut vascular barrier (GVB): pathogens such as

Salmonella typhimurium candisrupt theGVB, facilitating translocation

and toxin transmission. For instance, VirF+ E. coli within tumors can

degrade the GVB, allowing gut microbes to translocate to the liver and

establish a “premetastatic niche” (PMN), enhancing chemotactic factor
Frontiers in Oncology 03
expression and extracellular matrix deposition, and upregulating

plasmalemma vesicle-associated protein 1 (PV1) (27). ③Modification

of the TME to promote distant metastasis: Fusobacterium nucleatum

infection induces colorectal cancer cells to release exosomes enriched

with CXCL16/RhoA/IL-8 and miR-1246/92b-3p/27a-3p, which are

transferred to uninfected CRC cells, thereby promoting liver

metastasis (28). Additionally, Fusobacterium nucleatum induces M2

macrophage polarization within the TME, promoting CRC liver

metastasis by upregulating chemokine CCL20 and ICAM1 expression

(29).Most recurrences of lung cancer (LC)maybedue to an abundance

of butyrate-producing bacteria which promotes LC metastasis by

inhibiting HDAC2 and increasing H3K27 acetylation at the H19

promoter and inducing M2 macrophage polarization (30).

Altogether, IM profoundly influences cancer initiation, development,

progression, and metastasis through diverse mechanisms (Figure 1),

while also impacting anti-tumor immunity.
4 The impacts of IMs on anti-
tumor immunity

Intratumoral microbiota has different effects on the tumor

immune response, some with cancer-promoting effects and others

with tumor suppressors (Table 1).
4.1 Strengthening anti-tumor
immune response

IMs boost anti-tumor immunity by augmenting stimulator of

interferon genes (STING) signal and antigen presentation,
FIGURE 1

IM influences cancer initiation, development, progression, and metastasis through diverse mechanisms.
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activating immune effector cells and forming a tumor-suppressive

microenvironment (Figure 2).

4.1.1 Promoting STING signal and IM-derived
antigen presentation

Microbe-associated molecular patterns may stimulate pattern

recognition receptors (PRRs) and intensify immune responses based

on cross-reactivity between tumors and microbial antigens. Microbiota

can activate the STING signaling pathway, which improves the cross-

priming of dendric cells (DCs) and further induces naive T cell

proliferation and differentiation to promote anti-tumor responses (52).

Bifidobacteria can migrate to and invade intestinal cancer cells.

Following anti-CD47 targeted immunotherapy, topically and

systematically administered Bifidobacteria initiate STING signaling to

coordinately kill tumor cells (3). Analogously, STING activators derived

fromAkkermansiamuciniphila induce the release of interferon-I (IFN-I)

from intratumoral mononuclear cells, polarize macrophages, and

promote the cross-talk with natural killer (NK) cells and DCs (3, 31).

In addition to triggering more potent host antigen presentation

through the aforementioned mechanisms, the antigen-presenting

cell (APC)-presented peptides of intratumoral bacteria provoke

specific T cell responses targeting tumor cells for the microbes

mostly located within tumor cells and immune cells. Intratumoral

injection of bacteria or their antigens provides immunostimulatory

effects to combat tumors, similar to Coley toxin, a heat-inactivated

mixture of Serattia marcescence and Streptococcus pyogenes. HPV
Frontiers in Oncology 04
E2 and E5 are major targets of the intratumoral CD8+ T cell

response in patients with HPV-positive head and neck squamous

cell carcinoma (HNSCC). Thus, therapeutic vaccination strategies

for HPV-positive patients should also consider including E2 and E5

as vaccine antigens to elicit tumor-reactive CD8+ T cell responses of

maximal breadth (32).

4.1.2 Activation of immune effector cells
Some IMs are positively correlated with activated and infiltrated

immune effector cells and promote anti-tumor immunity through

mechanisms such as activation of STING and IFN signaling pathway,

regulation of cytokines or chemokines, initiation of endoplasmic

reticulum (ER) stress, and other potential mechanisms.

In cutaneous malignant melanoma (MM), intratumoral

Lachnoclostridium, Gelidibacter, and Flammeovirga were the top

three genera positively associated with CD8+ T cell infiltration. They

are also positively correlated with the secretion of chemokines such as

CXCL9, CXCL10, and CCL5 (33). Oncoviruses such as EBV, HBV,

and Merkel cell polyomavirus (MCPyV) can also induce chemokine

production in tumor tissues, and then increase CD8+T cell infiltration

to prolong patient survival (3). In addition, a higher a diversity in Ims

and density of CD8 + T cells and granzyme + B cells in the TME are

associated with long-term survival (LTS) in pancreaticductal

adenocarcinoma (PDAC) patients, although the levels of

macrophages, Tregs, and MDSC cells exhibited no significant

difference from those in short-term survival patients, indicating
TABLE 1 Mechanisms of IMs in anti-tumor immunity.

Mechanisms Associated IMs

Promoting anti-
tumor immunity

Promoting antigen presentation
① Bifidobacteria (3, 31)
② Akkermansia muciniphila (31)
③ HPV (32)

Activation of immune effector cells

① Lachnoclostridium, Gelidibacter and Flammeovirga (33)
② EBV, HBV, and MCPyV (3)
③ Saccharopolyspora, Pseudoxanthomonas and Streptomyces (34)
④ Clostridium (35)
⑤ Bifidobacterium (24)

Metabolites
① Clostridium (36)
② Mycobacteria (37)

Formations of TA-TLSs
① Hepatocephala spp (3).
② VSV, NDV, or HSV-1 (38–40)
③ Adenovirus with mIL-15 (39)/mTNFa- and mIL-2 (38)

Inhibiting anti-
tumor immunity

ROS upregulation
② B. fragilis (3)
④ F. nucleatum (41)

Inactivation/dysregulation of immune effector cells
① F. nucleatum (42, 43)
② Methylobacterium (44)

A proinflammatory environment

① Fusobacterium, Streptococcus, and Peptostreptococcus (41, 45)
② Enterococcus and Escherichia/Shigella (46)
③ H. pylori (47)
④ Aspergillus sydowii (11)
⑤ Alternaria alternata (48)

A tumor immunosuppressive microenvironment
① HBV, HCV, S. aureus, N. ramosa, and HPV (49)
② Lactobacillus (50)

Others Malassezia spp (51).
IM, Intratumoral microbiota; EBV, Epstein-barr virus; HBV, Hepatitis B Virus; MCPyV, Merkel cell polyomavirus; TA-TLSs, Tumor-associated tertiary lymphoid structures; ROS, Reactive
oxygen species;HCV, Hepatitis C Virus.
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Saccharopolyspora, Pseudoxanthomonas, and Streptomyces can recruit

and activate CD8+ T cells in PDAC tissues (34). The exogenous

administration of microbes has also been found to affect immune

cell infiltration. For example, bifidobacterium incorporation into

cancers facilitates NK cell activation (35), and four commensal

Clostridiales strains (CC4) orally administered to mice can

accumulate more CD8+ T cells (24).

