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1Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland, 2Department of Radiation
Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
In cancer treatment, mild hyperthermia (HT) represents an old, but recently

revived opportunity to increase the efficacy of radiotherapy (RT) without

increasing side effects, thereby widening the therapeutic window. HT disrupts

cellular homeostasis by acting on multiple targets, and its combination with RT

produces synergistic antitumoral effects on specific pathophysiological

mechanisms, associated to DNA damage and repair, hypoxia, stemness and

immunostimulation. HT is furthermore associated to direct tumor cell kill,

particularly in higher temperature levels. A phenomenon of temporary

resistance to heat, known as thermotolerance, follows each HT session.

Cancer treatment requires innovative concepts and combinations to be tested

but, for a meaningful development of clinical trials, the understanding of the

underlying mechanisms of the tested modalities is essential. In this mini-review,

we aimed to describe the synergistic effects of the combination of HT with RT as

well as the phenomena of thermal shock and thermotolerance, in order to

stimulate clinicians in new, clinically relevant concepts and combinations, which

become particularly relevant in the era of technological advents in both

modalities but also cancer immunotherapy.
KEYWORDS

hyperthermia, radiotherapy, cancer biology, hypoxia, DNA-repair, tumor
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Highlights
• The combination of radiotherapy and mild hyperthermia has attracted increasing

interest in recent years and remains a promising yet relatively poorly studied

approach for cancer treatment. To incite future, innovative concepts of the

association of both modalities, their underlying mechanisms, interactions and

potential need to be understood. This review summarizes current knowledge of the

above and aims to be a helpful resource for guiding new preclinical and clinical

studies advancing this opportunity.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1428065/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1428065/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1428065/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1428065&domain=pdf&date_stamp=2024-08-06
mailto:Pelagia.Tsoutsou@hug.ch
https://doi.org/10.3389/fonc.2024.1428065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1428065
https://www.frontiersin.org/journals/oncology


Righini et al. 10.3389/fonc.2024.1428065
1 Introduction

Treating cancer with heat is known since the 19th century: W.B.

Coley was able to cause their tumor regression, in patients to whom

he administered preparations of killed bacterial cultures (“Coley’s

toxin”), and thus induced fever (1, 2). Mild hyperthermia (HT) is

still today a therapeutic anticancer modality, where a tissue is

exogenously heated to temperatures between 39–45°C, using

electromagnetic waves, ultrasound, thermal conduction, or

hyperthermic infusion (3). Using ionizing irradiation to shrink

tumors is known since the early 20th century: since the discovery

of radium by Marie Curie, radiotherapy (RT) has made a

tremendous progress, both in the fields of biology and technology

and became one of the pillars of cancer treatment. The synergistic

combination of both HT and RT is known since the 1970s, where

thermoradiotherapy (TRT), at first at a preclinical level (2, 4), then

confirmed at meta-analysis clinical level, has been shown to

improve outcomes, as compared to RT alone, without increasing

serious adverse effects, at least for several advanced cancers, such as

breast (5), cervical (6), esophageal (7), and head and neck (8).

Today, a revived interest in TRT is observed, possibly because the

underlying mechanisms of the synergy between RT and HT might

create new opportunities to further improve therapeutic outcomes

in modern settings, such as, for instance, the context of

immunotherapy (9). Therefore, understanding the biological

mechanisms of the synergistic effect of TRT might help

conceptualize innovative associations to be tested in future

clinical studies and becomes clinically relevant. We thus aimed to

summarize and put into perspective the established knowledge on

the interactions between HT and RT but also their limitations, to

probe modern research in the field.
2 The synergy of thermoradiotherapy:
two pieces in a puzzle

