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Circulating proliferative
factors versus portal inflow
redistribution: mechanistic
insights of ALPPS-derived rapid
liver regeneration
Shiran Zhang †, Yu Ma †, Xue Chen, Shuai Wu and Geng Chen*

Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
Background: Associating liver partition and portal vein ligation for staged

hepatectomy (ALPPS) can induce accelerated regeneration of future liver

remnant (FLR) and effectively reduce the occurrence of liver failure due to

insufficient FLR after hepatectomy, thereby increasing the probability of radical

resection for previously inoperable patients with liver cancer. However, the exact

mechanism by which ALPPS accelerates liver regeneration remains elusive.

Methods: A review of the literature was performed utilizing MEDLINE/PubMed

and Web of Science databases in March of 2024. The key words “liver

regeneration/hypertrophy”, “portal vein ligation/embolization”, “two-stage

hepatectomy”, “liver partition/split” and “future liver remnant” in combination

with “mechanisms”, “hemodynamics”, “cytokines”, “growth factors” or

“collaterals” were searched in the title and/or abstract. The references of

relevant articles were reviewed to identify additional eligible publications.

Results: Previously, a widely accepted view is that the primary role of liver splitting

in ALPPS stage 1 is to accelerate liver regeneration by promoting proliferative factor

release, but increasing evidence in recent years reveal that not the circulating

factors, but the portal hemodynamic alternations caused by liver parenchyma

transection play a pivotal role in ALPPS-associated rapid liver hypertrophy.
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Conclusion: Parenchyma transection-induced portal hemodynamic alternations

are the main triggers or driving forces of accelerated liver regeneration following

ALPPS. The release of circulating proliferative factors seems to be a secondary

response to liver splitting and plays an auxiliary role in this process.
KEYWORDS

proliferative factors, portal hemodynamics, ALPPS, future liver remnant,
liver regeneration
1 Introduction

Hepatectomy is the most important radical treatment for

advanced liver cancer. Among newly diagnosed liver cancer

patients, only 15-25% undergo surgical resection. A considerable

number of patients are forced to forgo surgery due to the small size

of the future liver remnant (FLR). Portal vein embolization (PVE) is

an invaluable method for promoting liver regeneration, but the

hypertrophy rate (10-69%) and waiting time (2-8 weeks) following

PVE are highly variable (1). A two-stage hepatectomy procedure

called associating liver partition and portal vein ligation for staged

hepatectomy (ALPPS), which has emerged in recent years, can

induce hypertrophy of the FLR in a much shorter time than PVE

and provides more opportunities of radical resection for previously

inoperable liver cancer patients. This technique constitutes a

breakthrough in liver surgery and has attracted increased interest

worldwide (2). Since ALPPS is very effective in promoting liver

hypertrophy, an in-depth understanding of its mechanism of action

is highly important for further optimization and modification. Early

studies suggested that the redistribution of portal blood flow caused

by portal vein ligation (PVL) and the release of circulating

proliferative factors induced by liver parenchyma transection are

two essential factors for ALPPS-derived FLR hypertrophy (3).

However, in recent years, new findings from clinical and

experimental studies have raised new doubts, controversies, and

questions about the traditional paradigm of accelerated liver

regeneration induced by ALPPS.

In this review, we summarized new findings and new theoretical

developments on the mechanism of ALPPS-derived liver

regeneration, discussed some controversial issues and new

understandings, and described the trends and prospects of ALPPS

for future research and clinical practice.
2 Methods

We performed a systematic literature search of the MEDLINE/

PubMed, EMBASE and Web of Science databases in February 2024,

using the key words “liver regeneration/hypertrophy”, “portal vein

ligation/embolization”, “two-stage hepatectomy”, “liver partition/
02
split” and “future liver remnant” in combination with

“mechanisms”, “hemodynamics”, “cytokines”, “growth factors” or

“collaterals”. All articles published in English and in peer-reviewed

journals, or in print or online books over the last 15 years were

included. We also checked the reference lists of each relevant study

that resulted from this search for further appropriate articles. Older

articles and research articles from other fields were also cited where

appropriate to support the findings or statements.
3 Injury-induced circulating
proliferative factors

