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Digital Spatial Profiling
identifies distinct patterns of
immuno-oncology-related
gene expression within
oropharyngeal tumours in
relation to HPV and p16 status
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Benjamin E. Willcox4, Janet Dunn5, Paul Nankivell 1,
Olivier Gevaert2‡ and Hisham Mehanna1,6*‡
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and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham,
Birmingham, United Kingdom, 5Warwick Clinical Trials Unit, University of Warwick, Coventry,
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Background: The incidence of oropharyngeal cancer (OPC) is increasing, due

mainly to a rise in Human Papilloma Virus (HPV)-mediated disease. HPV-mediated

OPC has significantly better prognosis compared with HPV-negative OPC,

stimulating interest in treatment de-intensification approaches to reduce long-

term sequelae. Routine clinical testing frequently utilises immunohistochemistry to

detect upregulation of p16 as a surrogate marker of HPV-mediation. However, this

does not detect discordant p16-/HPV+ cases and incorrectly assigns p16+/HPV-

cases, which, given their inferior prognosis compared to p16+/HPV+, may have

important clinical implications. The biology underlying poorer prognosis of p16/

HPV discordant OPC requires exploration.

Methods: GeoMx digital spatial profiling was used to compare the expression

patterns of selected immuno-oncology-related genes/gene families (n=73)

within the tumour and stromal compartments of formalin-fixed, paraffin-

embedded OPC tumour tissues (n=12) representing the three subgroups,

p16+/HPV+, p16+/HPV- and p16-/HPV-.

Results: Keratin (multi KRT) and HIF1A, a key regulator of hypoxia adaptation,

were upregulated in both p16+/HPV- and p16-/HPV- tumours relative to p16+/

HPV+. Several genes associated with tumour cell proliferation and survival

(CCND1, AKT1 and CD44) were more highly expressed in p16-/HPV- tumours
Abbreviations: AJCC, American Joint Committee on Cancer; CCL, chemokine (C-C motif) ligand; CXCL,

chemokine (C-X-C motif) ligand; DSP, Digital Spatial Profiling; HIF, hypoxia inducible factor; HPV, Human

Papilloma Virus; KRT, keratin; OPC, Oropharyngeal cancer; p16, CDK4/6 inhibitor p16INK4a; ROI, region of

interest; TNM, Tumour, Node, Metastasis; UICC, Union for International Cancer Control.
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relative to p16+/HPV+. Conversely, multiple genes with potential roles in anti-

tumour immune responses (immune cell recruitment/trafficking, antigen

processing and presentation), such as CXCL9, CXCL10, ITGB2, PSMB10, CD74,

HLA-DRB and B2M, were more highly expressed in the tumour and stromal

compartments of p16+/HPV+ OPC versus p16-/HPV- and p16+/HPV-. CXCL9

was the only gene showing significant differential expression between p16+/

HPV- and p16-/HPV- tumours being upregulated within the stromal

compartment of the former.

Conclusions: In terms of immune-oncology-related gene expression,

discordant p16+/HPV- OPCs are much more closely aligned with p16-/HPV-

OPCs and quite distinct from p16+/HPV+ tumours. This is consistent with

previously described prognostic patterns (p16+/HPV+ >> p16+/HPV- > p16-/

HPV-) and underlines the need for dual p16 and HPV testing to guide clinical

decision making.
KEYWORDS

oropharyngeal cancer, Human Papilloma Virus (HPV), p16, dual p16/HPV testing,
treatment de-intensification, Digital Spatial Profiling, tumour microenvironment
Background

Head and neck cancer (HNC) is the seventh most common

cancer worldwide (1). Incidence rates are rising; mostly driven by a

rapid increase in oropharyngeal cancer (OPC) incidence within

certain global regions including the United States (US), Europe,

New Zealand, and parts of Asia (2–4). The main risk factors for

OPC include smoking, excessive alcohol intake and infection with

high-risk Human Papilloma Virus (HPV). It is the increase in the

latter which underpins rising incidence rates. In the US and United

Kingdom, HPV-mediated OPC is now more prevalent than HPV-

mediated cervical cancer (3, 5). It is estimated that incidence will

continue to rise for the next ~20 years before the impact of gender-

neutral prophylactic vaccination is felt (6, 7).