2.1 DNA damage

Radiation-induced DNA damage is the pivotal, classical

radiobiologic event regarded as the major effect of RT in both

tumors and healthy tissues (10). This occurs either by direct

ionization or, predominantly, by inducing radiolysis of water

molecules, resulting in the production of free-oxygen radicals

(ROS), which then induce DNA oxidation (11, 12). Such damage

includes DNA-base alterations, DNA-DNA/DNA-protein cross-

links, single-strand breaks and double-strand breaks, the latter

being the most lethal (13, 14). The accumulation of unrepaired

DNA lesions activates the cell-cycle checkpoint machinery (ATM/

p53/p21 or ATM/CHK2/CDC25A-C pathways), leading to the

temporary arrest of the cell cycle. If DNA damage is not quickly

repaired, the cell-cycle checkpoint machinery remains active,

thereby promoting cell death (via mitotic catastrophe, apoptosis,

senescence or autophagy) (13, 15, 16). Therefore, the greater the

efficiency of DNA repair mechanisms, the lower the cytotoxicity of

ionizing radiation. This is the key to the therapeutic effect of RT:
Frontiers in Oncology 02
tumor cells, due to their reduced capacity to repair DNA, are more

sensitive to RT than healthy cells, thus creating a therapeutic

window that is explored in the clinical setting and makes RT a

very efficient anti-cancer treatment (13, 15, 17).

Heat, especially at temperatures exceeding ≈41°C, damages

several proteins involved in DNA repair, called DNA-damage

responses (DDRs). DDRs repairing double-strand breaks are

particularly affected, i.e., non-homologous end joining (NHEJ),

homologous recombination (HR) and back-up non-homologous

end joining (back-up NHEJ), thus making HT a great tool to

enhance the cytotoxicity of ionizing radiation (14, 15, 18, 19).

Moreover, heat also slows DNA replication in tumor cells, thus

reducing their reproductive capacity (14, 18, 19). It is highly

controversial whether HT, by producing ROS, can directly cause

single-or double-strand breaks (18, 19).

Radioresistance is dominated by the moment in the cell cycle

where exposure to irradiation occurs: cells in the synthesis (S)

phase, as compared to cells in G1, G2 or mitotic (M) phase, are

particularly radioresistant, because their DDRs are physiologically

upregulated. Therefore, HT, which damages DDRs, can

radiosensitize previously radioresistant cells (13, 19). In terms of

synergy, both RT and HT effects on DNA damage and repair

display a very interesting complementarity, which can widen the

therapeutic window of RT.
2.2 Hypoxia

Hypoxia is another challenge for therapeutic RT, as it is directly

associated to radioresistance. Indeed, as a tumor grows, the local

vasculature becomes insufficient to support its growing nutrient

needs. Cancer cells and other cells situated in the tumor

microenvironment (TME) thus secrete many pro-angiogenic

factors, especially vascular endothelial growth factor (VEGF),

leading to the development of an abnormal local vascular

network. Tumor blood vessels are dilated, tortuous, immature,

highly permeable and heterogeneously distributed. This abnormal

vascular network is unable to properly vascularize the tumor,

tumoral oxygen requirements remain higher than its availability,

and the microenvironment becomes hypoxic (20–22).

The generation of ROS by ionizing radiation, the primary

mediator of RT cytotoxicity, is chemically dependent on the local

partial pressure of oxygen (pO2). Therefore, a chronically hypoxic

TME favors radioresistance (11, 12, 23). Indeed, hypoxia is associated

with poor clinical prognosis, because it not only increases resistance

to treatment, but also intrinsically enhances the tumor malignancy,

through the activation of hypoxia-inducible factors (HIFs), which

stimulate angiogenesis, reduce p53 expression, inhibit apoptosis, and

reduce the immune system response (24–27).

HT, up to ≈ 42°C, induces a transient vasodilation of abnormal

tumor blood vessels and an increase of vascular permeability, leading

to an increase in tumor perfusion. Therefore, the TME regains a

normal oxygen partial pressure (pO2), a normal concentration of

nutrients and a normal pH, which reverse the established

radioresistance (14, 25, 28–30). The duration of the reoxygenation

is still controversial but may last up to 24 hours (14, 25). Nonetheless,
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this mechanism becomes counterproductive at temperatures above ≈

42°C: heat causes vascular damage, leading to vascular occlusion and

thus to a prolonged worsening of local hypoxia, with hypoxic cells

dying from ischemia (14, 15, 25, 28, 30) Therefore, the

radiosensitizing vascular effects of HT may only be achievable at

temperatures below ≈ 42°C. Of note, HT-induced reoxygenation of

tumor tissue could be further enhanced by the addition of drugs that

increase local oxygen availability, such as oxygen mimetics (e.g.,

misonidazole), mitochondrial respiration inhibitors (e.g.,

atovaquone), carbogen gas breathing, or oxygen-carrying

nanoparticles (11, 28, 31).
2.3 Cancer stem cells

Cancer stem cells (CSCs) represent an important challenge of

cancer treatment. Indeed, this small subpopulation of cancer cells

promotes cancer initiation, progression, metastasis, treatment

resistance and recurrence (32–34). They possess some characteristics

of normal stem cells, such as self-renewal and unlimited proliferation

capacities (14, 31, 33, 35). CSCs are harbored particularly in hypoxic

areas of the tumor, because a hypoxic TME promotes stem-like

properties, inhibits cellular differentiation and apoptosis (32, 35, 36).

