
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Guan-Yu Zhuo,
China Medical University, Taiwan

REVIEWED BY

Nirmal Mazumder,
Manipal Academy of Higher Education, India
Subir Das,
University of Zurich, Switzerland

*CORRESPONDENCE

Ali Ajrouch

aajrouch@iu.edu

RECEIVED 08 May 2024
ACCEPTED 30 August 2024

PUBLISHED 30 September 2024

CITATION

Ajrouch A, Krempley B, Karkash A, Dewitt JM,
Al-Haddad M, Lim D, Nolte D, Turek J,
Perkins SM and Jalal SI (2024) Evaluating the
feasibility and predictive accuracy of
biodynamic imaging to platinum-based
chemotherapy response in
esophageal adenocarcinoma.
Front. Oncol. 14:1429343.
doi: 10.3389/fonc.2024.1429343

COPYRIGHT

© 2024 Ajrouch, Krempley, Karkash, Dewitt,
Al-Haddad, Lim, Nolte, Turek, Perkins and Jalal.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 30 September 2024

DOI 10.3389/fonc.2024.1429343
Evaluating the feasibility and
predictive accuracy of
biodynamic imaging to platinum-
based chemotherapy response in
esophageal adenocarcinoma
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University, West Lafayette, IN, United States, 4Department of Biostatistics and Health Data Science,
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Background: Esophageal cancermanagement lacks reliable response predictors to

chemotherapy. In this study we evaluated the feasibility and accuracy of Biodynamic

Imaging (BDI), a technology that employs digital holography as a rapid predictor of

chemotherapy sensitivity in locoregional esophageal adenocarcinoma.

Methods: Pre-treatment endoscopic pinch biopsies were collected from patients

with esophageal adenocarcinoma during standard staging procedures. BDI analyzed

the tumor samples and assessed in vitro chemotherapy sensitivity. BDI sensitivity

predictions were compared to patients’ pathological responses, the gold standard

for determining clinical response, in the surgically treated subset (n=18).

Result: BDI was feasible with timely tissue acquisition, collection, and processing

in all 30 enrolled patients and successful BDI analysis in 28/29 (96%) eligible. BDI

accurately predicted chemotherapy response in 13/18 (72.2%) patients using a

classifier for complete, marked, and partial/no-response. BDI technology had

100% negative predictive value for complete pathological response hence

identifying patients unlikely to respond to treatment.

Conclusion: BDI technology can potentially predict patients’ response to

platinum chemotherapy. Additionally, this technology represents a promising

step towards optimizing treatment strategies for esophageal adenocarcinoma

patients by pre-emptively identifying non-responders to conventional platinum-

based chemotherapy.
KEYWORDS

esophageal adenocarcinoma, biodynamic imaging, chemotherapy response prediction,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1429343/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1429343/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1429343/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1429343/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1429343/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1429343&domain=pdf&date_stamp=2024-09-30
mailto:aajrouch@iu.edu
https://doi.org/10.3389/fonc.2024.1429343
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1429343
https://www.frontiersin.org/journals/oncology


Ajrouch et al. 10.3389/fonc.2024.1429343
Introduction

Esophageal adenocarcinoma (EA) is a significant health

concern worldwide. In the United States, it accounts for over

16,000 deaths annually (1). Most patients are diagnosed with

locally advanced stage II or III disease, for which the gold

standard treatment is preoperative CRT (CRT) followed by

surgery in eligible patients. Recently, adjuvant immunotherapy

was integrated into the treatment of those with residual disease at

the time of surgery (2, 3). Nonetheless, the 5-year survival rate for

locoregional EA remains below 20% (4).

Neoadjuvant CRT provides an absolute benefit of 13%

improvement in 5-year survival for locally advanced esophageal

cancer compared to surgery alone (5, 6). The benefits of

neoadjuvant chemotherapy and radiation are most pronounced

among patients with an excellent histopathological response.

