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Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a

significant contributor to cancer-related mortality, characterized by an inherently

poor prognosis. This review aims to provide a comprehensive understanding of

pancreatic adenocarcinoma by examining its multifaceted etiologies, including

genetic mutations and environmental factors. The review explains the complex

molecular mechanisms underlying its pathogenesis and summarizes current

therapeutic strategies, including surgery, chemotherapy, and emerging modalities

such as immunotherapy. Critical molecular pathways driving pancreatic cancer

development, including KRAS, Notch, and Hedgehog, are discussed. Current

therapeutic strategies, including surgery, chemotherapy, and radiation, are

discussed, with an emphasis on their limitations, particularly in terms of

postoperative relapse. Promising research areas, including liquid biopsies,

personalized medicine, and gene editing, are explored, demonstrating the

significant potential for enhancing diagnosis and treatment. While immunotherapy

presents promising prospects, it faces challenges related to immune evasion

mechanisms. Emerging research directions, encompassing liquid biopsies,

personalized medicine, CRISPR/Cas9 genome editing, and computational

intelligence applications, hold promise for refining diagnostic approaches and

therapeutic interventions. By integrating insights from genetic, molecular, and

clinical research, innovative strategies that improve patient outcomes can be

developed. Ongoing research in these emerging fields holds significant promise

for advancing the diagnosis and treatment of this formidable malignancy.
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Introduction

Pancreatic cancer, characterized by its aggressive behavior, a

tendency for late-stage identification, and limited therapeutic

options, poses a significant challenge in the advancing field of

oncology (1). The tumor microenvironment (TME) comprises a

dynamic amalgamation of immune cells, extracellular matrix, and

stromal cells, significantly influencing the disease trajectory and

complicating treatment resistance (2). Epithelial-mesenchymal

transition (EMT) promotes cancer cell invasion and migratory

capabilities, intensifying cancer cell complexity. The immune

evasion mechanisms employed by pancreatic cancer cells pose a

formidable barrier to effectively utilizing immunotherapy,

necessitating innovative solutions (3).

Critical signaling pathways govern the crucible of cellular life.

Furthermore, persistent activation of the KRAS pathway is a

hallmark feature of uncontrolled cell survival and proliferation

(4). The Hedgehog and Notch pathways contribute to the

resilience of cancer stem cells, increasing their resistance to

treatment (5). Dysregulation of the PI3K/AKT/mTOR pathway

promotes increased cellular growth and survival (6). The Wnt/b-
catenin signaling pathway activates tumor growth, further

complicating the battle against pancreatic cancer (7). Surgical

excision remains the primary curative option for early-stage

patients (8). In more advanced stages, accepted standard-of-care

options include chemotherapy regimens such as gemcitabine,

FOLFIRINOX, and nab-paclitaxel (9). Localized tumors may

undergo radiation treatment to eliminate or reduce their

presence. Several targeted therapies, particularly PARP inhibitors,

are currently under rigorous investigation to treat pancreatic cancer

(10). Immunotherapy involving checkpoint inhibitors and vaccines

holds promise for enhancing the immune system’s response to

pancreatic cancer (11).

Liquid biopsies are being explored as noninvasive diagnostic

tools for the primary detection of pancreatic cancer, potentially

enabling intervention at a more treatable stage (12). Personalized

medicine approaches, tailored to individuals’ genetic and molecular

profiles, are poised to optimize therapeutic strategies, providing a

specialized toolkit against this resilient adversary. The application of

CRISPR/Cas9 genome editing tools for the exploration and

potential correction of genetic mutations is actively being

explored, revealing the possibility of addressing the illness at its

molecular origins. Artificial intelligence has been harnessed to

expedite the early identification and prediction of therapeutic

responses in pancreatic cancer patients, demonstrating the power

of technology to treat pancreatic carcinoma (13).