4.1.3 Microbial metabolites inhibit tumor growth
Trimethylamine-N-oxide (TMAO) released by Clostridium

initiates PKR-like ER kinase (PERK)-mediated ER stress, induces

pyroptosis, and augments CD8 + T cell-mediated tumor killing (36).

A significantly increased fungal mass in HCC was negatively associated

with carbohydrate antigen199 (CA199) levels. Metabolomic and

transcriptomic analyses have deduced that mycobacteria interfere

with tumor progression via amino acid metabolism (37).

4.1.4 Formations of tumor-associated tertiary
lymphoid structures

Tertiary lymphoid structures (TLSs) are ectopic lymphoid

aggregates developing within non-lymphoid tissues, which exhibit

phenotypic and functional similarities with conventional secondary

lymphoid organs (SLOs). TLSs are not typically present under normal

physiological conditions but have been noted in various pathological

states, such as autoimmune diseases, chronic infections, and cancers.

Tumor-associated TLSs (TA-TLSs) are associated with improved

patient survival by promoting lymphocyte infiltration and activation

in the TME to arouse anti-tumor immunity during maturation (53,

54). Some IMs or exogenous microorganisms contributed to TA-TLS
Frontiers in Oncology 05
formation. Hepatocephala spp. enhance TLS development around

tumors and inhibit intestinal cancer (3). Natural oncolytic viruses

(OVs) can also induce TLSs. For instance, after infecting tumor-bearing

mice with vesicular stomatitis virus (VSV), Newcastle disease virus

(NDV), or herpes simplex virus (HSV-1), antiviral memory T cells

were reactivated after being immunized secondly, favoring mutual

reinforcement of antiviral and anti-tumor activities to form TLSs, thus

eliciting larger-range adaptive immunity compared to controls (38–40).

In immune checkpoint inhibitor (ICI)-naïve mice with refractory oral

carcinoma, the therapeutic efficacy of anti-PD-1/PD-L1 combined with

the mTNFa- and mIL-2-carrying non-replicative adenovirus was

improved along with the upregulated expression of a TLS relative

gene signature (38). A mIL-15 armed-oncolytic adenovirus recruited

activated T and NK cells through STING-TBK1-IRF3-mediated DC

activation, prompting vascular normalization and TLS formation (39).

These studies showed that microbe-induced TA-TLSs could be a new

strategy for cancer immunotherapy.
4.2 Inhibiting antitumor immune responses

Some IMs can counteract effective immunotherapy via releasing

ROS, inactivating immune effector cells, promoting inflammation,

and forming immunosuppressive microenvironments (Figure 2).

4.2.1 ROS upregulation
Symbiotic microorganisms can produce ROS, contributing to

tumor progression in multiple ways (55), including the regulation of

immune responses. The bacterium enterotoxigenic Bacteroides
FIGURE 2

Intratumoral microbiota has different effects on the tumor immune response through different mechanisms, including enhanced anti-tumor immune
response and suppression of anti-tumor immunity.
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fragilis (ETBF) causes pre-inflammation or immunosuppression via

ROS and DNA damage in the TME, resulting in colorectal cancer

(3). In the gastrointestinal tract, activation of the Toll-like receptor

(TLR4)-ROS and nitric oxide dioxygenase (NOD)-like receptor

(NOD1/2)-dependent signaling by F. nucleatum enriches

neutrophil extracellular trap (NET) formation, thus, tumors

progress and metastasize through angiogenesis, Epithelial-

Mesenchymal Transition (EMT), matrix metalloproteinase

(MMP)-mediated basement membrane protein degradation, and

the capture of CRC cells (41).

4.2.2 Inactivation or dysregulation of immune
effector cells

Some IMs have a negative correlation with tumor-infiltrating T cell

density and can cause T cell dysfunction and favor tumor growth and

metastasis. Transcriptome and digital pathological analyses revealed

that the bacterial load within breast cancer (BC) hampered T cell

infiltration, with F. nucleatum being negatively correlated, especially

with CD3+T cells (42). F. nucleatum inoculation inhibited the

aggregation of tumor-infiltrating T cells and recruited tumor-

associated macrophages (TAMs) and fibroblasts (43). Conversely,

antibiotic treatment counteracts F. nucleatum-induced side effects,

thereby confirming its detrimental effects on immune effector cells

(42). Intratumoral Methylobacterium induces dysfunction of the

memory CD8+ T cells residing in tumor tissues (44). Altogether,

these studies suggest that IMs influence the behavior of immune

effector cells and thus impact tumor progression and prognosis.

4.2.3 A proinflammatory microenvironment
Oncobacteria, such as Fusobacterium nucleatum (Fn), Streptococcus

gallolyticus, and Prevotella anaerobius, induce the tumor inflammatory

microenvironment by regulating inflammatory factor release and

forming local inflammatory environments, such as NETs (41), thereby

stimulating cancer cells to proliferate (45). In a liver metastasis murine

model of CRC, orally administered F. nucleatum exerted deleterious

effects on the distant tumor, along with substantially increasing plasma

levels of proinflammatory cytokines, such as IL6, IL12, IL9, IL17A,

CXCL1, monocyte chemoattractant protein-1(MCP-1), TNF-a, and
IFN-g as well as monocyte myeloid-derived suppressor cell (MDSC)

accumulation, abridgment in NK and Th17, and a decrease in the a
diversity of the gut microbiome, but elevating Enterococcus and

Escherichia/Shigella levels (46). H. pylori induced-NF-kB activates the

PIEZO1-YAP1-CTGF axis to reshape the gastric cancer

microenvironment by promoting CAF infiltration, therefore targeting

PIEZO1-YAP1-CTGF might be a potential therapeutic option to

prevent gastric cancer (GC) progression and peritoneal metastasis (47).