However, only 23% of patients with EA display a complete

pathological response, as demonstrated by the CROSS trial (2).

Conversely, patients with a poor response to CRT are more likely to

have a poor prognosis and suffer from treatment-related toxicities

with limited benefits. Studies estimate that 40% of patients treated

with CRT suffer from toxicities while deriving limited benefit (2, 7–

12). These toxicities range from financial and emotional burdens to

physical side effects, such as fatigue, esophagitis, and bone

marrow suppression.

The ability to accurately predict chemotherapy response would

optimize treatment outcomes by identifying patients most likely to

benefit from neoadjuvant therapy. It would also support likely non-

responders by providing them with additional data for a more

informed discussion regarding their prognosis and spare them

unnecessary toxicities. Although several “Predictive Biomarkers”

have been evaluated, none have been validated for predicting the

response to platinum chemotherapy or taxanes, the standard EA

chemotherapies. Additionally, the reliability of traditional staging

imaging modalities, such as positron emission tomography (PET),

in predicting treatment response remains uncertain (13).

We investigate Biodynamic Imaging (BDI) as a potential

solution. BDI uses low-intensity light illumination to construct

three-dimensional holographic reconstructions from depths up to

one millimeter inside the tissue. These reconstructions allow it to

capture and analyze intracellular motions in living tissue and cancer

biopsies. Intracellular motions within the tissue produce signals that

were shown to be modulated by tumor therapeutic agents in the

laboratory setting. Capturing and interpreting these signals enables

BDI to measure cellular responses to applied therapeutics (14–29)

Preliminary laboratory BDI testing in ovarian cancer cell lines with

different cisplatin sensitivities, in human epithelial ovarian cancer

(30) and in canine multicentric lymphoma to predict doxorubicin

sensitivity (31) supported its potential as a chemotherapeutic

response predictor and pave the way for human trials.

In this phase 2 trial, we explore implementing BDI technology

in a clinical setting and its potential predictive ability for

chemotherapy response in locoregional EA by training a three-

class neural network classifier for EA clinical chemotherapy

response. The primary objective was to examine the feasibility of
Frontiers in Oncology 02
implementing the BDI technique in a clinical setting with respect to

patient enrollment, tumor tissue acquisition, sample transport

within 24 hours, sample processing, and the successful application

of BDI technology. The secondary objective was to determine the

correlation between the obtained BDI prediction and patients’

clinical response to chemotherapy, defined as the pathological

response in the subset of patients who underwent surgery.
Methods

Eligibility criteria

We enrolled patients aged ≥ 18 years with untreated,

nonmetastatic, histologically confirmed EA who were medically

fit and willing to undergo chemoradiotherapy. The Institutional

Review Board provided ethical approval, and all participants

provided written informed consent.
Specimen collection

Participants underwent endoscopic ultrasound (EUS) for

standard disease staging, during which we collected a tumor pinch

biopsy, the only sample collected for research. The tumor samples

were sent to the laboratory for analysis, as described below.

Subsequently, the participants received standard preoperative

chemoradiotherapy followed by surgery if medically appropriate.

Treatment and management decisions, including chemotherapy

regimen selection, rested on the treating physician’s discretion and

followed the standard of care. These decisions were made

independently of the BDI results. The two main concurrent

chemotherapy regimens were carboplatin with paclitaxel or

cisplatin with 5-fluorouracil. We recorded the administered

regimen to each patient and matched it to its representative BDI

analysis arm. After completing CRT therapy, if patients underwent

esophagectomy, we recorded their pathological response and

evaluated the correlation between it and BDI’s response prediction.

Table 1 presents the criteria for assessing tumor pathological

responses. We limited the correlation with BDI to the pathological

results in the subset of patients who underwent esophagectomies, as

surgery is the gold standard for determining pathological responses in

locoregional EA. Pathological responses post CRT have been shown

to correlate with overall survival in esophageal cancer (32). EUS post-

chemoradiotherapy has limited specificity and sensitivity, and EUS

biopsies post-chemoradiotherapy are limited by sampling errors (33–

35). In addition, inflammatory changes on PET/CT limit the

interpretation and determination of treatment response using this

modality (36). BDI results from patients who did not undergo

surgical resection were classified using the neural network classifier

but were not used for training or for calculating prediction accuracy.