HPV-mediated OPC has distinct epidemiological, molecular,

and immunological features compared with HPV-negative disease

and is associated with better treatment response and outcomes

(8, 9). This has led to separate classifications in the latest UICC/

AJCC TNM staging system (TNM8) (10). Given the improved

prognosis (8) and younger age of HPV-positive OPC patients, there

is considerable interest in approaches to de-intensify treatment and

reduce long-term morbidity and quality-of-life impact.

Unfortunately, clinical trials to date have reported limited or no

success (11, 12). One potential explanation for this relates to the

determination and definition of HPV status.

The presence of HPV in OPC can be assessed directly using

PCR-based methods or in situ hybridisation to detect viral DNA/

RNA or indirectly using immunohistochemistry (IHC) to assess

overexpression of the protein p16INK4a (p16) (13, 14). p16

overexpression is the indirect result of HPV early protein 7 (E7)-
02
mediated inactivation of retinoblastoma protein. In contrast,

frequent loss, mutation, or epigenetic silencing of the CDKN2A

gene encoding p16 results in low/absent expression in HPV-

negative OPC. Detection of p16 overexpression is therefore a

good surrogate marker for HPV status and – being simple and

cost-effective to implement – is routinely used in clinical practice.

However, dual p16 and HPV-DNA/RNA testing has recently shown

that while the majority of p16-positive tumours are HPV-positive

(p16+/HPV+), a subset (~10%) are HPV-negative (p16+/HPV-).

Likewise, a small subset of HPV-positive tumours do not

overexpress p16 (p16-/HPV+). An important issue is whether

these two discordant subsets – particularly those that are p16+/

HPV- and therefore assigned as ‘HPV-positive’ by p16 routine

testing – share the improved treatment response and survival

outcomes of p16+/HPV+ cases, or whether outcomes are more

closely aligned with p16-/HPV- tumours. Multiple studies

suggested differential prognosis but were limited by sample size

or restricted geographical sampling (15–19). A recent large

multicentre study (n = 7,654) provided strong evidence that

patients with discordant OPC (p16+/HPV- or p16-/HPV+) have

significantly worse prognosis compared with p16+/HPV+ OPC

patients, although significantly better than p16-/HPV-patients (20).

The biology underpinning this intermediate outcome requires

exploration to develop understanding, guide development of novel

therapies and inform clinical decision making. Here, we utilised

NanoString’s GeoMx Digital Spatial Profiling (DSP) platform to

explore in situ differences in gene expression between p16+/HPV+,

p16+/HPV- and p16-/HPV- oropharyngeal tumours. This

approach enables spatially-resolved analysis of gene expression

within defined regions of interest, selected based on expression of
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morphology markers; for example, pan-cytokeratin expression to

identify tumour versus stroma in epithelial tumours and/or CD3 to

identify T cell rich areas.
Methods

Cohort

The study utilised formalin-fixed, paraffin-embedded (FPPE)

diagnostic biopsy samples (primary tumour) from 12 OPC patients

(four p16+/HPV+, three p16+/HPV- and five p16-/HPV-) recruited

to the PET-NECK (21) or Predictr (22) clinical studies between 2000

and 2012. Patients were treated with curative intent, with either

platinum-based chemoradiotherapy or surgery followed by adjuvant

radiotherapy/chemoradiotherapy. Ethical approval for use of tissue

samples in translational research was granted by the North West -

Preston Research Ethics Committee (Reference: 16/NW/0265).

p16 status was assessed by immunohistochemical staining using

the CINtec Histology kit (Roche). Samples with strong nuclear and

cytoplasmic staining in >70% of the tumour were considered positive.