The primary objectives of this review are to provide a

comprehensive overview of the current molecular and genetic

landscape of PDAC, including an in-depth examination of key

molecular pathways such as KRAS, Notch, and Hedgehog, and

their roles in the pathogenesis and progression of the disease.

Additionally, this review aims to critically analyse existing

therapeutic strategies and their limitations, offering a thorough

evaluation of conventional treatments like surgery, chemotherapy,

and radiation, as well as emerging therapies such as immunotherapy
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and targeted molecular treatments. The challenges associated with

these treatments, particularly issues related to drug resistance and the

tumor microenvironment, will be highlighted. Furthermore, the

review seeks to highlight the potential of emerging diagnostic and

therapeutic technologies. This involves exploring novel approaches

such as liquid biopsies for early detection, personalized medicine

based on genomic and transcriptomic profiling, and the application

of CRISPR/Cas9 gene editing technology. The review aims to identify

key challenges and propose future research directions. This includes

recognizing major obstacles in the treatment and management of

PDAC, such as the tumor micro-environment and immune evasion

mechanisms. The review will propose future research directions

aimed at overcoming these challenges, thereby facilitating the way

for more effective diagnostic and therapeutic strategies.
Mechanistic insights

Pancreatic intraepithelial neoplasia (PanIN), a frequently

encountered preneoplastic lesion, serves as the primary instigator

of pancreatic cancer (14). Furthermore, more sophisticated

precursor abnormalities, such as mucinous cystic neoplasms and

intraductal papillary mucinous neoplasms (IPMNs), actively

contribute to the development of this condition (15). The

progression of pancreatic cancer involves complex molecular and

cellular processes, with distorted autocrine and paracrine signaling

pathways playing crucial roles in fostering the growth, migration,

invasion, and metastasis of cancer cells. Critical factors, including

transforming growth factor-a (TGFa) (16), insulin-like growth

factor 1 (IGF1) (17), fibroblast growth factors (FGFs) (18), and

hepatocyte growth factor (HGF) (19), along with their

corresponding tyrosine kinase receptors, such as epidermal

growth factor receptor (EGFR) (20), receptor tyrosine-protein

kinase erbB-2 (ERBB2/HER2) (21), HER3 (22), the IGF1 receptor

(IGF1R) (23), FGF receptors (FGFRs) (24), and the HGF receptor

(HGFR/MET) (25), trigger several pathways contributing to cell

growth (Figure 1).

Initial activation ensues upon ligand binding, activating EGFR and

forming heterodimers with the receptor tyrosine-protein kinase erbB-2

(ERRB2/HER2) and HER3 (26). The coexistence of oncogenic KRAS

and heightened ligand expression synergistically amplifies downstream

signaling cascades (27). Docking protein growth factor receptor-bound

protein 2 (GRB2)-associated binding protein 1 (GAB1) further

enhances the activation of both EGFR and the hepatocyte growth

factor (HGF) receptor (HGFR) (28). Prolonged signaling is sustained

through the overexpression of heparan sulfate proteoglycan glypican 1

(GPC1), which promotes mitogenesis, invasion, and metastasis via

canonical RAS, RAF, mitogen-activated protein kinase (MAPK), and

other pathways, including signal transducer and activator of

transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K), and

AKT pro-survival signaling (29).

The crucial adaptor protein fibroblast growth factor receptor

substrate 2 (FRS2) is indispensable for downstream signaling from

fibroblast growth factor receptor 1 (FGFR1), thereby activating the

Ras signaling cascade (30). Subsequently, MAPK translocate to the
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nucleus, where it coordinates transcriptional activities, including

the induction of hypoxia-inducible transcription factor 1 (HIF1)

(31). Concurrently, dysfunctional retinoblastoma-associated

protein (RB1) intensifies mitogenic signaling, potentially

converting transforming growth factor-beta (TGFb) into a direct

mitogen through noncanonical pathways (MAPK and PI3K).