Radiation effects were not modeled in vitro as there is no simple

way to mimic radiotherapy in the laboratory setting. We accept this

as a potential limitation of the present study. Any adverse events

related to the study procedure were recorded and followed up. All
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treating specialists were blinded to BDI prediction. Figure 1 outlines

the study’s design.
Biopsy sample processing

Tumor biopsy samples used for biodynamic imaging were

chilled (4°C) the same day and dissected into multiple pieces of

one mm3. Between 16 and 32 pieces per patient were immobilized

in 96-well plates using agarose and immersed in RPMI 1640 growth

medium. The wellplate with the biopsy samples was then mounted

onto the sample stage of the BDI system for data acquisition. After

acquisition of a 4-hour baseline, samples were treated with cisplatin,

carboplatin, 5-fluorouracil, and paclitaxel individually and with

each combination of (cisplatin + 5-fluorouracil) and (carboplatin

+ paclitaxel). The four chemotherapy agents were selected based on

their prevalent use in treating EA and their varied action

mechanisms, representing the therapeutic strategies employed in

current clinical practice. The dynamic spectra were acquired over 10

hours after the application of the treatment in vitro, capturing the

early physiological responses of the samples to the treatments likely

related to the uptake facility of small-molecule drugs by living cells

within the biopsy. The biopsy samples have been shown to fully

maintain their health during this period. Afterward, the culture
Frontiers in Oncology 03
medium was replaced with 10% neutral buffered formalin for

preservation and stored at 4°C.
Biodynamic imaging

Biodynamic Imaging (BDI) is a dynamic-contrast, holographic

optical coherence tomography technique. The optical principle

behind the technique is off-axis holography; the interference of the

object and reference fields with a small offset angle creates a hologram

on the Fourier plane of the digital camera, and a numerical spatial

transform of the hologram yields a reconstruction of the object field

on the image plane. The offset between the two beams creates spatial

separation of the reconstructed components due to the spatial carrier

wave associated with the interference fringe pattern. BDI is optimized

to have high sensitivity to small-scale intracellular motions. These

motions are captured by the dynamic speckle pattern on the

hologram, which in turn is captured by the intensity fluctuations of

the reconstructed field which can be used as a surrogate observable to

examine the dynamics of the living tissue sample.

For this study, a Mach-Zehnder interferometer with short-

coherence superluminescent diode (SLD) source of l = 840nm was

used to implement the BDI technique. A schematic of the optical

system is shown in Figure 2. The low-coherence light and variable

optical path length (OPL) on the reference arm enable coherence

gating, where photons with matching OPL are coherent with respect

to the reference and form a stable interference pattern, while photons

whose OPL stretches outside the coherence length contribute only to

random noise. Coherence gating allows a consistent acquisition of

thin optical sections (~20 mm) of the sample.
BDI features

BDI data consisting of high-frame-rate dynamic speckle images

were converted into fluctuation power spectra averaged over all the

sample pixels. Each power spectrum corresponds to an
TABLE 1 Criteria for assessing tumor pathological response (modified
from the College of American Pathologists guidelines).

Response Definition

No residual tumor/
Complete Response

Grade 0: no viable cancer cell, 0% tumor.

Near Complete/
Marked Response

Grade 1: single/rare groups of cancer cells, 0 -
<10% residual tumor.

Moderate/Partial Response Grade 2: residual cancer with regression, 10-50%
residual tumor.