HPV status was determined by DNA in situ hybridisation using the

Ventana INFORM HPV III Family 16 probe or HPV DNA PCR.
Digital spatial profiling

5mm tissue sections were cut and mounted on SuperFrost plus

microscope slides. Digital Spatial profiling (DSP) was carried out at

NanoString Technologies Inc. Seattle, USA as part of their

Technology Access Programme and according to their standard

protocol (23). Briefly, slides were hybridised/stained with oligo-

conjugated RNA detection probes [immuno-oncology panel

comprising 78 genes, 73 target genes and five controls (Table 1)],

plus three fluorescent conjugated antibodies and nuclear stain for

characterisation of tissue compartments to facilitate Region of

Interest (ROI) selection. ROIs were segmented into multiple

regions representing tumour and stromal (non-tumour) tissue,

using a threshold classifier on a fluorescently labelled pan-

cytokeratin (PanCK) stain (clone AE1/AE3 594 Novus, 1:200

dilution). Fluorescent antibodies to CD3 (UMAB54 647 Origene,

1:100), to identify T cells, and CA-IX (EPR1451(2) 488, AbCam,

1:100), as a marker of hypoxia, were included to aid ROI selection,

with nuclear stain (Syto 83 532, ThermoFisher, 1:25). Slides were

imaged and a total of 141 ROIs across the 12 samples selected for

analysis. ROIs were then sequentially illuminated with UV light to

cleave oligo-probes which were aspirated and dispensed into 96-

well plates. Probes were then hybridised to optical barcodes and

counted using the nCounter platform (NanoString Technologies).

Digital raw counts were exported for analysis.
Data analysis

Quality control and normalisation were performed in accordance

with NanoString’s Gene Expression Data Analysis Guidelines MAN-
Frontiers in Oncology 03
C0011–04, 2017 (https://nanostring.com/wp-content/uploads/

Gene_Expression_Data_Analysis_Guidelines.pdf). nCounter

readout performance was assessed by evaluating the imaging and

binding density QC metrics. All imaging segments demonstrated a

high percentage of successfully scanned subsections, with a

registered Fields of View (FOV) above 88%. The binding density

was below 0.58, indicating low competition for binding the flow cell.

Gene expression counts for the target genes were normalised to a set

of house-keeping genes (RAB7A, UBB, SDHA, POLR2A, OAZ1),

and a normalisation factor was calculated for each segment by

comparing the geometric means of house-keeping genes across all

segments. The normalised gene expression data were imported into

Anndata objects (v0.8.0), and the gene expression values log2

transformed. Differential gene expression analysis was performed

using the Kruskal-Wallis test, and pairwise comparisons were made

using the Wilcoxon rank-sum test using the Scanpy library (v1.9.6).

Raw p-values were adjusted using the Benjamini-Hochberg

procedure. To generate the heatmaps, we selected genes that were

significantly upregulated in one group compared to the other

groups. For this, we required the raw p-values to be smaller than

0.05 and the adjusted p-values to be smaller than 0.2. To generate

the volcano plots, we performed pairwise comparisons between

each pair of groups, and the significant genes were determined using

adjusted p-values below 0.05. Volcano plots were generated using

the ggplot2 R library (v3.5.1).
Results

The cohort of 12 FFPE diagnostic biopsy samples from patients

with OPC included four patients whose tumours were p16+/HPV+,

three discordant (p16+/HPV-), and five p16-/HPV-. Patient

characteristics are summarised in Table 2. Gene expression was

analysed separately within the tumour (PanCK+) and stromal

regions (PanCK-). ROIs were placed to capture gene expression

within the tumour core, at the tumour-stroma interface and within

the peritumoural stroma. Additional morphology markers were

used to identify regions with high versus low T cell density

(identified by CD3e) and high versus low hypoxia (as determined

by CA-IX staining). Morphology marker staining, ROI placement

and segmentation strategy is illustrated for one sample in

Figures 1A, B. Comparison of keratin gene expression within the

tumour and stromal compartments (Figure 1C), confirmed the

efficacy of the segmentation approach.