Additionally, TGFb-mediated activation of WNT7B is facilitated

via a SMAD4-dependent mechanism (32).

Pancreatic cancer involves pathways that promote cell survival

and inhibit apoptosis, particularly pathways involving AKT, NF-kB,
and STAT3 (33). The reactivation of developmental genes such as

WNT, SHH, and NOTCH occurs in certain pancreatic tumors (34).

Aberrant crosstalk pathways and multiple nodes further compound

the complicated signaling network of pancreatic cancer. For

instance, heightened action of HGFR and EGFR leads to the

induction of neuropilin1, CD44, and b1 integrin, contributing to

an abnormal signaling node (35). The formation of heterodimers

between HGFR and EGFR aggravates this complexity (36).

Simultaneously, these molecular changes occur with the

deletion of CDKN2A, which is responsible for encoding the

tumor suppressor p16, and the activation of oncogenic KRAS

(37). Metabolic irregularities and a diminished response to

growth-inhibitory pathways mark pancreatic cancer. One example

of a lack of negative growth limitations is dysregulated TGFb
signaling, which is usually a tumor suppressor but paradoxically

promotes tumor development in pancreatic cancer. TGFb exerts

paracrine effects within the tumor microenvironment, augmenting

growth and metastatic processes (38).
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Moreover, pancreatic cancer cell proliferation is directly

stimulated by TGFb through noncanonical signaling pathways.

These pathways involve the phosphorylation of MAPK, the

proto-oncogene tyrosine-protein kinase Src (SRC), AKT

phosphorylation, and canonical SMAD4-dependent mechanisms

that lead to the upregulation of WNT7B expression (39).

Trametinib and binimetinib function as inhibitors of the

MAPK pathway.
Signaling pathways in
pancreatic cancer

K-Ras

K-Ras plays a vital role in pancreatic ductal adenocarcinoma

(PDAC), and K-Ras point mutations are highly prevalent among

most PDAC patients. These mutations underscore fundamental

genetic modifications originating in early pancreatic lesions,

especially in low-grade PanIN (40). The persistent proliferation

and survival of pancreatic cancer cells rely on the signaling activity

of K-Ras (41). The initiation of the KRAS protein triggers its

downstream intracellular pathways (Figure 2). Following the

activation of growth factor receptors, such as tyrosine kinase or

G-coupled receptors, growth factor receptor-bound protein 2

(GRB2) associates with the guanine nucleotide exchange factor

son of sevenless (SOS) and engages with the KRAS protein (42).

To be active, KRAS must be anchored to the cell membrane, where
FIGURE 1

Schematic representation of molecular events driving pancreatic cancer progression. Ligand binding to the Epidermal Growth Factor Receptor
(EGFR) initiates heterodimerization with ERRB2/HER2 and HER3. Co-occurrence of oncogenic KRAS mutations and elevated ligand expression
enhances downstream signaling. Growth factor receptor-bound protein 1 (GAB1) augments activation of EGFR and Hepatocyte Growth Factor
Receptor (HGFR). Glypican-1 (GPC1) maintains signaling pathways promoting mitogenesis, invasion, and metastasis via canonical RAS, RAF, MAPK,
STAT3, PI3K, and AKT pathways. Fibroblast growth factor receptor substrate 2 (FRS2) is crucial for downstream signaling from FGFR1, triggering the
Ras cascade. MAPK translocates to the nucleus to regulate transcription, including Hypoxia-Inducible Factor 1 (HIF1) induction. Dysfunctional
retinoblastoma protein 1 (RB1) exacerbates mitogenic signaling and may convert Transforming Growth Factor-beta (TGFb) into a direct mitogen
through non-canonical MAPK and PI3K pathways. TGFb-mediated activation of WNT7B occurs via a SMAD4-dependent mechanism. Elevated
expression of growth factor receptors, such as HGFR and EGFR, induces genes like Neuropilin1, CD44, and b1 integrin, contributing to metastasis,
proliferation, and invasion. Inhibitors such as Trametinib and Binimetinib target the MAPK pathway, while Bintrafusp alfa binds to TGFb, leading to
its blockade.
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influential membrane association occurs. Once this association is

established, KRAS becomes activated when it is bound to GTP (43).