Poor/No definite response Grade 3: No tumor regression, >50%
residual tumor.
FIGURE 1

Outline of the study design. Bolded areas represent study interventions.
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approximately 40-minute time frame. Several pre-treatment time

frames established each sample’s baseline, while post-treatment

frames captured drug-induced changes. Data aggregated from

multiple time frames for each sample were converted into a

differential spectrogram, i.e., a time-frequency representation of

the relative change in spectral power, offering the “fingerprint” of

the drug’s action on that sample (37). A visual summary of the data

processing steps is shown in Figure 3A comprehensive report on the

process and specifications of the BDI technology and other tools

used in this project are published in Hua et al. (2024) (38).

We analyzed these fingerprints using time-frequency masks to

isolate spectrogram sections previously correlated with biological

function. For instance, concurrent high and low-frequency

enhancements correlate with apoptosis. Hence, this concurrence

is used as a biomarker. Various biomarkers were assessed, including

integrated post-treatment power over the entire spectrogram,

selected frequency bands, strong inhibition occurrence, overall

spectra frequency shift, and collective fluctuation amplitude. We

utilized the strongest correlating biomarkers exclusively to generate

tumor cell survival predictive classifications presented as Complete

Response (Grade 0), Marked Response (Grade 1), and Partial/No

Response (Grade 2 or 3). Of these, the dominant treatments that
Frontiers in Oncology 04
best differentiated the responsive from the non-responsive patients

were cisplatin, paclitaxel and the combination cisplatin+5fu. The

dominant biomarkers were broad-frequency inhibition, change in

metabolic activity, and shift in intracellular speeds.
Neural network with triplet loss

The biomarkers were narrowed down to 20, with the strongest

clinical outcome correlations. These were used as the input to a

minimal two-hidden-layer neural network (NN) model with 20

neurons in the input layer, 20 in the first hidden layer, 10 in the

second hidden layer, and 3 in the output layer. The NN was trained

with the Adam update Matlab algorithm on a triplet loss function

(39) for dimensionality reduction from D = 20 to D = 3. The three-

dimensional output of the neural net was the input to a k-means

clustering algorithm to generate the three-class classifier. The

classifier was trained and validated using a one-left-out (OLO)

approach in which each successive patient was held out of the

training and then classified by the network trained on the remaining

patients. Only patients with clinical pathology outcomes were used

for training. Each patient receives a likelihood of belonging to each
FIGURE 2

A schematic diagram of the Mach-Zehnder interferometer used to perform biodynamic imaging (BDI). The reference arm contains a 180° reflector
mounted on a motorized stage to control the coherence depth for the optical sectioning. The object arm contains a series of optical Fourier
transforms with spatial filters (apertures). The object and reference beams are recombined with a slight angle offset at the beam splitter (BS3) and
projected onto the camera located on the Fourier plane, where the interferogram is recorded.
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class. A table presenting BDI predicted response to chemotherapy

and clinical pathological response to chemotherapy after surgery by

subject is available in Appendix A.
Statistical methods

Given the exploratory nature of this pilot study, our analysis is

primarily descriptive, focusing on the feasibility of the BDI

application and its predictive accuracy, which was limited to

patients with available pathological responses. In a preclinical trial

of biodynamic imaging for canine non-Hodgkin’s lymphoma

sensitivity to doxorubicin with 10 dogs, the assay had a 90%

correct classification rate (1 false case out of 10). Of the 6 dogs

that were clinical responders, 5 of 6 were classified as responders by

BDI. Of the 4 dogs that were clinical non-responders, all four were

classified as non-responders by BDI. If our true correct classification

rate in this study is 90%, with a sample size of n=15, a 95% two-

sided confidence interval around that percentage would cover
Frontiers in Oncology 05
between 75% and 100%. However, because some samples may

have quality problems (i.e., too little material, too heterogeneous

material), up to 15 additional subjects were planned to be enrolled

(n=30) to ensure 15 samples suitable for analysis, yielding an

adequate estimate of the correct classification rate at this stage of

the research. A point estimate and a 95% exact confidence interval

were calculated. Table 2 lists the pathological response and the

equivalent BDI prediction.
Results

Biodynamic imaging is feasible in the
clinical setting

We enrolled 30 patients, later withdrawing one found to have

metastatic disease, resulting in 29 subjects eligible for BDI analysis.