Following data QC and normalisation, genes differentially

expressed between the three p16/HPV subgroups were identified.

Heatmaps illustrating significantly differentially expressed genes in

each subgroup relative to the other two subgroups are shown in

Figures 2A, B, for the tumour and stromal compartments respectively.

Pairwise comparisons of expression of all immuno-oncology-related

genes between the three different p16/HPV subgroups (p16+/HPV+

versus p16-/HPV-, p16+/HPV+ versus p16+/HPV- and p16+/HPV-

versus p16-/HPV-) are illustrated in Figure 2C and listed in

Supplementary Table 1. Genes whose expression is significantly

down-regulated within the tumour compartment of p16+/HPV+

versus p16+/HPV- and/or p16-/HPV- tumours include keratins
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(KRT), HIF1A, CD44, CCND1, AKT1 and CD276 (Figure 2C top left

and centre panels). The expression levels of HIF1A, CCND1 and

CD276 are also downregulated in the stromal compartment when

comparing the p16+/HPV+ group versus the p16-/HPV- group

(Figure 2C bottom left panel). Other genes displaying reduced

expression in the stromal compartment include PTEN, ITGAV,

ITGB8 and PDCD1 (Figure 2C left and centre panels). Multiple

genes are up-regulated within the tumour and stromal
Frontiers in Oncology 04
compartments of p16+/HPV+ tumours relative to p16+/HPV- and

p16-/HPV- (Figure 2C left and centre panels), including several

whose function relates to anti-tumoural immune responses

(CXCL9, CXCL10, CCL5, STAT1, ITGB2, PSMB10, B2M, CD74 and

HLA-DRB). Of note, in these pairwise comparisons only one gene

(CXCL9) showed significantly different expression between p16+/

HPV- and p16-/HPV- tumours, being overexpressed in the stromal

compartment of p16+/HPV- OPC (Figure 2C right hand panels).
TABLE 1 Target genes included in the GeoMx Immuno-oncology human RNA panel.

Immune cell
typing/
profiling

Immune
activation
status

Antigen
presentation

Immune
checkpoints &
drug targets

Cytokine &
chemokine
signalling

Cell adhesion
& migration

Apoptosis Tumour
markers
& signalling

Proliferation Reference
genes

BATF3
CD3E
CD4
CD8A
CD47
CD68
FOXP3
LY6E
MS4A1
PTPRC
TBX21

CD27
CD40LG
CD44
CD86
GZMB
ICOSLG
NKG7
TNFRSF9

B2M
CD74
HLA-DRB
HLA-DQ
HLA-E
PSMB10

ARG1
CD274
CD276
CTLA4
HAVCR2
IDO1
LAG3
PDCD1
PDCD1LG2
TIGIT
VSIR

CCL5
CMKLR1
CSF1R
CXCL10
CXCL9
CXCR6
FAS*
HIF1A*
IFNAR1
IFNG
IFNGR1
IL12B
IL15
IL6
STAT1
STAT2
STAT3
TNF*
VEGFA

ICAM1
ITGAM
ITGAV
ITGAX
ITGB2
ITGB8
PECAM1

BCL2
FAS*
TNF*

AKT1
CTNNB1
DKK2
EPCAM
HIF1A*
multi KRT#

pan-
melanocyte
PTEN

CCND1
MKI67

OAZ1
POLR2A
RAB7A
SDHA
UBB
fr
*genes included in dual categories.
#detects multiple keratin types, hereafter referred to as KRT.
TABLE 2 Patient characteristics.

Patient
no.