3.1 Gene expression profile and signaling
networks underlying ALPPS-induced
accelerated regeneration

In 2014, Schlegel et al. (3) of the University of Zürich reported

in a mouse model that extrahepatic organ ablation and ALPPS

plasma injection could achieve FLR hypertrophy similar to that of

ALPPS mice. The authors concluded that circulating factors in

combination with PVL seemed to mediate enhanced liver

regeneration in ALPPS, and the release of soluble mediators

induced by injuries was not liver specific. Despite our increasing

knowledge of gene expression patterns in normal and accelerated

liver regeneration, comprehensive whole-genome analyses are

required for full recognition of the underlying key regulators and

pathways involved. Using RNA sequencing technology, Colak et al.

(4) conducted a comprehensive analysis of the upstream regulatory

factors and signaling pathways involved in the early postoperative

period in rats subjected to ALPPS, partial hepatectomy (PH), and

PVL. Cell cycle-related genes, transcription factors, DNA

replication regulators, and cytokines were upregulated in all three

groups in the early postoperative stage. Cluster analysis suggested

that ALPPS and PH were associated with similar expression

patterns of regulated genes that were significantly different from

those associated with PVL. Borger et al. (5) quantitatively measured

the activation of the intracellular signaling pathway (ISP) in liver

tissue obtained from a mouse model of ALPPS, PH, and PVL based

on whole-genome expression data. The activity of signaling
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pathways such as insulin-like growth factor 1 receptor (IGF1R),

integrin-linked kinase (ILK), and interleukin 10 (IL-10) was

enhanced after the first stage of ALPPS, while the activity of the

interferon signaling pathway was reduced. Consistent with the

finding that the gene expression profile after ALPPS showed more

similar expression pattern to the PH than the PVL at the early phase

of the regeneration, ALPPS shared nearly all the significantly

affected ISPs at different postoperative time points with PH. The

above results strongly suggest that the accelerated liver regeneration

induced by ALPPS is more similar to that after hepatectomy.
3.2 Circulating proliferative factors
involved in ALPPS-associated
liver regeneration

3.2.1 Inflammatory cytokines and growth factors
Dhar et al. (6) detected 29 cytokines in rat liver tissues by protein

microarray and found that the expression levels of interleukin 6 (IL-6),
Frontiers in Oncology 03
cytokine-induced neutrophil chemoattractant-1 (CINC-1),

interleukin 12 (IL-2), interleukin 13 (IL-13), and macrophage

inflammatory protein-1a (MIP-1a) were significantly increased

after the first stage of ALPPS. By serial analysis, Sparrelid et al. (7)

reported that the serum hepatocyte growth factor (HGF) level was

significantly elevated and positively correlated with the degree of FLR

hypertrophy early after stage 1 in the ALPPS procedure. In a rat

ALPPS model, Garcia-Perez et al. (8) reported that in addition to the

significantly increased levels of proliferation-promoting cytokines

such as IL-6, HGF, and tumor necrosis factor-a (TNF-a) after the
first stage of ALPPS, the levels of antiproliferative cytokines such as IL-

1b and transforming growth factor b (TGF-b) also significantly

increased, suggesting that the proliferative response induced by

ALPPS may be a complex process resulting from the interaction

between proproliferative factors and antiproliferative factors (Table 1).

It seems that these pro-inflammatory factors don’t affect tumor

growth dynamics because several previous studies have showed that

ALPPS did not result in tumor growth of colorectal liver metastases

(CRLM) and hepatocellular carcinoma (HCC) (9, 10).
TABLE 1 The circulating proliferating factors involved in ALPPS-associated liver regeneration.

Category Circulating factors Influence on liver regeneration References

Cytokines
TNF-a

TNF-a is a proinflammatory cytokine working via two distinct receptors, TNF receptor1 (TNFR1)
and 2 (TNFR1) by the NF-kB signaling pathway.

(8)

IL-2
IL-2 can activate and proliferate immune cells, and directly promote the proliferation of hepatocytes
by activating signaling pathways associated with cell growth and division.