Among the 29 patients, 18 proceeded to surgery and had their

pathological responses documented. Among them, 6 patients
FIGURE 3

A visual summary of the data processing steps involved in biodynamic imaging. (A) the raw hologram captured by the camera, showing the
interference fringes and speckle pattern; (B) 2D digital Fourier transform of the hologram showing the zeroth order terms (spatial autocorrelation) in
the center, the object field and its phase conjugate offset from the center; (C) an averaged power spectrum; (D) differential spectrogram showing
the change in power spectral weights over the course of the experiment for one sample.
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achieved a grade 0 pathological response, 6 patients had grade 1

response, 4 patients had grade 2 response, and 2 patients had grade 3

response. The remaining 11 (37.93%) underwent chemoradiotherapy

without surgery for several reasons, including poor recovery from

chemoradiotherapy, patient choice, or surgeon’s preference. Table 3

summarizes the demographics and clinical characteristics of our

complete cohort and the surgery subset.

We obtained and completed processing all 30 subjects’ biopsy

samples for BDI analysis within 24 to 72 hours. BDI analysis was

successfully performed on 28/29 eligible patients’ samples,

reflecting a 96.6% success rate. The single failure was due to one

sample lacking sufficient tissue for complete BDI analysis. Of the 29

patients on-study, we observed no study procedure or biopsy-

related complications.
Biodynamic imaging prediction correlates
with pathological response to platinum-
based chemotherapy

Table 4 presents a detailed comparison of BDI predictions to

actual pathological responses. BDI predictions using a three-class

neural network classifier (Grade 0, Grade 1, and combined Grades 2

& 3) aligned with clinical outcomes in 72.2% (13/18 patients) of

cases (noting that random odds are 33.3%). BDI correctly identified

all 6 patients with a Complete response (grade 0). For the 6 patients

with a marked pathological response (Grade 1), BDI misclassified 3

cases, overpredicting in 1 and underpredicting in 2 cases. Among

the 6 patients with limited to no pathological response (Grade 2 and

Grade 3), BDI mis-predicted by overestimating response to

treatment in 2 cases.

Overall, BDI showed a moderate correlation with actual clinical

outcomes. For complete responses, the prediction accuracy was

100% (6 out of 6). For marked responses, the accuracy was 50% (3

out of 6). For non-responders, the accuracy was 66.6% (4 out of 6).

The sensitivity for complete pathological response was 100% (6 out

of 6). Its specificity was 83.3% (10 out of 12), positive predictive

value (PPV) 75% (6 out of 8), and negative predictive value (NPV)

was 100% (10 out of 10). It incorrectly predicted 25% (2 of 8 cases)

as having a complete pathological response when they did not.

Figure 4 shows the likelihood for belonging to one of the three

classes for all patients, grouped according to the pathological

response (Grades 2&3, Grade 1 and Grade 0). The dominant

likelihood is taken as the patient prediction for correlation to

clinical outcomes, as in Table 4.
TABLE 2 Clinical pathological response and equivalent BDI
clinical prediction.

Path Response BDI Response

Grade 0 Complete Response (Sensitive)

Grade 1 Marked Response (Mixed)

Grade 2 or 3 No Response (Resistant)
F
rontiers in Oncology
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TABLE 3 Demographics and baseline clinical characteristics of all
participants and those receiving surgery.