Tumour
subsite

Gender Age
group

Clinical
stage (TNM7)

HPV status
0 = negative
1 = positive

p16 status
0 = negative
1 = positive

Smoking
status

1 = never
2 = past

3 = current

Alcohol
consumption

1 = low
2 = moderate
3 = heavy

2 Tonsil M 66–70 IV 1 1 3 2

3 Tonsil M 51–55 NA 1 1 NA NA

4 Tonsil M 66–70 IV 1 1 1 2

9 NA M 46–50 IV 1 1 3 2

6 Posterior
pharyngeal wall

M 56–60 IV 0 1 3 3

11 Tonsil M 36–40 IV 0 1 1 2

12 Tonsil M 56–60 IV 0 1 2 3

1 Tonsil M 61–65 IV 0 0 3 2

5 Tonsil M 61–65 IV 0 0 1 3

7 Soft palate M 61–65 II 0 0 3 2

8 Tonsil M 51–55 III 0 0 3 3

10 NA M 66–70 IV 0 0 3 2
NA, not available.
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Three additional genes, CCND1, AKT1 and CD44 displayed a trend

for reduced expression in the tumoural compartment of p16+/HPV-

OPCs relative to p16-/HPV- (adjusted p values <0.06) see

Supplementary Table 1.

Differential expression of selected genes (those showing the most

significant differences in the pairwise comparisons) between all three

groups is presented in Figure 3. The violin plots illustrate both inter-

group and within-group differences in gene expression. In respect of

inter-group differences, Figure 3 again highlights the similarity

between the p16+/HPV- and p16-/HPV- groups and differential

expression relative to the p16+/HPV+ group. With respect to the

within-group distribution, some genes have a narrow expression

range (for example, KRT, HIF1A in both tumour and stromal
Frontiers in Oncology 05
compartments of p16+/HPV+ tumours, and PSMB10, B2M in the

stromal compartment for all p16/HPV subgroups). Conversely, many

genes have broad, often bi-/multimodal distribution (for example

CD44, CCND1 and CD74 in tumour and STAT1 in both

compartments for all p16/HPV subgroups), potentially reflecting

spatial context – tumour core versus tumour periphery or tumour-

adjacent versus more distant stroma.
Discussion

Spatially resolved analysis of gene (or protein) expression

within distinct tumour regions offers valuable insights for
FIGURE 1

GeoMx DSP ROI selection and segmentation approach. (A) Tumour sections were stained with three morphology markers: PanCK (tumour; green),
CD3e (T cell marker; yellow), CA-IX (surrogate marker for regions of hypoxia; red), plus a DNA stain to identify all cells (blue). ROIs were placed to
identify regions within tumour nests, tumour-stroma interface and peri-tumoural stroma. In this illustrative example from patient 11, ROIs were placed to
capture tumour and adjacent stroma in regions of high (ROIs 1, 2, 4, 5) and low (ROIs 3, 6) hypoxia. (B) Segmentation strategy – PanCK staining was
used for identification of tumour (PanCK+) and stromal regions (PanCK-), enabling separate analysis. (C) Comparison of keratin gene expression between
stromal and tumour compartments. Graph shows combined normalised KRT gene expression for all PanCK- versus PanCK+ segments within each of
the 12 patient samples. P values for comparison of PanCK- versus PanCK+ were calculated using unpaired t test, adjusted p values reported as * <0.05,
** <0.005.
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unravelling tumour composition and microenvironmental

phenotypes (23, 24). Here, we employed GeoMx DSP to partition

OPC tissues into tumour (PanCK+) and stromal (PanCK-)

compartments and quantitatively assessed gene expression within

each segmented region. This approach provides valuable

information that is lost in bulk RNA-sequencing. Previous studies

in HNC have successfully utilised this platform to analyse the
Frontiers in Oncology 06
tumour and microenvironment in patients with recurrent/