Inherent KRAS GTP–GDP cycling is regulated by guanine

nucleotide exchange factors (GEFs), which facilitate nucleotide

exchange, and by GTPase-activating proteins (GAPs), which

accelerate the intrinsic GTP hydrolysis activity of KRAS (44). In

cases of KRAS mutation, the intrinsic GTPase activity is

compromised, impeding the role of GAPs in facilitating the

conversion of GTP to GDP (45). Consequently, KRAS remains

persistently bound to GTP, initiating downstream signaling

pathways. This, in turn, activates nuclear transcription factors,

ultimately leading to cellular processes such as proliferation,

survival, and transformation (46). The dysregulation of KRAS

function due to mutation underscores its pivotal role in driving

aberrant cellular activities associated with pancreatic cancer.

Mutations in codons G12D or G12V cause acinar to ductal

metaplasia and PanIN, which advances PDAC (47). Mutations in

tumor suppressor genes, viz. P16/CDKN2A, SMAD4, and p53,

combined with a positive K-Ras mutation, enhance cancer

development in mouse models (48).

Various downstream effectors, including classical Raf/MAPK/

extracellular signal-regulated kinase (Erk) (49), PI3Ks/(PDK-1)/

Akt, RalGEFs, and phospholipase Ce, play crucial roles in the

signaling cascade of K-Ras. Disruptions or mutations within these

downstream cascades introduce complexities in K-RAS-driven

PDAC (50). The presence of a persistently active oncogenic class

1A PI3K, such as PI3CA H1047R, hinders K-RasG12D-driven

PDAC, triggers acinar to ductal metaplasia, and initiates
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precancerous PanIN while also precluding the involvement of

PDK-1 (51). The most commonly used active suppressor in

pancreat ic cancer is P16/CDKN2A (52) . I t prevents

retinoblastoma from being phosphorylated by CDK4/6,

preventing cells from entering the S phase of the cell cycle (53).

Various factors contribute to P16/CDKN2A inhibition, such as

epigenetic suppression and homozygous deletion, highlighting the

critical role of this tumor suppressor gene in this disease (54).

Moreover, the haploinsufficiency of P16/CDKN2A, especially in K-

Ras-mutant mice, significantly advances the development of PanIN

lesions and PDAC (55). SMAD4, another notable tumor suppressor

gene, functions downstream of TGF-b signaling, exerting control

over cell cycle progression and promoting apoptosis. TGF-b triggers
the activation of Smad2 and Smad3, resulting in their binding with

Smad4. Subsequently, this complex relocates to the nucleus,

influencing gene expression (56).

In PDAC, SMAD4 loss promotes carcinogenesis and

potentiates K-RasG12D-driven acinar to ductal metaplasia,

PanIN, and PDAC (57). SMAD4 inactivation often occurs

through homozygous deletion, highlighting its crucial role as a

gatekeeper in pancreatic cancer (58). The tumor suppressor p53,

encoded by TP53, is mutated in most pancreatic cancer patients

(59). Interestingly, a heterozygous inactivating mutation

(p53R172H/+) in combination with K-RasG12D amplifies PanIN

and PDAC development in mouse models (60). Thus, p53 acts as a

crucial barrier against K-Ras-driven pancreatic carcinogenesis.