Characteristic Enrolled Sub-
jects (n=30)

Surgery Recipi-
ents (n=18)

Age at Enrollment,
mean (SD)

66.0 (13.2) 60.9 (10.3)

Sex

Female, n(%) 6 (20.0) 2 (11.1)

Male, n(%) 24 (80.0) 16 (88.9)

Race

White, n(%) 29 (96.7) 17 (94.4)

Unknown, n(%) 1 (3.3) 1 (5.6)

Ethnicity

Non-Hispanic, n(%) 27 (90.0) 16 (88.9)

Unknown, n(%) 3 (10.0) 2 (11.1)

Disease Stage at Specimen Collection

IB, n(%) 4 (13.3) 2 (11.1)

IIB, n(%) 5 (16.7) 4 (22.2)

IIA, n(%) 1 (3.3) 0 (00.0)

IIIA, n(%) 13 (43.3) 8 (44.4)

IIIB, n(%) 2 (6.7) 1 (5.6)

IIIC, n(%) 1 (3.3) 0 (00.0)

Unknown, n(%) 3 (10.0) 2 (11.1)

Missing, n(%) 1 (3.3) 1 (5.6)

TMN Stage at Specimen Collection

T1N2M0, n(%) 1 (3.3) 0 (00.0)

T2N0M0, n(%) 3 (10.0) 0 (00.0)

T2N0MX, n(%) 2 (6.7) 2 (11.1)

T2N1M0, n(%) 3 (10.0) 3 (16.7)

T2N2MX, n(%) 1 (3.3) 0 (00.0)

T3N0M0, n(%) 2 (6.7) 1 (5.6)

T3N0 MX, n(%) 1 (3.3) 1 (5.6)

T3N1 M0, n(%) 8 (26.7) 1 (5.6)

T3N1MX, n(%) 3 (10.0) 5 (27.8)

T3 N2 M0, n(%) 2 (6.7) 1 (5.6)

T3N2MX, n(%) 2 (6.7) 1 (5.6)

T3N3M0, n(%) 1 (3.3) 2 (11.1)

Missing, n(%) 1 (3.3) 1 (11.1)

Chemotherapy Regimen

Carbotaxol, n(%) 22 (73.3) 10 (55.6)

Cisplatin + 5-FU, n(%) 6 (20.0) 6 (33.3)

5FU, n(%) 1 (3.3) 1 (5.6)

FOLFOX, n(%) 1 (3.3) 1 (5.6)
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The three-class likelihoods can be combined into two-class

classifiers to generate receiver operator curves (ROCs) for several

combinations. The ROCs for these comparisons plot true positive

rate against false positive rate and are shown in Figure 5A for three

cases: Grades 2&3 versus Grade 0, Grades 1&2&3 versus Grade 0,

and Grades 2&3 versus Grades 0&1. The first case ignores the

marked (but not complete) responders (AUC = 85%). The second

case compares Grade 0 (complete pathological response) against all

others (AUC = 92%). The third case compares the non-responders

to the complete and marked responders (AUC = 74%). The

diagonal in the figure represents 50/50 likelihood for a random

relationship. The area under the curve (AUC) is a measure of assay

reliability with a maximum 1.00 for a “perfect” assay and 0.50 for a

random relationship. Figure 5B shows the probability distribution

functions for the first case that compares the least responsive to the

most responsive patients for which the AUC = 85%.
Frontiers in Oncology 07
Discussion

The application of BDI provides evidence of the feasibility of its

implementation in a clinical setting. All samples were successfully

collected, transported, and processed within hours, confirming

BDI’s suitability for routine clinical use. We also obtained BDI

results for 28 of the 29 examined samples without any biopsy-

related complications.

Crucially, BDI’s preclinically observed predictive capability

appears to translate to the human model of EA. Our study

demonstrated that BDI predicts chemotherapy responses with

72.2% accuracy for a three-class classifier (33% random

performance), a moderate yet promising success rate. This rate is

comparable to the 84% accuracy for the two-class classifier (50%

random performance) noted in preclinical trials (31). It is important

to acknowledge the complex and heterogeneous nature of human

tumors and the influence of host factors on drug responses. These

factors may not have been fully captured in preclinical models, as

they were trained on a limited number of canine rather than

human samples.