These specific microenvironments are called “niches”: they are

surrounded and symbiotically collaborate with cancer-associated

cells to increase proliferation, resist to treatment, evade the immune

system, metastasize and differentiate into multiple tumor cell types

(35, 37). Due to oxygen and nutrient local deprivation, a fraction of

CSCs, as well as chronically hypoxic tumor cells, is maintained in a

state of quiescence (i.e., cell cycle reversibly arrested in G0 phase).

Quiescent cells no longer undergo mitosis and upregulate their DNA

repair pathways, rendering them constitutively resistant to cytotoxic

treatments (32, 38) and DNA-damaging agents, such as RT (31–33,

37–39). Some evidences suggests that HTmay be able to radiosensitize

CSCs, as well as quiescent tumor cells, although the underlying

pathophysiological mechanisms are not fully understood, but

may include HT-induced TME reoxygenation and damage to DDRs

(14, 32, 33, 40, 41).
2.4 Immunostimulation

2.4.1 Hyperthermia-induced immunostimulation
HT possesses immunostimulatory effects only. During an

infection, the hypothalamus induces fever in response to elevated

blood levels of cytokines, especially IL-1, IL-6 and TNF-a. In
addition to inhibiting bacterial replication, fever creates a pro-

inflammatory state in tissues that allows for increased

immunogenicity of immune cells. The immune effects of fever

may be reproducible with local HT, potentiating immune

targeting of neoplastic cells escaping immunosurveillance (42).

Heat-induced activation of the immune system is mediated by

heat shock proteins (HSPs); they increase antigen presentation

and maturation of dendritic cells, stimulate the phagocytic

function of macrophages, induce the release of tumor neoantigens

from tumor cells, favor the proliferation and cytotoxicity of CD8+ T
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and NK cells, promote the activation and proliferation of B

lymphocytes and inhibit T-regulatory (Treg) cells. Heat-

stimulated macrophages produce cytokines that increase the

expression of cell-adhesion molecules on endothelial cells to

facilitate leukocyte infiltration into the tissue (42–46). Mild HT

also appears to induce immunogenic cell death (ICD), a specific

type of apoptosis that promotes an adaptive immune response (44,

45, 47). Finally, the vasodilatory effect and the increase in vascular

permeability produced by HT facilitate the arrival and penetration

of immune cells into the heated tissue (28, 43).

2.4.2 Radiotherapy-induced
immunostimulation/immunosuppression

RT, however , has bo th immunos t imula tory and

immunosuppressive effects. Indeed, RT induces local secretion of

certain immunostimulatory pro-inflammatory cytokines (IFNs, IL-

1b) that facilitate T-cell entry into the tumor (by upregulating

adhesion molecules on the endothelium) and induces activation and

enhanced antigen-presenting capacity of dendritic cells and T cells (22,

46–48). RT also appears to increase the expression of MHC-I and

NKG2D receptors on the tumor surface, which, respectively, facilitates

tumor cell recognition by T cells and enhances NK cells activity

and cytotoxicity (22, 48–50). RT is thus a known trigger of ICD (22,

48, 50, 51). However, RT induces the secretion of various chemokines,

some of which attract immunostimulatory cells (dendritic, T and NK

cells), but others immunosuppressing cells (Treg, tumor associated

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs)), the

latter facilitating tumor progression. Therefore, RT is considered a

double-edged sword, in terms of tumor immunogenicity (22, 48).