metastatic HNC treated with immune checkpoint inhibitors

(25–27). Here, we analysed expression of immuno-oncology-

related genes in whole tissue sections from locally-advanced OPC

patients treated with chemoradiotherapy +/- surgery in the curative

setting, in relation to their p16 and HPV status. Overall, p16+/

HPV- and p16-/HPV- tumours showed highly similar gene
FIGURE 2

Identification of genes differentially expressed between p16+/HPV+, p16+/HPV- and p16-/HPV- oropharyngeal tumours. (A, B). Heatmaps showing
relative gene expression levels for significantly differentially expressed genes across p16/HPV subgroups within the tumour and stromal
compartments respectively. Gene names are indicated for rows, ordered by the “scores” generated from the Wilcoxon rank-sum test statistics. Each
column represents an individual ROI (p16+/HPV+: n = 46; p16+/HPV-: n = 36; p16-/HPV-: n = 59. (C) Volcano plots showing pairwise comparisons
of gene expression between the three groups for the tumour (top) and stromal (bottom) compartments. The p16/HPV subgroup listed first is the
primary group, while the subgroup listed second is the reference group. Significantly down regulated genes in the primary group are shown in pink,
significantly upregulated genes in blue and non-significantly altered genes in green. P values for pair-wise comparison between any two groups
were calculated using the Wilcoxon rank-sum test and adjusted by the Benjamini-Hochberg method across all genes.
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expression profiles – in both tumour and stromal compartments –

which are quite distinct from the pattern of gene expression

displayed by p16+/HPV+ tumours.

The ‘gene family’ displaying most consistent differential

expression between the three groups was KRT, being

overexpressed in both p16-/HPV- and p16+/HPV- tumours

relative to p16+/HPV+ tumours. This is consistent with histologic

classification of OPC, whereby HPV-related tumours are described

as non-keratinising (28, 29). Elevated keratin expression,

particularly KRT17, is associated with poor prognosis and

decreased survival in multiple cancer types (30) including OPC

(31), potentially due to inhibition of T cell infiltration (32). Previous

studies in HNC link cytokeratin upregulation (including KRT17)

with HPV-negative status (33) or an ‘immune low’ subset of HPV-

positive tumours (34). In these studies, HPV status was assigned

based on detection of HPV DNA/RNA/gene signature and the

potential effects of discordant p16/HPV status were not explored.

The differential expression of KRT (albeit at very low levels) within

the stromal compartment of OPCs mirrors expression patterns in

the tumoural compartment, probably reflecting imperfect tumour-

stroma segmentation – especially where tumours are discontinuous.

HIF1A gene expression is upregulated in the tumour

compartment of both p16+/HPV- and p16-/HPV- OPC relative to

p16+/HPV+, and also in the stromal compartment of p16-/HPV-.

HIF-1a comprises one subunit of the heterodimeric HIF1 protein, a

key transcriptional regulator of cellular adaptation to low oxygen

levels. While control of HIF-1a expression is mostly achieved

through post-translational regulation (reduced degradation leading

to protein accumulation under hypoxic conditions), transcriptional

regulation also plays a role (35, 36). High tumoural hypoxia is

associated with poor prognosis (37, 38), mediated by multiple

factors including radiotherapy/chemotherapy resistance, heightened

immunosuppressive nature of the tumour microenvironment, and

increased epithelial-to-mesenchymal transition facilitating metastasis

(39, 40). Although the HPV E7 oncogene has been shown to

upregulate HIF1A expression (41), previous literature associates

highest HIF1A expression with HPV-negative status (33). Here, we

identified that this association extends to include p16+/HPV-

discordant tumours and not just classical p16-/HPV-, a finding that

could have important implications for future treatment strategies.

CCND1, AKT1 and CD44 were all expressed at significantly

higher levels in the tumour compartment of p16-/HPV- relative to

p16+/HPV+ OPC, with CCND1 also being upregulated in the

stromal compartment. CCND1 (Cyclin D1) gene amplification, a

relatively frequent event in head and neck cancer, has been

associated with HPV-negative status and poor survival (33, 42).