As for fungi, Aspergillus sydowii (A. sydowii), enriched in lung

adenocarcinoma (LUAD) tissue, provokes IL-1b secretion and its

associated MDSC accumulation and expansion through the b-
glucan/Dectin-1/CARD9 pathway, which suppresses cytotoxic T cells

and ICI therapy (11). Likewise, microbiota residing in the lung mucosa

spur myeloid cells release Myd88-dependent IL-1b and IL-23, resulting
in Vg6+Vd1+gd T cell proliferation and secretion of IL-17 and other

cytokines to form an inflammatory microenvironment, thus

accelerating the development of lung cancer due to KRAS mutation
Frontiers in Oncology 06
and p53 loss. This evidence seems to imply that ablating microbiota

through antibiotic treatment is a good candidate. Interestingly, another

study shared a different perspective. Mice treated with antibiotics are

more susceptible to Lewis lung carcinoma because of defects in

inducing the gdT17 cell response and subsequent IL-6 and IL-23

release. This may be a result of the differences in the pathogenesis of

different lung cancers (48). In another example, fungi in PDAC elevate

IL-33 secretion by tumor cells, further recruiting Th2 and innate

lymphoid cells 2 (ILC-2), which then promotes tumor progression

by releasing pro-tumorigenic cytokines such as IL-4/5/13 (56).

4.2.4 A tumor
immunosuppressive microenvironment

IMs and their metabolites can fail ICI or other therapeutics

through immune escape and immune effector cell anergy. Previous

studies have reported that IMs, such as HBV, HCV, S. aureus, and

N. ramosa, enhance Treg immunosuppression in the TME, thereby

mediating prostatic cancer (PCA) and HCC growth. As a result of

inflammation and antiviral responses (49), advanced forms of HPV

(+) tumors have a high infiltration of immune cells in the TME,

however, the main content is myeloid cells instead of DCs and

cytotoxic T cells, weakening anti-tumor activity (50). Microbiota

within pancreatic cancer causes T cell disability through selective

Toll-like receptor ligation, thereby leading to increased levels of

MDSC and M2 macrophages to form a suppressive TME (57).

Commensal fungi in breast cancer and melanoma can reduce T cells

and increase M2-like TAMs by conjugation with Dectin-1, thus

offsetting anti-tumor immunity (58).

4.2.5 Complement and molecular mimicry
Glycans on the wall of intratumoral Malassezia spp. ligating

with mannose-binding lectin (MBL) elicits complement cascades

that promote tumor progression (51). Molecular mimicry is another

mechanism for fungi to promote cancer. For instance, Candida

albicans express complement receptor 3-related protein (CR3-RP),

structurally similar to CR3 on the leukocytes, thereby disturbing the

immune response in the TME (59).

Taken together, intratumoral microbes modulate anti-tumor

immunity in multiple ways. Their functions depend on various

factors, far beyond the IM composition, tumor type and status, and

external factors including antibiotics and diet, which is worth

exploring in clinical practice.
5 The signaling pathway of
intratumoral microbiota in
tumorigenesis and immunity

As discussed previously, intratumoral microorganisms play a

significant role in tumorigenesis and the regulation of anti-tumor

immunity. The signaling pathways through which these

microorganisms influence tumor progression and immune

responses include but are not limited to, ROS, b-catenin, STING,
and others (Figure 3).
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5.1 ROS signaling pathway

ROS are highly bioactive molecules that, at low to moderate

levels, serve as signal transducers that activate cell proliferation,

migration, invasion, and angiogenesis. However, high levels of ROS

can lead to cellular damage, including protein, nucleic acid, lipid,

membrane, and organelle injuries, culminating in cell death, EMT,

and metastasis (60). For instance, Enterotoxigenic Bacteroides

fragilis (ETBF) induces DNA damage via ROS (3). In the

gastrointestinal tract, F. nucleatum activates Toll-like receptor 4

(TLR4)-ROS signaling, promoting NET formation and thereby

enhancing tumor progression and metastasis through

angiogenesis, EMT, and matrix metalloproteinase (MMP)-

mediated degradation of basement membrane proteins (41).
5.2 b-catenin signaling pathway

The Wnt/b-catenin signaling pathway plays crucial roles in

embryonic development and adult tissue homeostasis. Dysregulation

of this pathway contributes to various diseases, including cancer. H.

pylori infection significantly increases cyclin-dependent kinase 1

(CDK1), which phosphorylates and inhibits GSK-3b activity,

resulting in the accumulation and activation of b-catenin and NF-kB
in gastric tumors (61). Additionally, b-catenin and yes-associated

protein (YAP) synergistically promote H. pylori-induced gastric

carcinogenesis by regulating downstream genes such as CDX2,

LGR5, and RUVBL1 (62). Furthermore, FadA adhesin from F.

nucleatum enhances Annexin A1 expression in Wnt/b-catenin
signaling, forming a positive feedback loop through E-cadherin and

activating Cyclin D1 specifically in cancerous cells, not in non-
Frontiers in Oncology 07
cancerous cells (63). F. nucleatum interaction with CDH1 triggers

phosphorylation events that upregulate downstream b-catenin, Cyclin
D1, and Myc to promote squamous cell carcinoma proliferation (64).

In another study, the F. nucleatum group showed significantly

increased expression of TLR4, PAK1, p-PAK1, p-b-catenin S675,

and cyclin D1 compared to the control group, suggesting TLR4 as a

potential therapeutic target for F. nucleatum-related colorectal cancer

prevention and therapy.
5.3 STING signaling pathway

Cyclic GMP-AMP synthase (cGAS) functions by detecting

misplaced genomic, mitochondrial, and microbial double-

stranded DNA (dsDNA), leading to the synthesis of 2’3’-cGAMP.

This molecule activates STING, thereby initiating innate immune

responses. This mechanism serves as a pervasive and effective

surveillance system against tissue damage and pathogen invasion.

However, dysregulated cGAS-STING signaling plays a significant

role in infectious, autoimmune, malignant, fibrotic, and

neurodegenerative diseases (65). The cGAS/STING pathway can

promote macrophage polarization, contributing to potent anti-

tumor immunity (65). In tumor models, both systemic delivery

and local administration of Bifidobacterium result in its

accumulation within tumors, converting non-responders into

responders in a STING- and interferon-dependent manner.