P53 regulates various cellular functions, including halting the cell

cycle, facilitating DNA repair, inducing senescence, and promoting
FIGURE 2

Schematic illustration of the central role of KRAS, particularly in its mutated form, in driving abnormal cellular activities associated with pancreatic
cancer. Activation of growth factor receptors engages critical mediators, including growth factor receptor-bound protein 2 (GRB2), the guanine
nucleotide exchange factor son of sevenless (SOS), and KRAS. Activation of KRAS, reliant on its membrane association and binding to guanosine
triphosphate (GTP), initiates downstream signaling pathways. The complex regulation of KRAS GTP–guanosine diphosphate (GDP) cycling is
governed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Mutations in KRAS disrupt this regulatory
mechanism, resulting in persistent GTP binding and continuous downstream signaling. This dysregulation impacts nuclear transcription factors,
influencing cellular proliferation, survival, and transformation. Abnormal expression of KRAS is associated with mutations in key genes such as TP53,
CDKN2A, and SMAD4, further promoting oncogenesis. KRAS activity also relates to the activation of Transforming Growth Factor-beta (TGF-b) and
subsequent downstream signaling. Therapeutic interventions targeting KRAS, such as Sotorasib and Adagrasib, are commonly used in the treatment
of pancreatic cancer.
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apoptosis (61). The deviant activation of K-Ras leads to mutations

in TP53, CDKN2A, and SMAD4, which propels the development

and progression of pancreatic cancer (62). These molecular

mechanisms highlight the challenges in targeting K-Ras directly,

as its mutational landscape and downstream signaling pathways are

highly complex and context dependent. Drugs such as sotorasib

(FDA-approved) and adagrasib target KRAS as therapeutic

interventions for various types of cancer, including pancreatic

cancer (63).
Notch signaling

The Notch signaling pathway significantly contributes to the

pathogenesis of pancreatic cancer by precisely governing cellular

processes, including proliferation, differentiation, and apoptosis,

and plays a vital role in growth and tissue homeostasis (64).

Dysregulation of Notch signaling promotes carcinoma initiation

and onset (Figure 3). The human Notch family comprises five

ligands (Delta-like 1, 3, 4, and Jagged 1, 2) and four receptors

(Notch1-4) (65). The initiation of Notch signaling involves ligand-;

receptor interactions, leading to the proteolytic cleavage of the

Notch receptor by g-secretase (66). During this stage, the Notch

intracellular domain (NICD) is liberated, moves to the nucleus, and

associates with Mastermind-like (MAML), CSL (CBF1/RBPJk in

mammals), and other coactivators. This associated assembly then

stimulates the transcription of target genes, including those

belonging to the Hes and Hey families (67).

Dysregulation of the Notch signaling pathway significantly

contributes to tumorigenesis within the context of pancreatic

cancer (68). Mutations that activate Notch receptors (NOTCH1
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and NOTCH2) have been detected in a subset of pancreatic cancer

cases, leading to ligand-independent activation of Notch signaling

(69). Additionally, an increase in the expression of Notch ligands,

namely, Jagged1 and Jagged2, further substantiates the

dysregulation of this pathway in pancreatic cancer (70). The

therapeutic target involves blocking the activity of g-secretase.
Drugs such as RG-4733 and nirogacestat are being tested in

clinical trials as inhibitors of g-secretase (71).
Hedgehog signaling

Hedgehog signaling has emerged as a pivotal pathway implicated

in advancing pancreatic cancer. While this cascade is vital for

embryogenesis and tissue homeostasis, it is associated with

pancreatic cancer (72) (Figure 4). The Hedgehog pathway

comprises three major components: Hedgehog ligands (Sonic

Hedgehog SHH, Indian Hedgehog IHH, and Desert Hedgehog

DHH) (73). Patched (PTCH) is a transmembrane receptor, while

Smoothened (SMO) is a G protein-coupled receptor-like protein.

PTCH inhibits SMO in the absence of Hedgehog ligands (74).

However, when Hedgehog ligands bind to PTCH, SMO is released

from inhibition, initiating downstream signaling events (75). The

aberrant activation of Hedgehog signaling in pancreatic cancer is

frequently linked to increased expression of the SHH ligand (76).