(6)

IL-6
IL-6 is a cytokine playing active roles in liver regeneration. Signals are mediated via the AK-STAT
pathway and the Ras-MAPK pathway.

(6–8)

IL-1b
IL-1b stimulates the production of growth factors and cytokines that are important for liver
regeneration, including HGF, TGF-b, and TNF-a.

(8)

IL-10
IL-10 plays a crucial role in liver regeneration by suppressing inflammation, promoting hepatocyte
proliferation, and regulating extracellular matrix remodeling.

(5)

IL-12
IL-12 acts to initiate the inflammatory response necessary for liver regeneration, its excessive or
prolonged activation can lead to deleterious effects such as fibrosis and chronic inflammation.

(6)

IL-13
IL-13 has been shown to suppress the inflammatory response by inhibiting the production of
inflammatory cytokines and chemokines. This anti-inflammatory action can help create a favorable
environment for liver regeneration

(6)

CINC-1
CINC-1 plays a pivotal role in liver regeneration by recruiting neutrophils, modulating the
inflammatory response, and promoting hepatocyte proliferation and angiogenesis.

(6)

MIP-1a
MIP-1a functions as a chemoattractant, guiding immune cells such as macrophages and neutrophils
to the injured liver tissue.

(6)

Growth factors
HGF

HGF is a mitogen produced by mesenchymal cells and implicated in cell proliferation and
angiogenesis via tyrosine phosphorylation of its receptor c-Met.

(7)

FGF15
FGF15 serves as an important modulator of the regenerative process through binding to the FGF
receptor 4 (FGFR4) and activating intracellular signaling cascades. ALPPS can trigger liver
regeneration via intestinal Fxr-Fgf15 signaling pathway.

(16)

TGF-b Induction of apoptosis to correct excessive liver mass. (8)

TGF-a
TGF-alpha is a potent mitogenic factor that stimulates the proliferation of hepatocytes. It binds to
the EGF receptor (EGFR) and activates intracellular signaling cascades that promote cell division
and growth.

(8)

Circular RNAs
circ-0067724 circ-0067724 and circ-0016213 may act as miRNA sponges to regulating the expression of

downstream target genes of miRNAs.

(18)

circ-0016213 (18)

(Continued)
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3.2.2 Indian hedgehog
Langiewicz et al. (11) found that IHH was specifically and

highly expressed in the early stage after ALPPS through gene chip

screening. IHH is a secreted Hedgehog ligand produced by hepatic

stellate cells through paracrine signaling, and its serum

concentration peaks at 4 h after the first stage of ALPPS.

Moreover, the downstream genes of the Hedgehog signaling

pathway are also activated. After the injection of recombinant

IHH into PVL mice, liver regeneration similar to that of ALPPS

can be simulated. After the injection of an IHH-neutralizing

antibody into ALPPS mice, FLR hypertrophy was significantly

inhibited. Further research (12) has shown that c-June N-terminal

kinase 1 (JNK1) is an upstream regulatory molecule of IHH.

Blocking JNK1 before ALPPS can inhibit hepatocyte hypertrophy,

which is accompanied by downregulation of the activity of the

IHH–GLI1–CCND1 axis. Administration of recombinant IHH

restored ALPPS-like liver regeneration and upregulated JNK

activity. This study suggested that JNK1-mediated paracrine

signaling in IHH is necessary for the acceleration of liver

regeneration, and that the JNK1–IHH axis may be a unique

mechanism by which ALPPS promotes liver regeneration.

3.2.3 Reg3a and Reg3b
Recently, Otsuka et al. (13) reported that the JAK2/STAT3

signaling pathway may play a key role in ALPPS-induced liver

regeneration. After blocking this signaling pathway with the JAK2-

specific inhibitor G490, the weight of the right median lobe (RML)

to body weight (RML/BW) ratio did not change significantly in the

PVL group, while the RML/BW ratio was significantly lower in the

ALPPS group. Immunohistochemistry showed strong staining for

phosphorylated signal transducer and activator of transcription 3

(p-STAT3) in the nuclei of hepatocytes in the ALPPS group, while

no p-STAT3 staining was found in the hepatocytes of the PVL

group. They further analyzed more than 20,000 genes using a cRNA

microarray and found that regenerating islet-derived 3a (Reg3a)
and Reg3b were upstream factors that activate the Janus-activated

kinase 2 (JAK2)/STAT3 signaling pathway after ALPPS.