Furthermore, Bifidobacterium enhances dendritic cell cross-

priming following anti-CD47 treatment (66). In cancer

immunotherapy, Bifidobacterium improves the efficacy of

immune checkpoint inhibitors through STING and adenosine 2A

receptor (A2AR) signaling pathways (67).
FIGURE 3

The signaling pathways of IMs in tumorigenesis and immunity, such as ROS, b-catenin, STING signaling pathway, and others.
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5.4 Other signaling pathways (NF-kB, TLR,
complement, RhoA/ROCK, PERK)

In addition to the aforementioned pathways, intratumoral

microbes may activate other signaling pathways such as NF-kB,
TLR, complement, RhoA/ROCK, and PERK. For instance, E. coli

colonization in colorectal cancer liver metastasis (CRLM) enhances

lactate production, promoting M2-like macrophage polarization via

NF-kB signaling facilitated by retinoic acid-inducible gene 1 (RIG-I)

lactylation, thereby contributing to colorectal cancer liver metastasis

(68). In both immunocompetent and immunodeficient melanoma

mouse models, flagellum-deficient Salmonella fails to induce

significant anti-tumor effects, despite higher bacterial inoculation,

due to the absence of the Flagellin/Toll-like receptor 5 (TLR5)

signaling pathway. Mannose-binding lectin (MBL) binds fungal

glycans and activates the complement cascade, potentially

mediating tumor progression. Intratumoral microorganisms also

impact tumorigenesis and anti-tumor immune responses through

other signaling pathways such as RhoA/ROCK and PERK (69–71).
6 Clinical implications of
intratumoral microbiota

The intratumoral microbiota not only plays a role in tumor

initiation, progression, and metastasis but also possesses significant

clinical implications. These include targeting intratumoral bacteria

for cancer therapy and utilizing intratumoral microbiota as

diagnostic and prognostic tools.
6.1 Targeting the microbiota for
cancer therapy

Microbe-based cancer therapies have shown efficacy, yet some

IMs can induce an immunosuppressive microenvironment, leading

to therapeutic failure and adverse effects. Therefore, strategies aimed

at eliminating specific tumor-associated IMs are highly desirable. For

instance, the administration of bismuth colloidal pectin granules to

gastric cancer patients infected withH. pylori reduced side effects and

improved symptoms (ClinicalTrials.gov Identifier: NCT05049902)

(72). Additionally, the efficacy of itraconazole in treating various

cancers has been explored in preclinical and clinical trials

(ClinicalTrials.gov Identifier: NCT02749513) (73). Nevertheless, the

use of antibiotics may result in flora imbalance and drug resistance.

Future advancements may include the use of phage-based or

engineered phage-based therapies targeting oncobacteria for

effective tumor treatment.
6.2 Diagnostic and prognostic roles of
intratumoral microbiota

The abundance of intratumoral microbes in different tumors,

along with the presence of tumor type- and subtype-specific
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microbial profiles, suggests that IMs can serve as valuable

biomarkers in cancer diagnostics and prognostics. For example,

the intratumoral microbiome characteristics of HNSCC are

associated with clinicopathological features such as tumor stage

and histological grade. A recent study revealed that the microbiome

in GC can be classified into three microbial subtypes (MS1, MS2,

and MS3), each with distinct characteristics that are linked to

immunotherapy and prognosis (74). Another study found that

the relative abundance of viruses in soft tissue sarcomas (STS) is

positively correlated with higher NK cell infiltration, which is

associated with improved metastasis-free and overall survival

(75). In pancreatic cancer, the presence of F. nucleatum and P.

gingivalis is associated with a higher risk and worse prognosis (76).

High levels of F. nucleatum are particularly correlated with the stage

and recurrence of esophageal squamous cell carcinoma (ESCC)

(77). These findings underscore the potential of intratumoral

microbiota as biomarkers in cancer diagnostics and prognostics.
7 Applications in therapeutics

Based on the roles of intratumoral microbiota in tumors, the

ablation of pro-tumoral IMs and supplementation with tumor-

hostile IMs are feasible approaches therapeutically (78), but fecal

microbiome transplantation (FMT), probiotic regulation, microbial

peptide-specific T cell universal cancer vaccines, and engineered

microbes may have more prospects for cancer therapy (Figure 4).
7.1 Fecal microbiome transplantation

FMT can effectively treat recurrent antibiotic-resistant infections

caused by C. difficile, which has been evaluated in inflammatory bowel

disease (IBD) (79). Baruch and coworkers reported that 10 patients

withmetastatic melanoma who were resistant to ICIs were treated with

vancomycin and neomycin for 3 days to ablate native microbiota

before FMT via both colonoscopy and administration of oral stool

capsules. FMT products were extracted from two donors with a

complete response to nivolumab for metastatic melanoma for over 1

year. Three patients (3/10)overcame ICI resistance after FMT, one with

a complete response, and two with partial responses (NCT03353402)

(80). In two independent clinical trials (NCT03341143 and

NCT03772899), FMT from long-term responder donors with ICI-

refractory advanced melanoma alone showed effective clinical

responses or prolonged survival without serious side effects. FMT

ameliorates the dysbiosis of bacterial flora associated with anti-PD-1

clinical responses and increases anti-tumor immunity (81, 82).

Although favorable and unfavorable species of bacteria have been

identified, the ingredients of an “ideal gut microbiota” remain elusive.

Thus, there is not a one-size-fits-all gut microbiota. FMT faces several

main challenges: ① The suitable microbiota composition for donors is

not yet established at present. ② There are no available screening

methods or prognostic factors that can be harnessed to select candidate

recipient patients for FMT plus ICI treatment. ③ FMT failure is likely

attributed to patients’ non-response to immunotherapy, tumorigenesis

unrelated to the gut microbiome, a non-favorable microbiome in FMT
frontiersin.org

https://doi.org/10.3389/fonc.2024.1429722
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng and Chen 10.3389/fonc.2024.1429722
for boosting targeted therapy, or recipient non-compliance with the

donor’s microbiome. ④ The incidence of antibiotic resistance and

pathogenic transmission in practical applications are further

challenges. For this reason, FMT is not an approved treatment by

either the Food and Drug Administration (FDA) or European

Medicines Agency (EMA). Together, these early findings have

important implications for modulating the gut microbiota in cancer

treatment. In the future, the modulation of the gut microbiota,

particularly with FMT regimens (delivery routes, frequency,

duration, antibiotic pre-treatment) should select donors and

recipients to improve the likelihood of success.
7.2 Probiotic regulation

Probiotics can survive or temporarily colonize the intestine,

which is an important mechanism to manipulate the gut microbiota

to increase the number of “beneficial bacteria.” Probiotic-based

manipulation of the gut microbiota inevitably affects host

metabolism, immune function, and digestion (83). At present,

some species of bacteria have been utilized as probiotics, such as

lactic acid bacteria, Bifidobacterium, and Clostridiales (83), to treat

various diseases, including diarrhea, IBD, rheumatoid arthritis,
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chronic sinusitis, and cancer (84, 85). Mice administered with

cisplatin in combination with Lactobacillus exhibited superior

outcomes, including reduced tumor size and increased survival

rates, compared to mice receiving cisplatin alone or cisplatin plus

antibiotics. This suggests that Lactobacillus may mitigate the

adverse effects commonly associated with chemotherapy (86).