Ionizing radiation also damages leukocytes situated in the tumor and

stimulates the secretion of anti-inflammatory cytokines (TGF-b, IL-6,
IL-10, CSF-1), which reduce the antigen-presenting abilities of dendritic

cells, reduces T CD8+ lymphocytes cytotoxicity and CD4+ cell

differentiation, attracts cancer-associated fibroblasts (CAFs), creates a

radioresistant state in tumors and contributes to tumor cells’

proliferation and invasion (22, 48). Upregulation of PD-L1 has also

been observed after RT (22, 48, 52). Furthermore, doses >10Gy/fraction

destroy abnormal fragile tumor vessels: this not only impedes the

infiltration of immune cells into the tumor but also exacerbates local

hypoxia, thereby inducing tumor radioresistance (22).

Some evidence suggests that the addition of HT to RT leads to

an increase in tumor immunogenicity (53–56). However, to

optimize the combination of RT-HT from an immunostimulatory

point of view, a better understanding of the ideal parameters of

both modalities is needed: optimal fractionation, total dose and

sequence of RT with immune checkpoint inhibitors (ICIs) are

still under investigation, with data suggesting that moderate

hypofractionated regimens are the most promising (22, 48–50,

57), while for HT, the ideal temperature frame is unknown, with

fever-range temperatures up to 41°C being potential optimal HT

parameters for immunostimulation, as some immunostimulatory

effects only occur at specific temperatures (42, 43). In the context of

RT-induced immunostimulation, a rare, still increasingly sought,

phenomenon, called the abscopal effect, has been observed: it

consists of the regression of non-irradiated lesions, suggesting a

systemic and immunogenic effect of RT, a classically considered
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“local” treatment. Although incompletely understood, it seems that

the abscopal effect represents the distant effect of in-situ, tumor-

specific immunostimulation, through activation of antigen-

presenting cells following the local release of tumor-associated

antigens (TAAs) after RT, leading to the activation of T CD8+

lymphocytes and consequent tumor destruction by cell-mediated

immunity (22, 48, 49, 57). The abscopal effect seems indeed to occur

more frequently when ICIs are administered (48, 49, 57, 58).

Interestingly, putative abscopal responses have been reported in

patients treated with RT and HT, although these remain at an

exploratory level (59), with ferroptosis having been suggested as an

implicated mechanism (53–56). Importantly, ICIs can be added to

the combination of RT and HT, promising to further enhance the

immunostimulatory combination of both (42–45, 48–50).
3 Hyperthermia-intrinsic effects

3.1 Direct cytotoxicity related to
thermal shock

HT also exerts a direct cytotoxicity, which occurs particularly at

temperatures above ≈ 42°C and increases as the temperature rises

(14, 60). When a cell undergoes a thermal shock, intracellular

proteins are denatured and unfolded, and end up aggregating (14,

28, 61, 62). All cellular proteins are affected: nuclear proteins

malfunction, the cytoskeleton collapses and the organelles

responsible for protein production (ER and Golgi) are damaged.

Since nuclear proteins are fragile, a temperature of 40°C is sufficient

to damage them (28). The centrosome is also affected, leading cells

undergoing mitosis, particularly tumor cells which are unable to

slow replication to repair damage, to die by mitotic catastrophe

(62). Moreover, membrane lipids are altered, leading to increased

cellular membrane permeability and mitochondrial uncoupling

(28). Mitochondrial dysfunctions result in a significant release of

ROS, closing the circle by indirectly bringing linking HT to DNA

damage (18, 28). Through these various cellular pathways, HT

appears to have the capacity to kill a portion of heated tumor cells

by apoptosis (<43°C) or necrosis (>43°C), particularly in the most

acidic and hypoxic areas of tumors (14, 24, 28, 63). However, the

direct killing by HT seems to be significant only at temperatures

above those optimizing radiosensitization (14, 24). Furthermore,

protumorigenic endothelial cells and fibroblasts in the TME are

particularly sensitive to thermal shock (32). Interestingly, some

drugs can have a heat-sensitizing effect by modulating cell apoptosis

pathways (e.g., verapamil, lidocaine), as shown in vitro (61), which

suggests the theoretical opportunity to use thermos-sensitizers, a

nice parallel to the use of radiosensitizers to enhance RT efficacy.
3.2 Thermotolerance