3.2.4 Bile acids
The significance of bile acid for liver regeneration after PH and

partial liver transplantation (PLT) has been well studied at both the
Frontiers in Oncology 04
animal model and clinical levels. The bile salt-activated

transcription factor farnesoid X receptor (FXR) is a key mediator

of proliferative bile salt signaling, and is assumed to play a role in

the early phase of compensatory liver regeneration (14). Olthof et al.

(15) reported that obeticholic acid (OCA), a potent FXR agonist,

accelerated liver regeneration after PVE in a rabbit model. Daradics

et al. (16) reported that ALPPS induced more extensive elevation of

systemic and portal bile acid levels (p<0.05) than PVL in a rat

model. Bile acid-activated mitotic signals in ALPPS could be

characterized by the activation of the intestinal Fxr pathway

rather than hepatic Fxr signaling.
3.3 The underlying role of circulating
proliferative factors in ALPPS

Liver partition can accelerate liver regeneration only when

combined with PVL, which suggests that the redistribution of

portal blood flow is the physiological basis for ALPPS-induced

liver regeneration. The exact role of circulating factors in

accelerated regeneration, either as a passive followers or active

participants, is still controversial and needs to be elucidated.

Transcriptome studies revealed that ALPPS and PH shared many

significantly regulated genes whose expression were not otherwise

significantly changed in PVL. The post-ALPPS/-PH alterations in

gene expression during liver regeneration were mostly due to the

time effect, not the operation type (4, 5). Whether the different

spatiotemporal expression patterns of regenerative genes are the

main cause of the unique liver regeneration induced by ALPPS is

still inconclusive (17–19). In an experimental study conducted by

Otsuka et al. (13), a rat model with a liver split inside the portal vein

ligated lobe (PiLL) was created. According to Schlegel’s theory (3), if

increased inflammatory cytokines due to liver partition are

responsible for the accelerated liver regeneration induced by

ALPPS, rapid liver hypertrophy should be achieved regardless of

where the liver is split. However, FLR hypertrophy was significantly

greater in the ALPPS group than in the PiLL group, whereas the

levels of cytokines/growth factors, including IL-6, TNF-a, and
HGF, were comparable between the two groups. It is obvious that

an increase in cytokines/growth factors was not enough to describe

the mechanism of rapid liver hypertrophy in ALPPS. Recently,
TABLE 1 Continued

Category Circulating factors Influence on liver regeneration References

Other
circulating
factors

IHH
Early JNK1 activity induces IHH release from stellate cells. IHH promotes GLI1-CCND1 in
hepatocytes to accelerate liver regeneration.

(11)

Reg3a
Growing evidence links Reg3a proteins to regeneration of exocrine and endocrine tissues. The
beneficial effect of Reg3a on acute liver failure was reported in mice.

(13)

Reg3b
Reg3b induced in the ALPPS group activated the JAK2/STAT3 pathway and resulted in rapid
liver regeneration.

(13)

Bile acids
A potent FXR agonist (obeticholic acid, OCA) can accelerate liver regeneration after PVE in a
rabbit model.

(15)
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Masuo et al. (20) reported that the serum concentrations of IL-6 and

TNF-a, in the short term (1, 4, and 6 h) after surgery did not differ

between the ALPPS and PVL groups, although the ALPPS group

showed a greater increase in the FLR and a higher Ki-67 labeling

index than did the PVL group. Additionally, suppression of

inflammatory cytokines using GdCl3 did not suppress liver

regeneration. These results suggest that the induction of

circulating proliferative factors in the early phase after ALPPS is

not necessarily a major factor in accelerating liver regeneration.
4 Portal hemodynamic alternations
induced by liver partition