Radiation-induced intestinal injury is a common complication

following abdominal or pelvic radiotherapy. The intervention

with Lactobacillus rhamnosus GG (LGG) improves intestinal

structure, reduces jejunal DNA damage, and inhibits the

inflammatory cGAS/STING pathway, suggesting a potential

therapeutic radioprotective effect (87). Lactobacillus acidophilus

combined with Bifidobacterium bifidum could reduce the

incidence of radiation-induced diarrhea and the necessity for

anti-diarrheal medication in cervical cancer patients undergoing

radiotherapy, with significant improvements in stool consistency

(trial registration number: TCTR20170314001) (88). Members of

the Clostridiales order within the gut microbiome, which have been

linked to a reduced tumor burden, were found in a mouse model of

CRC. Furthermore, these beneficial species were observed to be

sharply diminished in CRC patients compared to their healthy

counterparts. Notably, treatment with four strains of Clostridiales

(CC4) or individual strains demonstrated an ability to impede or
FIGURE 4

Microbial-based cancer treatment strategies. These include oncolytic virotherapy (OVT), bacteriophage therapy, bacterial ghost (BG), bioengineered
bacteria, molecular mimicry, fecal microbiota transplantation (FMT), and probiotics.
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effectively treat CRC as a monotherapy. In a head-to-head

comparison with anti-PD-1 therapy, supplementation with a

mixture containing CC4 strains exhibited superior efficacy in

mouse models of CRC and MM (24). Accumulation of

Bifidobacterium within tumors reversed anti-CD47 treated mice

from non-responsive to responsive via potently stimulating STING

and IFN-I signaling as aforementioned (66). These studies provide

not only pre-clinical evidence for harnessing FMT and probiotics as

a monotherapy for solid tumors but also some limitations in

practical applications (89). One study revealed that the dietary

tryptophan catabolite indole-3-aldehyde (I3A), produced by the

colonizing probiotic Lactobacillus reuteri (Lr), locally promotes

IFN-g-producing CD8+ T cells, thereby sustaining the efficacy of

ICIs. The absence of Lr-secreted I3A or impaired aryl hydrocarbon

receptor (AhR) signaling within CD8+ T cells negates the anti-

cancer effects of Lr. Chimeric antigen receptor (CAR)-T cells have

demonstrated remarkable success in treating hematological

malignancies but have encountered limited efficacy against solid

tumors (90). A recent study unveiled that tumor-colonizing

probiotics release synthetic targets that mark tumor tissue for

CAR-T-mediated cytolysis in situ. The innovative probiotic-

guided CAR-T cells (ProCARs) system can activate and direct

CAR-T cell activity for antigen-agnostic cell lysis across various

cancer models (91). These breakthroughs highlight the potential of

intratumoral microbiota manipulation as a complementary strategy

to conventional and immunotherapeutic approaches, offering a

beacon of hope for improved therapeutic outcomes in

cancer treatment.
7.3 Microbial peptide-specific T cell
universal cancer vaccines

Molecular mimicry (92–94) of tumor antigens homologous to

microbial epitopes supplies cross-reactive T cells with ideal targets

(95). Besides this paradigm, tumor cells are also capable of

presenting microbial peptides directly to induce microbial-specific

T cells, such as in MM (96). These peptides partially overlap with

the HLA of tumor cells infected with coequal microbial strains.

These studies could usher in the development of microbial

peptide-specific T cell universal cancer vaccines. Although the

limited presence (0.1-10%) of bacteria in tumor cells (8, 69) may

restrict its therapeutic efficacy, targeting bacterial peptides elicits

greater anti-tumor immunity (by antigen dissemination) and

facilitates a more precise tumor-specific T cell migration to the

tumor site that is difficult for other methods to achieve. For

instance, F. nucleatum-specific T cells could elicit anti-tumor

immunity at the site of primary and metastatic tumors (43). In

another example, one bacterial peptide called azurin-28 showed

acceptable toxicity and tumor-inhibiting effects in pediatric brain

tumor patients (97, 98).

The concept mentioned above is not novel, as previous attempts

have been made to inject attenuated Salmonella directly into tumors

over the past two decades inmultiple cancer types (99–101). Recently,

Salmonella infection in MM induced the unfolded protein response

(UPR), leading to the release of peptides from tumor cells to generate
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anti-tumor responses in vivo (102). This new antigenic peptide can be

further applied as a universal vaccine platform. Although Salmonella

is not regarded as an intratumoral microorganism, this work provides

new approaches for cancer therapy.
7.4 Bioengineered bacteria

Although bacteria can display immunostimulatory features and

possess the potential for cancer therapy, bioengineered bacteria can

acquire more versatile functions to achieve better efficacy through

synthetic biology, which selectively and preferentially colonize in

hypoxic and necrotic TMEs. These bioengineered bacteria, including

S. typhimurium, Listeria Monocytogenes, Bifidobacterium longum,

Lactobacillus species, and Clostridium species, have been utilized as

delivery vectors with no serious adverse effects. In S.typhimurium,

two chromosomal genes were deleted, namely, purI and msbB, to

reduce toxicity and increase safety (103). Recently, attenuated

Salmonella typhimurium VNP20009 was engineered to exploit its

tumor-targeting capabilities and induce the expression of GM-CSF

and IL-7 in response to L-arabinose (named as GM-CSF-IL-7-

VNP20009). Intravenous inoculation of GM-CSF-IL-7-VNP20009

in mouse models of subcutaneous and lung metastatic melanoma

resulted in significant inhibition of melanoma growth and metastasis

and prolonged the survival of the mice by significantly increasing the

number of tumor-infiltrating macrophages and mature DCs, and

elevated the proportion of CD4+ T cells as well as their proliferation

in cancers (104). Currently, an L.monocytogenes-based cancer vaccine

named ADXS11-001 is in several Phase II clinical trials to evaluate its

efficacy for HPV-associated cancers (NCT02853604) (105).

Additionally, different probiotic bacteria including Bifidobacterium

longum and Lactobacillus plantarum are regarded as anticancer-

targeting vectors. Clostridia strains such as C. acetobutylicum, C.

beijerinckii, and C. sporogenes could effectively be modified to express

some bacterial enzymes (nitroreductase, cytosine deaminase) or

murine-TNFa to enhance the efficacy of cancer treatment (106).