Cells actively control the integrity of their proteins: after a heat

shock, unfolded and aggregated proteins result in the activation of

several HSPs, through the transcription of heat-shock factor 1

(HSF1) (28, 62, 64, 65). The activation of these specific
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chaperones, dedicated to maintaining cellular homeostasis, result

in several repair-related procedures, such as the reversal of heat-

induced protein misfolding, the elimination of irreparable proteins

or organelles in the lysosome (autophagy), the repair of the

centrosome and cytoskeleton, the upregulation of DNA-repair

proteins, the inhibition of apoptosis and the production of

paracrine signals inducing heat shock response in nearby cells

(28, 62, 64, 66). HSPs thus provide damaged cells with an

opportunity to repair themselves before dying, if the damage is

reparable (28, 62, 64, 66). Furthermore, HSP pathways are involved

in the promotion of local angiogenesis, cell proliferation, adhesion,

invasion and metastasis (62, 64, 66). Tumor cells exhibit numerous

cellular dysfunctions and thereby possess a high basal level of HSPs

activation, due to their hypoxic, acidic and nutrient-deprived

microenvironment as well as their rapid division and genomic

instability (64, 65, 67). Therefore, tumor cells under chronic

overexpression of HSPs are not only subject to resistance to HT

but also have an increased malignancy (28, 46, 62, 64–67).Following

HT, a transient activation of HSPs pathways results in a

temporary resistance to heat, a phenomenon known as

“thermotolerance” (28, 62). Thermotolerance appears a few hours

after a HT session, peaks at 24 hours, and may take up to 5 days to

resolve. The exact timing and intensity of the effect depends on the

cell type and the heating parameters (temperature, duration,

interval between sessions, etc.): for example, the higher the

temperature reached in the tumor, the longer the thermotolerance

seems to last (62, 68). This has important clinical implications, as

thermotolerance renders the radiosensitizing effect of HT transient,

thus requiring the therapeutic interventions to be performed within

an overall short time (short therapeutic window). It also requires

the HT sessions to be separated by at least 48–72 hours, limiting the

number of sessions that can be performed per week to one or two.

Indeed, performing daily HT sessions considerably reduces its effect

(28, 60, 68) and should be avoided. Alternatively, HSPs- inhibitors

can be applied to reduce thermotolerance and possibly decrease

tumor aggressiveness, but with the risk of a reduced heat-induced

immune response (28, 46, 62, 64–67, 69).
4 Key mechanisms of the interaction
between HT-RT

This work aimed to concisely review the underlying

mechanisms of interaction between RT and HT, with the goal of

bringing this synergistic effect closer to current clinical research

focus. Indeed, most of the hallmarks of cancer are addressed in a

beautifully complementary manner by the combination of the two

modalities (Figure 1):

DNA damage: As a major radiobiologic event, it depends on

ROS, leading to the temporary arrest of the cell cycle. If not quickly

repaired, it will lead to cell death. Tumor cells have a reduced

capacity of DNA-repair, thus are more sensitive to RT than healthy

cells. HT damages several DDRs, thus enhancing RT cytotoxicity.

Radioresistance is dominated by the cell cycle and the presence of

DDRs: thus, TRT reverses radioresistance.
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Hypoxia:Directly associated to radioresistance, hypoxia becomes

present as tumor grows and local vasculature becomes insufficient to

support its nutrient needs, leading to the development of an anarchic

vascular network, reducing local oxygen partial pressure (pO2). HT

vasodilates transitorily abnormal tumor blood vessels, inducing an
Frontiers in Oncology 05
increase in tumor perfusion. Therefore, the TME is reoxygenated,

reversing radioresistance. However, this mechanism is only valid for

temperatures <42°C.

Stemness:CSCs promote cancer initiation, progression, metastasis,

treatment resistance and recurrence and are harbored particularly in
FIGURE 1

Key mechanisms of the interaction between hyperthermia and radiotherapy. (A) The effect of radiotherapy on tumor and normal cells. Radiation
provokes DNA damage, in dividing cells, dependent on oxygen levels and therefore production of ROS. DNA breaks are repaired more readily in
normal cells than cancer cells. Vessels around tumor cells are abnormal and do not supply sufficient oxygen, leading to hypoxia and less radiation-
induced DNA damage. Cancer stem cells are in quiescent state and poorly affected by irradiation. Irradiation can also affect immune cells, such as
dendritic cells but its immunostimulatory role is context dependent. (B) The effect of radiotherapy combined with hyperthermia on tumor and
normal cells. Hyperthermia potentializes the effects of irradiation by reducing DNA damage repair, increasing oxygen levels by vessel dilation,
increasing ROS, bringing cancer stem cells out of their quiescent state, and stimulating the immune system such as dendritic and T-cells against
the tumor.
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hypoxic areas of the tumor, leading to radioresistance. HT appears to

radiosensibilize CSCs, although the underlying pathophysiological

processes are not understood.