4.1 The impact of liver partition on
portal hemodynamics

Most of the early studies attributed the changes in hepatic

hemodynamics observed during ALPPS to portal vein ligation,

ignoring the impact of hepatic parenchyma transection on hepatic

hemodynamics. In a clinical study, Chan et al. (21) reported that

after right portal vein ligation, the portal vein blood flow in the FLR

increased from 76.6 ml/100 gm/min to 193.7 ml/100 gm/min, and

further increased to 259 ml/100 gm/min after hepatic parenchymal

transection. In a rat PVL model (16), liver transection further

increased portal pressure in the non-ligated right median lobe

and further decreased the microcirculatory flow in the ligated left

median lobe. Our recent study (22) showed that complete liver

splitting along the demarcation line induced higher portal blood

velocity, blood flow and portal pressure than partial or ectopic liver

splitting following PVL. These results revealed the significant

impact of liver partition on portal hemodynamics in the

reserved liver.
4.2 Intrahepatic porto-portal collaterals

The formation of intrahepatic PPCs has been described

previously in patients with portal vein thrombosis. Denys et al.

(23) reported the first case with collaterals connecting segment 4

and segment 8 portal vein system arising from the left hemiliver,

with the right hemiliver, who failed to induce hypertrophy after

ligation of the right portal vein. Because the intrahepatic venous

system is naturally anastomotic, such veins can easily hypertrophy.

Proximal occlusion of the portal vein (PVL) allows distal collateral

reentry of portal flow through more distal branches, resulting in a

progressive intrahepatic cavernoma (24, 25). The authors

concluded that filling of the portal venous system through such

collaterals may have hindered hypertrophy in this patient. They also

pointed out the development of such collaterals illustrates one of the

limitations of PVL when compared with PVE. Van Lienden et al.

(26) performed CT scans and intraoperative portography in 18

patients after PVE or PVL. They demonstrated intrahepatic PPCs in

all PVL patients and some PVE patients. The collaterals could be

demonstrated as 1-2 mm large vessels connecting larger portal vein

branches between segment 4 and segments 5 and 8. Wilms et al.
Frontiers in Oncology 05
(27) compared a mini-pig model of PVL with PVE and

demonstrated that PVL induced PPCs that allowed orthograde

flow into the entire liver in ex situ angiograms 7 days after

surgery. Because PVE is more effective to increase the FLR, the

authors concluded that the formation of collaterals between

occluded and nonoccluded liver parts may be the cause of inferior

regeneration in the ligation group. Deal et al. (28) reported, in a

porcine model, that both the PVL group and the partial ALPPS

group formed substantial new portal vein collaterals to varying

degrees on postoperative day 7, and the number of collaterals was

inversely proportional to the FLR growth rate. Our previous study

(29) showed that in some patients after the first stage of ALPPS,

contrast-enhanced ultrasound or enhanced computed tomography

(CT) revealed blood flow in the distal branches of the ligated portal

vein, indicating the presence of arterio-portal shunts (APSs) and

PPCs. By using rescue radiofrequency ablation (RFA)/percutaneous

ethanol injection (PEI) to obliterate the APSs and PPCs, the kinetic

growth rate (KGR) of FLR increased significantly to 4% compared

with that before the rescue procedures (1.5%, P<0.05). Therefore,

current evidence clearly suggests that hypertrophy after ALPPS is

likely more rapid due to the cutoff of collaterals by parenchyma

transection, which may also be the cause of the further increase of

FLR portal pressure after liver split (30).
4.3 Shear stress and nitric oxide release

Shear stress is directly caused by blood flow and exerts shear forces

on liver sinusoid endothelial cells (LSECs) and adjacent hepatic stellate

cells (HSCs) in hepatic sinusoids. Endothelial nitric oxide synthase

(eNOS) activation, followed by nitric oxide (NO) induction, has been

reported to promote liver regeneration in response to partial

hepatectomy (31). When endothelial cells are stimulated by shear

stress or vascular endothelial growth factor (VEGF), phosphoinositide

3-kinase (PI3K) is activated and phosphatidylinositol 3,4,5-

trisphosphate (PIP3) is produced, which activates the PI3K-Akt

pathway and activates downstream signals such as eNOS (32).