Clostridium perfringens exhibits antitumor activity due to its

enterotoxin to damage the tight junction in the epithelial cells

(107). In a clinical trial (NCT01924689), a single intratumoral

injection of C. novyi-NT, which lacked the alpha toxin, for patients

with injectable, treatment-refractory solid tumors can generate

bacterial spore germination in the tumor, and leads to the killing of

tumor cells and an inflammatory response with significant but

controllable toxicities (108). An engineered E. coli Nissle 1917

strain can colonize tumors and convert ammonia to increase

intratumoral L-arginine levels which increases the number of

tumor-infiltrating T cells and has significant synergistic effects with

PD-L1 blocking antibodies to clear tumors (109). Bacteria engineered

to synthesize CD47 nanobodies could avoid adverse side effects

caused by an unwanted CD47 blockade of red blood cells and

platelets (110). Intratumoral injection of engineered Lactococcus

lactis strains expressing Fms-like tyrosine kinase 3 (Flt3) ligand and

OX40 ligand into one flank in mice bearing tumors bilaterally caused

regression of tumors on both sides and increased anti-PD1 efficacy by

40% when the twomethods were combined, although on the opposite

side, after draining lymph nodes and the whole body, viable bacteria
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were not detected by the culture method (111). The results of these

engineered bacteria to improve the response rates are exciting.

However, one question remains: can certain bacteria survive for a

period of time in a certain TME? Strange infiltration and proliferation

behavior of IMs can occur in xenograft tumor models. Salmonella

typhimurium is capable of colonizing BXPC-3 cells and slowly

proliferating in the HCT116 model, whereas E. coli cannot in

BXPC-3 cell-bearing tumors (112). In 1990, the FDA approved

BCG for perfusion treatment of superficial bladder cancer, and

BCG perfusion treatment remains the standard first-line treatment

for bladder cancer (113).

Additionally, the bacterial ghost (BG) system is another innovative

bacteria-based cancer therapy, which lacks ribosomes, nucleic acids,

and some more intracellular constituents. The drugs, DNA, proteins,

enzymes, and other therapeutic agents can fill the inner space of the

BGs (114). For instance, cancer cell lysate (oncolysate)-loaded BGs

induced by IFN-a and GM-CSF enhances DC maturation to increase

the expression of maturation markers and co-stimulatory molecules,

produce higher IL-12 levels, and significantly increase the proliferation

of CD4+ and CD8+T cells compared to DCs in the presence of LPS

(115). Bacteria-derived vesicles are also utilized in cancer therapy. Liu

and coworkers constructed a bacteria-derived outer membrane vesicle

(OMV)-coated nanoplatform that reached the dual-target kill of pre-

tumor F. nucleatum and tumor cells, thus converting intratumoral

bacteria into immunopotentiators in immunotherapy of triple-negative

breast cancer (TNBC) (116).

Apart from the above advantages, engineered bacteria also face

some obstacles in clinical applications, including bacterial virulence,

anti-tumor capacity, precise targeting and colonization of tumors,

genetic instability, impacts on the environment, and drug tolerance.
7.5 Bacteriophage therapy

Tumors are non-responsive to immunotherapy (117, 118),

which may be due to the effects of human microbiota on

inflammation and immune dysregulation (119). Although

antibiotic therapy (ABT) can control intratumoral bacteria, it has

detrimental effects on the microbiome and leads to antibiotic

resistance (26). Moreover, some types of antibiotics increase the

incidence of CRC, and ABT and tumor location are significantly

correlated (120). Additionally, the broad-spectrum activity of

antibiotics may not be able to distinguish whether bacteria are

cancer-promoting or cancer-suppressive within the TME.

Bacteriophages are an attractive biomedical tool for therapeutic

applications owing to their nanosize, polyvalent surface properties,

non-pathogenic nature, and specifically infecting particular bacteria

species and are receptive to desirable chemical or genetic

modifications. Bacteriophages are able to serve as both a cargo-

loaded device and self-immune adjuvant (45, 121), which makes

targeting oncobacteria possible. For example, a specific phage may

eliminate S. gallolyticus from cancer patients while retaining other

anti-tumorigenic Streptococci (122). More H. pylori strictly virulent

phages need to be isolated for therapy of chronic gastritis, peptic

ulcer disease, and gastric cancer (123).
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In the TME, phages can eliminate specific oncobacteria, leading

to other tumorigenic bacteria growing (124). Furthermore, due to

their adhesive and invasive toxicity, pro-tumoral bacteria such as

Fusobacterium are present in biofilms or cells and evade the

immune system (125). When utilizing phages as a therapy to

restore microbiota from deviation, it is crucial to ascertain how

they interact with each other within the niche.

Similar to engineered bacteria, bacteriophages can be genetically

manipulated to improve cancer therapy (126, 127). For instance, the

filamentous bacteriophage fUSE5-ZZ has been modified genetically

and chemically to deliver anti-ErbB2 and anti-ERGR antibodies or

the anti-tumor agents hygromycin and doxorubicin, for anti-tumor

treatment (128). Likewise, engineered phages targeting F.

nucleatum enhanced the effects of chemotherapy and improved

survival in mouse and piglet CRC models by modifying them to

covalently bind and optimize irinotecan delivery (124, 129).

Multiple phage mixtures have more potential than individual

phages and can be prepared from a phage library, formulated, and

administrated to some patients to modulate IMs and enhance

cancer therapy (130–132). Recently, eight phages were engineered

with tail fibers and clustered regularly interspaced short

palindromic repeats (CRISPR)-Cas machinery to specifically

target E. coli in biofilms. Furthermore, SNIPR001, composed of

the four most complementary bacteriophages, is well tolerated and

reduces E. coli load in the mouse gut better than its individual

components. SNIPR001 can selectively kill E. coli which may lead to

fatal infections associated with hematological cancer (133). Of note,

before using phage therapy, it is necessary to accurately distinguish

pro-tumoral stains from anti-neoplastic ones.

Though bacteriophages for cancer therapy mentioned above

have been discussed, there are a few obstacles yet to be addressed

during circulation and after reaching the tumor. Once injected into

the bloodstream, bacteriophages could be cleared from circulation

by the reticuloendothelial system (RES), which impacts their half-

life, bio-distribution, and pharmacokinetics, which compromises

the efficacy and may result in non-specific side effects. More

importantly, biochemical and biophysical barriers prevent phages

from entering into tumor sites. The major obstacle encountered by

phages upon reaching the tumor site is related to diffusion. In the

future, it is necessary to screen phages to target tumorigenic

bacteria. Phages are modified to avoid clearance by the RES,

prolong their half-life, and target tumors. It is necessary to better

understand how to reduce the immune response-mediated phage

clearance from the system. In addition, it is also important to

optimize the use of bacteriophages for cancer therapy.
7.6 Oncolytic viruses for cancer therapy

Oncolytic viruses (OVs) are natural or genetically modified viruses

that can specifically attack and destroy tumor cells. Generally,

compared with “cold” tumors, “hot” tumors feature a high number

of mutations, increased expression of tumor-infiltrating lymphocytes

(TILs) and PD-L1, and response well to PD-1/PD-L1 inhibitors.