Additionally, the underprediction in 2 cases may be attributed

to the synergistic effect of radiotherapy in clinical practice, which

has been shown to improve local-regional control of esophageal

cancers, helping achieve a complete pathological response; however,

the radiation effect was not replicated for the BDI analysis (40). It

must be kept in mind that accuracy may improve with broader BDI

implementation. Utilizing larger human datasets and markers

would help refine biomarker selection prior to training the neural
TABLE 4 BDI response prediction compared to patients’ pathological
(clinical) response.

Actual Pathological
Response

BDI Pathological
Response Prediction

Grade
0

Grade
1

Grade
2/3

Grade 0 6 1 1

Grade 1 0 3 1

Grade 2/3 0 2 4
FIGURE 4

Three-class likelihoods for graded patients as well as for the patients without outcomes. Grades 2 and 3 are grouped into a single class.
Respectively, Grade 0 signifies tissue sensitivity to chemotherapy and Complete Response clinically, Grade 1 signifies a mixed response to
chemotherapy and a Marked Response clinically, finally Grade 2 or 3 signify Partial/No Response to chemotherapy as in the tissue is resistant to
chemotherapy and tumor regression is not expect clinically.
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network, reducing training epochs and the size of the hidden

neuron layers to decrease the possibility of overfitting.

Notably, BDI had a 100% accuracy in predicting all 6 patients

with clinical complete response (grade 0). Nonetheless, it mis

predicted 2 other patients as achieving grade 0. With its high

sensitivity (100%), specificity (83.3%), and 100% negative

predictive value, BDI has the potential to identify the subset of

patients less likely to have a complete pathological response to

treatment. The BDI technique shows promising implications for

personalized cancer treatment. Theoretically, BDI could enable

clinicians to predict tumor responses to chemotherapy prior to

treatment by identifying those unlikely to respond to

chemotherapy. It may also permit physicians to compare the

potential impact of different regimens in tumors without cross-

resistance to the available regimens, subsequently choosing the ideal

treatment. Tailoring the most effective individual regimen would

improve patient outcomes and minimize unnecessary toxicities.
BDI’s advantages over other
predictive tools

A key BDI strength is providing real-time tumor response data

before chemotherapy initiation. These data were obtained rapidly

within 24-72 hours from a tumor biopsy, avoiding any treatment

delays compared to gene expression profiling methods that can

take weeks.

Although BDI requires a fresh biopsy, its ability to functionally

assess living tumor tissue within its native 3D microenvironment

promises more accurate predictions than solely genomic,

proteomic, or even 2D culture methods. Unlike surface imaging

techniques, BDI can probe into tissues, providing a comprehensive
Frontiers in Oncology 08
view of tumor dynamics in naturally hypoxic conditions far from

tissue surfaces. Distinguishing itself from tools that merely quantify

static gene or protein levels, BDI offers dynamic insights into

functional tumor responses like intracellular motions and viability

after drug exposure. It captures crucial phenotypic information

beyond genomics, such as accurate drug delivery and response

kinetics and provides superior biological context. The large number

of extracted biodynamic features allows for comprehensive analysis

capturing tumor heterogeneity, hence predicting the regimen with

the best potential response for most tumor volume. BDI bridges the

best attributes of in vitro sensitivity assays and modern Artificial

Intelligence (AI) and Machine Learning (ML) Models while

sidestepping their limitations. The success of AI and ML models

depends on the quality and quantity of the training data. These

models can be “black boxes,” making it difficult to interpret their

predictions. BDI circumvents these issues by generating a large

amount of high-quality data and translating it into specific, reliable,

and easily interpreted response fingerprints and outcomes.

Among the strengths of this study is the novelty of BDI

technology, which offers real-time insights into chemotherapeutic

response. The high rate of successful biopsy sample collection and

processing further contributes to the reliability of the results.

Nonetheless, several limitations warrant discussion, such as the

small number of patients who underwent surgery, limiting the

training set for the neural network. The pilot nature of this study

limits the generalizability of our findings. The study does not

account for the effects of radiotherapy, a standard treatment for

locoregional EA received by all participants, that is synergistic with

chemotherapy contributing to the pathological response.