Masuo et al. (19) reported that phospho-Akt Ser473 and phospho-

eNOS Ser1177 levels were greater in the ALPPS group than in the PVL

group, suggesting that activation of the Akt-eNOS pathway

contributes to accelerated liver regeneration in ALPPS. Although the

exact shear stress within hepatic sinusoids or the space of Disse in vivo

has not been measured directly in human or animal models so far due

to the tiny scale and varied sizes of the hepatic sinusoids as well as the

vascular permeability induced by LSEC fenestrae, the increases of

portal blood flow and pressure in the remnant liver following ALPPS

stage-1, are expected to increase shear stress and induce NO

production, which will promote rapid liver hypertrophy.
4.4 Hepatic artery buffering response and
liver hypoxia

Changes in portal inflow also have a significant impact on

hepatic arterial blood flow. In 1981, Lautt et al. (33) firstly proposed

the concept of the hepatic arterial buffer response (HABR).
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This uniquemechanism represents the ability of the hepatic artery

to produce compensatory flow changes in response to changes in

portal venous flow; i.e., if portal blood flow is reduced, the hepatic

artery dilates, and the hepatic artery constricts, if portal flow is

increased. The HABR can also be observed after the first stage of

ALPPS (34). Due to ligation of the tumor-side portal vein, the blood

flow in the reserved side portal vein markedly increased, resulting in

a decrease in the blood flow in the reserved side hepatic artery to

maintain constant total sinusoidal blood flow in the FLR.

Schadde et al. (35) reported that the artery blood flow of the

FLR was reduced by nearly 40% after the first stage of ALPPS in a

rat model, which directly led to a hypoxic state in the growing liver.

To further clarify the effect of hypoxia on the regeneration of the

FLR, they administered the prolyl hydroxylase inhibitor

dimethyloxalylglycine (DMOG) to specifically activate hypoxia-

related signaling pathways in PVL rats and found that FLR

hypertrophy was significantly accelerated. At 24 h, an increase of

60% ± 14% was observed, and at 72 h, an increase of 134% ± 21%

was noted. Myoinositol trispyrophosphate (ITPP) is an allosteric

effector that can reduce the oxygen affinity of hemoglobin and

promote the release of oxygen from red blood cells. ITPP can inhibit

the proliferation of tumors by blocking their hypoxic state. In this

study, treatment of ALPPS rats with ITPP reduced FLR

hypertrophy to a level comparable to that in the PVL group.

Most interestingly, the local application of DMOG on the surface

of the liver can promote the proliferation of hepatocytes. Ki67

staining revealed a hypertrophic zone with a thickness of

approximately 1 mm on the liver surface. The above evidence

suggested that hypoxia may be one of the major accelerators of

ALPPS-derived liver regeneration.
4.5 Role of parenchyma transection-
induced portal hemodynamic alternations
in accelerated liver regeneration

According to the paradigm of “portal inflow redistribution +

circulating proliferative factors”, liver parenchymal transection does

not seem to be indispensable for accelerated FLR hypertrophy (3).

Therefore, many improvements for the first-stage ALPPS procedure

have been made during the past 10 years to minimize complications

during the interstage phase and improve outcomes after the second

stage, for example, partial liver partition (36), radiofrequency-

assisted liver partition (37), and round-the-liver tourniquet have

been used to replace complete liver split (38–40), aiming to reduce

parenchymal damage, bile leak and manipulation of the hepatic

hilum. However, some problems have gradually emerged in clinical

practice. We observed in patients (41) that the interstage interval for

modified ALPPS without liver parenchymal transection was

significantly longer than that for classical ALPPS (18-22 d vs. 7-

12 d, P<0.05). A clinical study from the University of Hong Kong

(21) showed that the split completeness of the hepatic parenchyma

was closely related to the degree of FLR hypertrophy following PVL.