Currently, there are no accurate methods to screen “cold” and “hot”
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tumors. Fortunately, oncolytic viruses, as a way to tweak the TME, can

enhance the immune response, in combination with other treatments

such as immune checkpoint blockade (ICB) (134–138). The most

oncolytic viruses are those armed with targeting or functional factors,

depending on the inserted gene sequences (139–143). Talimogene

laherparepvec (T-Vec), a genetically modified attenuated HSV1

containing granulocyte-macrophage colony-stimulating factor (GM-

CSF), is the first FDA-approved OV product to be administrated via

intratumoral injection for postoperative recurrent unresectable MM.

Several Phase II-III clinical trials of T-Vec for melanoma and other

cancers are currently underway(NCT02779855, NCT00769704) (144,

145). There are also some oncolytic viruses being trialed alone or in

combination with other treatments(NCT03152318; UMIN-CTR

Clinical Trial Registry UMIN000015995; NCT03178032;

NCT03072134) (136, 146–148). Various attempts have been made to

modify OVs, including multi-gene, microRNA, and gene circuit

insertion. Intratumorally inoculating with OVs arms a PD-L1

inhibitor and GM-CSF and fights against both virus-injected and

distant tumors by reversing PD-L1-mediated resistance, priming T

cell immune responses against mutation-derived dominant and

subdominant neoantigen epitopes (149). The engineered measles

virus expressing the synthesized microRNA universal cassette

expressed the virally encoded microRNA within the endogenous

microRNA transcripts and successfully inhibited the target protein

(150). The replication and release of an adenovirus selectively in HCC

cells can be regulated via programmable and modular synthetic gene

circuits responding to multiple promoter and microRNA inputs, and it
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has superior cytolytic efficacy compared to non-replicable ones (151).

Unlocking the potential of oncolytic virotherapy (OVT) appears to

have bright prospects for cancer immunotherapy.

Table 2 gives a comparison of the advantages and limitations of

the therapeutic methods mentioned above. Dozens of IM products

are being tested in clinical trials (Table 3), some of which have been

approved by the FDA for clinical cancer therapy (Table 4).

Additionally, microbe-based therapy combined with conventional

therapies, and immunotherapy such as ICI or CAR-T, can increase

efficacy or mitigate side effects. Clinical trials of microbe-based or

combined therapy are listed in Table 4.
8 Conclusions and perspectives

In this review, we have outlined how the composition and

diversity of intratumoral microbiota influence tumor initiation,

development, and metastasis, as well as anti-tumor immunity

through signaling pathways including ROS, Wnt/b-catenin, and
STING, with significant clinical implications. We have also

proposed strategies for microbe-based cancer therapy. Despite

being recognized as a “hallmark” of cancer, research in this field

remains nascent, with numerous unresolved issues. For example, the

role of intratumoral phages remains largely unexplored. How do

bacteria, fungi, viruses, and other microbes within the TME interact

to influence tumor initiation, progression, and anti-tumor immune

responses? Determining whether specific intratumoral
TABLE 2 Comparing the advantages and limitations of therapeutic methods mentioned in the text.

Methods Advantages Limitations

FMT/
Probiotics

① Extensive resources
② More acceptable
③ Suitable for the treatment of diverse other diseases
④ Decrease side effects
⑤ Turn non-responders to responders
to immunotherapy

① Patients’ non-response to immunotherapy
② Tumorigenesis unrelated to the gut microbiome
③ Non-favorable microbiome in FMT for boosting targeted
therapy
④ Recipient non-compliance with the donor’s microbiome
⑤ Imprecision
⑥ Antibiotic-resistance
⑦ Pathogenic transmission

Microbial peptide-specific T-cell
universal cancer vaccines

Tumor-specific
① Expensive
② Peptides difficult to be found

Bioengineered bacteria, BG, and bacteria-
derived vesicles

① More versatile
② Conveniently modified
(insertion of cytokines/chemokines/antigens/antibodies
or gene circuits)
③ Tumor-specific
④ Load with various biomacromolecules and drugs

① Survival period
② Bacterial virulence versus anti-tumor capacity
③ Precise targeting and colonization of tumors
④ Genetic instability
⑤ Impact on the environment, drug tolerance, and etc.
⑥ Expensive

Bacteriophage therapy

① Specifically kill oncobacteria
② A cargo-loaded device
③ A self-immune adjuvant
④ Mixture application
⑤ Conveniently modified

① Other tumorigenic bacteria growing instead
② Original tumorigenic bacteria not eliminated
③ Difficulty to distinguish tumor-friendly bacteria from tumor-
harmful bacteria beforehand
④ relatively short half-life
⑤ non-specific side effects
⑥ diffusion

Oncolytic
viro-therapy

① Specifically attack and destroy tumor cells
② Tweak the TME and activate anti-tumor immunity
③ Enhancing the efficacy of other anti-tumor agents in
combination with OVs
④ Conveniently modified

① In vivo pre-existing neutralizing antibody
② Lower efficacy of OVs alone
③ Poor targeting delivery efficacy
FMT, Fecal microbiome transplantation; IM, Intratumoral microbiota; OV, Oncolytic virus.
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TABLE 3 Clinical trials of anti-tumor microbe-based therapies.

Microbe-
based therapy

Tumor type Clinical Studies
Database (ID)/
FDA approval

Reference

FMT Leukemia
Prevention of dysbiosis complications with

autologous FMT in AML Patients
NCT02928523 (152)

Intestinal microbiome Gastric Cancer
The recovery of Intestinal Microbiome

after gastrectomy
NCT03418428 (153)

Probiotics (Bacteria) HCC
Influence of probiotics administration before

liver resection in liver disease
NCT02021253 (154)

Bl-04, NCFM (Bacteria) Colon cancer
Using probiotics to reactivate tumor suppressor

genes in colon cancer
NCT03072641 (155)

Bifidobacterium longum HCC

The significance of LFR on patient long-term
survival through retrospective and prospective

cohorts and identified a key gut microbe,
Bifidobacterium longum, depleted in patients

with delayed recovery.

NCT05178524 (156)

C. novyi-NT
Injectable, treatment-refractory

solid tumors

This first-in-human study enrolled patients with
injectable, treatment-refractory solid tumors to
receive a single intratumoral injection of C.
novyi-NT across 6 dose cohorts to determine

dose-limiting toxicities (DLT), and the
maximum tolerated dose.

NCT01924689 (108)

ADXS11-001
(L. monocytogenes)

Cervical cancer

Phase 2 study evaluated the safety and efficacy
of ADXS11-001, administered with or without
cisplatin, in patients with recurrent/refractory
cervical cancer following prior chemotherapy

and/or radiotherapy.