Furthermore, SHH overexpression is observed in pancreatic cancer

precursor lesions (PanIN) and invasive carcinoma (77). Genetic

alterations in Hedgehog pathway components, including mutations

in SMO and amplifications of GLI1 and GLI2 (downstream

transcription factors), contribute to the expression of

proproliferative and antiapoptotic genes such as Myc, Bcl-2,
FIGURE 3

Schematic representation of gamma-secretase activity in initiating the Notch signaling pathway, a critical system involving transmembrane receptors
(Notch1–4) and ligands (Delta-like 1, 3, 4, Jagged1, 2). Notch receptors on the cell surface interact with adjacent Delta and Jagged ligands, triggering
sequential proteolytic cleavages. Tumor necrosis factor-alpha-converting enzyme (TACE) or ADAM10 mediates the initial cleavage, followed by the
g-secretase complex executing the second cleavage. This process releases the Notch intracellular domain (NICD) from the cell membrane, allowing
its translocation to the nucleus. Inside the nucleus, NICD binds to the CSL transcription factor, displacing co-repressors and recruiting transcriptional
activators such as Mastermind-like1 (Maml). This activation leads to the transcription of target genes Hes and Hey, which regulate cellular
proliferation and differentiation. Gamma-secretase inhibitors (GSIs) impede the cleavage of Notch receptors by the g-secretase complex, preventing
NICD release and modulating Notch signaling. Therapeutic interventions, including drugs such as RG-4733 and Nirogacestat, act as inhibitors of
g-secretase.
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and Sox2. Importantly, Hedgehog signaling engages in crosstalk with

other pathways, particularly K-Ras and Notch, thereby influencing

the behavior of pancreatic cancer cells (78). This activation promotes

cancer stem cell characteristics and significantly contributes to tumor

initiation, progression, and therapeutic resistance development.

Sonidegib and vismodegib function as inhibitors targeting the

Smoothened (SMO) protein. These drugs work by interfering with

the activity of SMO, a vital component of the Hedgehog signaling

pathway (Supplementary Table S1).
PI3K/AKT/mTOR signaling

PI3K/AKT/mTOR signaling governs cell survival, proliferation,

and metabolism. Its dysregulation is common in pancreatic cancer,

contributing significantly to its aggressive phenotype (79). PI3K

triggers the activation of this pathway by phosphorylating

phosphatidylinositol 4,5-bisphosphate (PIP2) and produces

phosphatidylinositol 3,4,5-trisphosphate (PIP3) (80). PIP3

subsequently activates AKT, a serine/threonine kinase that

phosphorylates various downstream targets, including the

mammalian target of rapamycin (mTOR) (81). In pancreatic

cancer, the PI3K/AKT/mTOR pathway frequently undergoes

dysregulation due to genetic alterations. These alterations include

mutations in PIK3CA, which encodes the catalytic subunit of PI3K;

damage to the function of the tumor suppressor phosphatase and

tensin homolog (PTEN); and activating mutations in AKT1 (82).

These genetic changes result in sustained pathway activation,

promoting cell survival, proliferation, and resistance to apoptosis.

Furthermore, the PI3K/AKT/mTOR pathway engages in crosstalk

with other signaling pathways, including K-Ras and Notch, further

contributing to the overall complexity of pancreatic cancer signaling

networks (83).
Frontiers in Oncology 06
Wnt/b-catenin pathway

The Wnt/b-catenin signaling pathway is a pivotal regulatory

mechanism that governs diverse cellular processes, including cell

proliferation, differentiation, and survival. Dysregulation of this

pathway has been linked to the initiation and progression of

various cancers, including pancreatic cancer (84). Pancreatic

cancer exhibits complex molecular alterations, and disturbances

in the Wnt/b-catenin signaling pathway significantly contribute to

its pathogenesis. In the typical cellular environment of the pancreas,

the destruction complex involves APC, Axin, GSK-3b, and CK1,

coordinating the destruction of b-catenin (85). However, in

pancreatic cancer, various mechanisms contribute to the

abnormal initiation of the Wnt pathway. Wnt ligands,

particularly Wnt2 and Wnt5a, are frequently overexpressed,

initiating signaling through Frizzled receptors and LRP5/6

coreceptors. This binding event disrupts the destruction complex,

hindering the phosphorylation and degradation of b-catenin (86).