The waiting time for FLR hypertrophy was significantly shorter (7 d

vs. 10.5 d, P<0.05) and the rate of FLR hypertrophy was greater
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(11.5 ml/d vs. 5.5 ml/d P<0.05) in the complete liver split group

than in the partial split group. In a porcine ALPPS model (28), the

FLR increase rate in the complete transection group was twice that

in the partial transection group (64% vs. 32%, P<0.05). It is

interesting that the serum aminotransferase levels of the complete

and partial liver split groups were comparable after the stage-1

ALPPS procedure. Recently, we found (22) that a liver split along

the demarcation line in a rat model could further increase the portal

pressure of the FLR, which is associated with accelerated liver

hypertrophy. No significant differences in terms of biochemical or

patho log ica l ind ica tors reflec t ing l iver in jury (e .g . ,

aminotransferase, bilirubin, necrosis scores), or serum cytokine

levels, were detected among the groups with the same extent of

liver split. Moreover, a recent observational study revealed that FLR

hypertrophy depends on initial FLR volume and a smaller estimated

FLR is associated with greater degree of hypertrophy, mainly due to

the higher portal pressure and portal flow per gram of the smaller

FLR (42). In summary, these results strongly suggest that liver

parenchyma transection is not optional, but is essential for ALPPS.

It seemed that the accelerated regeneration induced by liver

splitting was mainly achieved by the transection of PPCs and

subsequent portal hemodynamic alternations of the FLR (Figure 1).

Compared with liver regeneration after a viral- or drug-induced

liver injury, that of post-PH has several distinct features, such as

hemodynamic changes in portal venous flow or pressure, and tissue

ischemia/hypoxia (43). Because ALPPS shares nearly all the

significantly affected genes and ISPs with PH (4, 5), the stage-1

procedure of ALPPS can be regarded as either an “incomplete PH”

or an “enhanced PVL”. From this point of view, we believe that

parenchyma transection-induced portal hemodynamic alternations

are the main triggers or driving forces of accelerated

liver regeneration.
5 Current trends and future prospects
of ALPPS

The clinical application of ALPPS worldwide has significantly

increased the resection rate of liver malignancies, deepened our

understanding of the mechanism of liver regeneration, and

promoted the development of regenerative liver surgery (1).

Increase in FLR after ALPPS stage-1 ranging from 65 to 110%

and interval between the stage 1 and 2 procedures ranging from 6 to

15 days have been reported (1, 2). However, some problems still

remain. The first is the surgical trauma. No matter what kind of

method for liver partition is adopted, substantial trauma is

inevitable, which has a great negative impact on patients

physiologically and psychologically. The second problem is that

the functional increase of liver remnant usually cannot catch up

with the volume increase following the stage-1 ALPPS procedure

(44). ALPPS-associated liver regeneration creates quantity, but not

quality liver tissue, which leads to a high incidence of post-

hepatectomy liver failure (PHLF) after the stage-2 ALPPS

procedure (45), especially for the patients with liver cirrhosis/

fibrosis. Lengthening the interstage interval to allow time for FLR
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maturation has been suggested, but at least partially mitigates

against the benefits provided by the increased KGR.

Experimental studies have demonstrated that portal

collateralization and neoangiogenesis are likely the result of portal

hyperflow restricted by a limited venous outflow bed in the growing

lobe. Therefore, it can be abrogated by occluding the venous outflow

on the side of portal inflow occlusion (35–47). Guiu et al. (48) firstly

reported the use of liver venous deprivation (LVD), i.e.

simultaneous PVE and ipsilateral hepatic vein embolization
Frontiers in Oncology 07
(HVE) before hepatectomy to promote FLR hypertrophy

(Figure 2A). The FLR increased by 45% after an average of 23

days. Furthermore, combination of right portal vein embolization

and right and middle hepatic vein embolization (extended liver

venous deprivation, eLVD) (49) can provide more rapid increase in

FRL volume and function (53.7% and 64.3% at day 7, respectively).