Clinical Trials
RegistryYIndia (CTRI/2010/

091/001232)
(157)

JX-594 (Oncolytic virus)

HCC
To determine the optimal JX-594 dose in
subjects with advanced hepatocellular

carcinoma (HCC)
NCT00554372 (158)

metastatic melanoma

A mechanistic proof-of-concept clinical trial
was performed at a low dose equivalent to

≤10% of the maximum-tolerated dose (MTD) in
other clinical trials

NCT00429312 (159)

refractory colorectal cancer

The primary endpoint was to determine the
maximum tolerated dose. Secondary endpoints
were pharmacokinetics and pharmacodynamics

as well as antitumor activity.

NCT01469611 (160)

liver cancer
Assess intratumoral injection of JX-594 in

patients with refractory primary or metastatic
liver cancer

NCT00629759 (161)

T-VEC Melanoma Stage IIIc and Stage IV Malignant Melanoma NCT00769704 (145)

G207 (Oncolytic virus) Brain Cancer

a phase 1 trial of G207, which used a 3 + 3
design with four dose cohorts of children and
adolescents with biopsy-confirmed recurrent or

progressive supratentorial brain tumors.

NCT02457845 (162)

G47Δ (a triple-mutated,
third-generation oncolytic
herpes simplex virus type 1)

glioblastoma

This investigator-initiated, phase 2, single-arm
trial primarily assessed the efficacy of G47Δ, a
triple-mutated, third-generation oncolytic

herpes simplex virus type 1, in 19 adult patients
with residual or recurrent, supratentorial

glioblastoma after radiation therapy
and temozolomide.

Clinical Trial
Registry UMIN000015995

(147)

G47Δ glioblastoma

a phase I/II, single-arm study assessing the
safety (primary endpoint) of G47Δ, a triple-

mutated oncolytic herpes simplex virus type 1,
in Japanese adults with recurrent/progressive

glioblastoma despite radiation and
temozolomide therapies.

UMIN-CTR Clinical Trial
Registry UMIN000002661

(163)

(Continued)
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TABLE 3 Continued

Microbe-
based therapy

Tumor type Clinical Studies
Database (ID)/
FDA approval

Reference

Enadenotucirev
(Oncolytic virus)

CRC, NSCLC, UCC RCC;

Assessed intravenous (IV) delivery of
enadenotucirev in patients with resectable

colorectal cancer (CRC), non-small-cell lung
cancer (NSCLC), urothelial cell cancer (UCC),
and renal cell cancer (RCC) with a comparator
intratumoral (IT) dosed CRC patient cohort;

NCT02053220 (164)

advanced epithelial tumors
unresponsive to

conventional therapy

This phase 1 dose escalation study assessed
intravenous (IV) dose escalation with

enadenotucirev to establish the maximum
tolerated dose (MTD) and subsequently identify

a suitable schedule for repeated cycles.

NCT02028442 (165)

V937, a novel OV non-
genetically modified
Kuykendall strain
of Coxsackievirus

unresectable melanoma
Evaluated the activity of intratumoral

Coxsackievirus A21 (V937) in 57 patients with
unresectable stage IIIC or IV melanoma.

NCT01227551;
NCT01636882

(166)

CAN-3110, an oncolytic
herpes virus (oHSV)

recurrent glioblastoma (rGBM)

intralesional oHSV treatment enhances
anticancer immune responses even in

immunosuppressive tumour
microenvironments, particularly in individuals
with cognate serology to the injected virus.

NCT03152318 (146)

T-VEC +nivolumab
resectable early stage or

metastatic (IIIB-
IVM1a) melanoma

a single center, single arm, phase II study aims
to show an improved major pathologic

complete response (pCR) rate, either pCR or
near-pCR, up to 45% in 24 patients with

resectable stage IIIB-IVM1a melanoma upon
neoadjuvant combination treatment with

intralesional T-VEC and systemic nivolumab
(anti-PD-1 antibody).

NCT04330430 (167)

T-VEC
+neoadjuvant
chemotherapy

TNBC
T-VEC can enhance triple-negative breast
cancer (TNBC) responses to neoadjuvant

chemotherapy (NAC).
NCT02779855 (144)

T-VEC+ pembrolizumab melanoma

The efficacy and safety from a phase III,
randomized, double-blind, multicenter,
international study of T-VEC plus

pembrolizumab (T-VEC-pembrolizumab) versus
placebo plus pembrolizumab (placebo-

pembrolizumab) in patients with
advanced melanoma.

NCT02263508 (168)

DNX-2401
+ pembrolizumab

recurrent glioblastoma
overall

safety and objective response rate
NCT02798406 (169)

V937 +
pembrolizumab intravenous

melanoma
CAPRA evaluated Coxsackievirus A21 (V937) +

pembrolizumab for metastatic/unresectable
stage IIIB-IV melanoma.

NCT02565992 (170)

V937 ± pembrolizumab solid tumors
This phase 1 study evaluated intravenous V937
± pembrolizumab in patients with advanced

solid tumors.
NCT02043665 (171)

V937 + ipilimumab melanoma

an open-label, single-arm, phase 1b study
(NCT02307149) evaluating V937 plus the
cytotoxic T-lymphocyte antigen 4 inhibitor

ipilimumab in patients with
advanced melanoma.

NCT02307149 (172)

V937+ ipilimumab uveal melanoma
The phase 1b, open-label CLEVER study
evaluated V937 in combination with

ipilimumab in patients with uveal melanoma
NCT03408587 (173)

adenovirus
enadenotucirev+nivolumab

epithelial cancer

a phase I multicenter study of intravenous
enadenotucirev plus nivolumab in patients with

advanced/metastatic epithelial cancer not
responding to standard therapy.

NCT02636036 (174)
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microorganisms act as cancer promoters or tumor suppressors

remains a challenge. Additionally, issues surrounding the precision

and resistance of FMT or bacterial transplantation need resolution.

The systemic administration of engineered bacteria or oncolytic

viruses to target tumor tissues also presents considerable challenges.

Further research is needed to elucidate how intratumoral microbes

can be leveraged to enhance the efficacy of immunotherapy and

mitigate the cytokine storm and neurotoxicity induced by CAR-T

cell therapy. With advancements in technologies such as multi-omics,

synthetic biology, and artificial intelligence (AI), our understanding of
Frontiers in Oncology 15
the roles of intratumoral microbiota will improve, leading to the

emergence of new concepts and innovative cancer strategies and

therapeutic agents. Microbe-based therapies can be used

independently or in combination with current immunotherapeutic

approaches to enhance efficacy, predict treatment outcomes, or

mitigate the toxicity associated with treatments such as CAR-T cell

therapy and ICB, thereby advancing effective cancer therapy.
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