Furthermore, the classification of drug response derived from

previous preclinical work may only partially translate to human

tumors. Finally, the study population, while reflecting the sex
frontiersin.or
FIGURE 5

Two-class performance. (A) Receiver operator curves (ROCs) plotting true positive rate against false positive rate for three cases comparing groups
of grades (0 vs 2&3, 0&1 vs 2&3, and 0 vs 1&2&3) with the respective values for areas under the curve (AUC). (B) Class distribution functions for
Grade 0&1 versus Grades 2&3 (black curve in part a). The horizontal axis is the mean value of the likelihoods for non-response (-1) and response
(+1). Respectively, Grade 0 signifies tissue sensitivity to chemotherapy and Complete Response clinically, Grade 1 signifies a mixed response to
chemotherapy and a Marked Response clinically, finally Grade 2 or 3 signify Partial/No Response to chemotherapy as in the tissue is resistant to
chemotherapy and tumor regression is not expect clinically.
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demographics of esophageal adenocarcinoma patients, lacked

diversity, being predominantly white, limiting generalizability

across other populations. Further large-scale blinded studies in

diverse cohorts are needed to substantiate BDI’s predictive

accuracy before clinical implementation. The inherent spatial

heterogeneity of tumors and the potential non-representativeness

of a single fine needle biopsy sample may explain some

discrepancies between BDI’s predictions and clinical outcomes

and must be addressed in subsequent research.
Conclusion

Biodynamic Imaging has demonstrated high feasibility for clinical

application and promising efficacy in predicting chemotherapy

response in locoregional esophageal adenocarcinoma, especially

among poor responders. The technology’s rapid-response capability

and maintenance of the biopsy’s 3D architecture are key strengths

supporting its potential use in personalized treatment strategies.

Integrating BDI with other predictive modalities could yield a more

robust and multidimensional approach to treatment planning.

Exploring the applicability of BDI to other malignancies and

treatment modalities, such as radiotherapy and immunotherapy,

could further establish its versatility as a predictive tool. After

additional validation, BDI may guide treatment prospectively when

deciding between different regimens. Furthermore, with its predictive

ability, BDI may hold promise as a tool to test the development and

efficacy of new cancer treatments.
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Appendix A
BDI predicted response to chemotherapy and clinical pathological
response to chemotherapy after surgery by subject.

Study
ID

BDI Grade
0
probability

BDI Grade
1
probability

BDI Grades
2 or
3
probability

Pathological
Grade
from BDI

Clinical
pathological
Grade from
surgery,
collapsing
Grade 2
and 3

2 0.567 0.270 0.163 Grade 0 Grade 0

4 0.513 0.352 0.135 Grade 0 Grade 1

7 0.214 0.490 0.296 Grade 1 Grade 1

9 0.214 0.329 0.457 Grade 2/3 Grade 2/3

11 0.769 0.136 0.095 Grade 0 Grade 0

12 0.146 0.077 0.777 Grade 2/3 Grade 2/3

13 0.453 0.300 0.246 Grade 0 Grade 2/3

14 0.440 0.410 0.150 Grade 0 Grade 0

18 0.227 0.695 0.078 Grade 1 Grade 1

19 0.619 0.205 0.176 Grade 0 Grade 0

20 0.160 0.079 0.761 Grade 2/3 Grade 2/3

22 0.394 0.242 0.364 Grade 0 Grade 0

24 0.385 0.194 0.421 Grade 2/3 Grade 2/3

26 0.571 0.178 0.251 Grade 0 Grade 0

29 0.377 0.244 0.379 Grade 2/3 Grade 1

32 0.326 0.386 0.288 Grade 1 Grade 1

33 0.114 0.403 0.483 Grade 2/3 Grade 1

34 0.297 0.651 0.052 Grade 1 Grade 2/3
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