Another technique to disrupt naturally occurring PPCs is the

terminal branch portal vein embolization (TBPVE), firstly

reported by Peng et al. (50), by using a liquid embolic material,
FIGURE 2

Schematic diagrams of two endovascular FLR augmentation techniques. (A) liver venous deprivation (LVD). Combination of right portal vein (RPV)
embolization and right hepatic vein (RHV) embolization before major hepatectomy; (B) terminal branch portal vein embolization (TBPVE). By using
n-butyl cyanoacrylate gel (NBCA) as the embolic material, smaller branches of the portal vein can be embolized, completely blocking the collateral
circulation between the two hemilivers. PPC, porto-portal collateral; LPV, left portal vein; RPV, right portal vein, RHV, right hepatic vein.
FIGURE 1

Factors associated with accelerated liver regeneration after liver parenchyma transection. After splitting, the cutting off of PPCs further increases the
portal pressure, portal inflow in the reserved lobe and hepatic artery flow in the ligated lobe, which leads to the enhanced FLR hypoxia and shear
stress. FLR, future liver remnant; PPCs, porto-portal collaterals; HABR, hepatic arterial buffer response; EGF, epidermal growth factor; HGF,
hepatocyte growth factor; HIF-1a, hypoxia inducible factor 1-alpha; HSCs, hepatic stellate cells; IL, interleukin; LSECs, liver sinusoidal endothelial
cells; LPCs, liver progenitor cells; LPS, lipopolysaccharide; NO, nitric oxide; PVP, portal vein pressure; TNF, tumor necrosis factor; VEGF, vascular
endothelial growth factor.
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N-butyl-cyanoacrylate (NBCA). Theoretically, TBPVE can

embolize smaller branches of the portal vein and completely

block the collateral circulation between the two hemilivers

(Figure 2B). For patients with primary liver cancer and cirrhosis,

the rate of FLR hypertrophy at 14 days after TBPVE reached 52.1%,

which was much greater than that after classic PVE. A randomized

controlled trial (BestFLR trial) (51) compared the use of NBCA

combined with ethiodized oil and standard polyvinyl alcohol (PVA)

particles plus coils for preoperative PVE. Faster and superior liver

hypertrophy was observed in the NBCA group than in the PVA

group 14 days and 28 days after PVE (46% vs 30% and 57% vs 37%

[P < 0.001], respectively). 87% of participants in the NBCA group

received hepatectomy 14 days after PVE. The incidence of PHLF in

the NBCA group was lower than that in the PVA group (13%

vs. 27%).

These results strongly suggest that the efficacy of PVE in

promoting liver hypertrophy can be greatly enhanced by technical

improvements (e.g., adding ipsilateral hepatic vein embolization,

using NBCA as embolic material). Current data show that the FLR

growth rate following LVD or TBPVE has exceeded 50%, and the

time interval between two stages has been reduced to 2-4 weeks,

which are gradually getting close to those of ALPPS (52–54).

Moreover, the discrepancy between volumetric growth and

functional increase of the FLR is not observed in LVD and

TBPVE (49, 55). Considering that PVE is much more widespread

than ALPPS and that ALPPS has relatively higher rates of PHLF,

morbidity, and mortality, the endovascular approach eliminates the

necessity of two-stage surgery and is highly attractive to reduce the

surgical severity of the ALPPS (56). It might be safer to perform

TBPVE or LVD first in patients scheduled for major hepatectomy

with insufficient FLR, only proceed to ALPPS when the hypertrophy

cannot meet the need of liver resection. Future studies should focus

on the applicability, safety, efficacy and long-term prognosis of the

PVE-derived modifications through multi-center collaborations. A

“step-up” strategy needs to be developed for the chosen of suitable

FLR augmentation techniques in the clinical practice of regenerative

liver surgery (57).

A comprehensive assessment of FLR function reserve and

postoperative mortality risk is also essential for reducing the

incidence of PHLF following ALPPS. Direct measurement of

regional liver function through hepatobiliary scintigraphy or Gd-

EOB-DTPA-enhanced magnetic resonance imaging (MRI) may be

helpful to protect from liver failure after stage 2 (44, 58). The ALPPS

risk score based on patient individual characteristics has been

created in order to estimate and predict the 90-day or in-hospital

mortality risk of patients either upfront before stage 1 or before
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stage-2 surgery, which provides an assisting tool for the

hepatobiliary surgeon to guide treatment decisions (59). It should

be noted that the hyaluronic acid (HA), a serum predictive marker

for PHLF with high sensitivity and specificity, may have a potential

role in ALPPS risk assessment (60, 61). A large prospective

randomized cohort study is needed to elucidate predictive

diagnostic value of perioperative HA levels for PHLF

following ALPPS.
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