Mechanistically, this is linked to enhanced tumour cell proliferation

and invasion, with recent evidence supporting a role for stromal

expression in promoting inflammation and immunosuppression

(43). CD44 has been widely implicated as a marker of cancer stem

cells in multiple cancer types including OPC (44). High expression

is associated with treatment resistance, epithelial-to-mesenchymal

transition, and poor survival in most studies (45). Higher
FIGURE 3

Expression of selected immuno-oncology-related genes within the
three p16/HPV subgroups. Violin plots showing log2-transformed
normalised gene expression for p16+/HPV+ (white), p16+/HPV-
(pale grey) and p16-/HPV- (dark grey) OPC samples. First and third
columns represent tumour (PanCK+), second and fourth columns
represent stroma (PanCK-). Dashed and dotted lines represent the
median and quartiles respectively. Data were analysed using
Kruskal–Wallis test, and pair-wise comparisons were conducted
with the Wilcoxon rank-sum test. Adjusted P values (see
Supplementary Table 1) are reported as: ns, nonsignificant;
*P < 0.05; **P < 0.005; ***P < 0.0005; ****P < 0.0001.
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expression of CCND1 and CD44 in p16-/HPV- tumours relative to

p16+/HPV+ aligns with their poorer prognosis. The trend for

reduced expression of all three genes in discordant p16+/HPV-

tumours compared with p16-/HPV- is consistent with intermediate

prognosis (20).

Phenotypic and transcriptomic studies have characterised

HPV-positive tumours as ‘immune hot’ (46–48), with greater

numbers of peritumoural immune cells and increased

intratumoural T cell infiltration relative to HPV-negative

tumours. Many of the genes upregulated in p16+/HPV+ tumours

(tumoural and stromal compartments) have potential roles in anti-

tumoural immunity. These include, for example, key chemokines

controlling T cell trafficking (CXCL9, CXCL10), adhesion molecules

involved in T cell recruitment (ITGB2) and components of antigen

processing and presentation pathways for CD4 or CD8 T cell

recognition (B2M, PBSM10, CD74, HLA-DRB). STAT1, a key

transcription factor shaping the tumour microenvironment, is

also upregulated in both the tumour and stromal compartments

of p16+/HPV+ tumours. Although STAT1 expression is essential

for effective antitumor T cell responses (49, 50), tumour cell-specific

expression may have negative consequences (50, 51). Of note,

expression of anti-tumour immune response-related genes is

down-regulated in both p16+/HPV- and HPV-/p16- tumours,

consistent with the poorer survival outcomes of both these

subgroups relative to p16+/HPV+. CXCL9 upregulation in the

stromal compartment of p16+/HPV- tumours relative to p16-/

HPV- is suggestive of subtle amelioration of immune responses

consistent with intermediate prognosis.

Our study has several limitations. Firstly, the sample size is

small, reflecting the capacity of the GeoMx DSP platform which

provides in depth analysis rather than high throughput screening.

Secondly, the cohort does not include any examples of the second

discordant group (p16-/HPV+). This subgroup is much less

clinically relevant as it is smaller and also not misdiagnosed (i.e.

treated as p16+/HPV+, unlike the p16+/HPV- discordant

subgroup) if p16 IHC is used on its own. Thirdly, we here

present analysis of 73 immuno-oncology-related genes; GeoMx

DSP technology has now progressed to enable whole

transcriptome analysis, which we are currently employing in an

extended cohort to provide further information on mechanistic

differences. For example, this might further define an intermediate

microenvironmental p16+/HPV- discordant phenotype, as hinted

by differential CXCL9 expression, which aligns with the observed

intermediate clinical outcome.

In summary, our study demonstrates that, in terms of immuno-

oncology-related gene expression, p16+/HPV- OPC are much more

closely aligned with p16-/HPV- than p16+/HPV+, although some

subtle differences exist between p16+/HPV- and p16-/HPV- tumours.

This is consistent with prognostic patterns described in a large pivotal

study, p16+/HPV+ >> p16+/HPV- > p16-/HPV- and underlines the

need for dual testing to support informed clinical decision making.
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