Immunostimulation: HT possesses only immunostimulatory

effects, through inflammation, mediated by HSPs, leading to

increased immunogenicity, leukocyte infiltration, vasodilation and

ultimately ICD. RT produces both immunostimulatory and

immunosuppressive effects: by releasing TAAs, stimulating

inflammatory cytokines, promoting dendritic cells maturation and

preparing antigen presentation to T and NK cells by the immune

host system, it makes the tumor an in situ vaccine, while, by

damaging leukocytes situated in the tumor, stimulating other

anti-inflammatory cytokines and attracting CAFs/TAMs/MDSCs/

Treg, it can create a radioresistant state in tumors and upregulate

PD-L1. The RT-induced abscopal effect is an immunogenic effect

that could potentially be enhanced with TRT.

Two HT-intrinsic mechanisms of action, which represent

compensatory responses of cell to heat, are also described: direct

tumor kill related to thermal shock, present only at higher

temperatures, can further contribute to HT cytotoxicity;

thermotolerance, on the other hand, represents a limitation of HT

for anticancer treatments.
5 Challenges, perspectives,
and conclusion

Several physiological mechanisms explaining the synergy of

TRT are now understood. Nevertheless, other gray zones remain,

such as the optimal temperature for achieving the most effective

radiosensitizing effect, the duration of heat-induced vasodilation

(14, 24), the pathophysiology underlying CSCs and quiescent cells

radiosensitization by HT (32), the exact molecular mechanisms

underlying the DNA repair inhibition (18, 19) and the optimal

parameters to obtain clinically meaningful benefits from the TRT-

induced immunostimulation (42, 43) (22, 48–50).

Several strategies to enhance both the local and systemic effects

of TRT in tumor kill are attempted or provide interesting

opportunities to be explored: the addition of systemic therapies,

such as ICIs (43–45), drugs increasing local oxygen availability (11,

27, 30), vascular-disrupting agents (VDAs) (14, 70), DNA-repair

inhibitors (16, 18, 19), HSP inhibitors (28, 62, 69), antioxidant

enzyme inhibitors (12, 71) or heat-sensitizing molecules (61) could

theoretically increase the synergistic effect. This, however, remains

to be seen: the paradigm of radiation sensitizers and radioprotectors

and the challenges of its clinical implementation has shown that

these combinations can be challenging in terms of selectivity and

practical implementation (72).

Both the technological evolution as well as the improved

understanding at a mechanistic level, of both RT and HT, offers

exciting opportunities: high-precision radiotherapy, resulting in

oncological efficacy and remarkably improved treatment tolerance,

in the field of RT, improved heat delivery planning and thermometry

(e.g., MRI thermometry), accumulation of improved quality clinical

data, in the field of HT, promise new therapeutic opportunities for

modern TRT.
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An increasing number of preclinical and clinical studies are

focusing on heating tumors with nanoparticles: magnetic

nanoparticles (MNPs) generate heat when exposed to an

alternating magnetic field, while gold nanoparticles are excited by

light (73). Injected intravenously, nanoparticles have the advantage

to preferentially accumulate in tumor tissues due to the abnormal

permeability of their immature neo-vessels (Enhanced Permeability

and Retention effect). Absorbed by tumor cells through endocytosis,

nanoparticles can also directly cause various cellular dysfunctions,

such as oxidative stress, cytoskeleton disruption or DNA damage

(73, 74). Since nanoparticles hold great promise for heating tumors

more precisely and selectively, they are now being clinically tested in

association with RT for the treatment of glioblastoma and prostate

cancer, and are in preclinical stages for other indications (75, 76).

Although a lot needs to be undertaken before these advancements

become ready for prime-time, they promise high-precision TRT

and could permit to refine the already established synergy between

RT and HT. These perspectives hold promise for cancer cure and

merit study with established modern tools, incorporating

translational aspects that will then be brought to the patient.
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