Stable b-catenin then translocates to the nucleus, where it forms a

transcriptional complex with TCF/LEF transcription factors (87).

This activation prompts the transcription of target genes, including

MYC and Cyclin D1, which are pivotal for fostering uncontrolled

cell proliferation and survival in pancreatic cancer (88). Genetic

mutations further accentuate Wnt pathway dysregulation in

pancreatic cancer. Mutations in APC or b-catenin result in

constitutive activation of the pathway, emphasizing the genetic

keystones of this aberrant signaling cascade (89).

The clinical significance of these molecular insights is

highlighted by experimental approaches directing the Wnt/

b-catenin pathway in pancreatic cancer (90). Investigations are

underway on small molecule inhibitors that disrupt crucial

components such as b-catenin or upstream regulators.

Nevertheless, translating these promising preclinical discoveries
FIGURE 4

In the absence of Shh ligand (left), the pathway remains inactive with Patched1 (PTCH1) inhibiting Smoothened (SMO), resulting in the sequestration
of GLI1 in the cytoplasm via Suppressor of Fused (SUFU). Upon the presence of Shh ligand (right), PTCH1 suppression of SMO is relieved, permitting
GLI1 to accumulate in the nucleus. This activation induces the transcription of target genes, promoting various oncogenic properties. Active
Hedgehog signaling leads to the activation of KRAS and its downstream signaling cascade. Therapeutic interventions such as Sonidegib and
Vismodegib act as SMO inhibitors, thereby disrupting the pathway.
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into effective clinical interventions requires thorough examination

through clinical trials that are tailored explicitly for patients with

pancreatic cancer. Furthermore, research has shown the potential

effectiveness of inhibiting the Wnt pathway in preclinical models of

pancreatic cancer (91, 92). For instance, inhibiting Wnt signaling

has been linked to reduced tumor growth and enhanced survival in

murine models (93, 94). These observations offer a compelling

rationale for exploring therapies targeting the Wnt pathway in the

clinical context.
Growth factor receptors

Pancreatic cancer is characterized by elevated levels of various

mitogenic growth factors and their corresponding ligands. This

includes heightened expression of epidermal growth factor (EGF)

and its associated receptor, EGFR, multiple ligands that engage with

EGFR, FGF and its receptor FGFR, insulin-like growth factor (IGF)

and its receptor IGFR, platelet-derived growth factor (PDGF), and

vascular endothelial growth factor (VEGF) (95). These signaling

molecules are excessively expressed in pancreatic cancer,

contributing to the aggressive nature of the disease.

Epidermal growth factor receptor in
pancreatic cancer

In neoplastic cells, the activation of EGFR can occur

inaccurately through various mechanisms, including ligand-

dependent dimerization, point mutations, partial deletions, or

overexpression (96). Increased expression of EGFR is linked to

structural or numerical alterations of chromosome 7, where the

EGFR gene is located (97). The c-ERBB-1 proto-oncogene encodes

EGFR, and while in the normal pancreas, c-ERBB-1 is expressed

exclusively in the islets of Langerhans, human pancreatic cancer cell

lines frequently demonstrate its overexpression, which is observed

in up to 85% of ductal adenocarcinomas (98). Pancreatic cancer is

characterized by the accumulation of numerous genetic alterations,

with early occurrences of KRAS mutations and EGFR gene

amplification occurring during disease progression (99).

Subsequent alterations involve p16 inactivation, and late changes

inactivate the TP53 and SMAD4 genes (100).

Importantly, ligands such as EGF and TGF-a play pivotal roles

in EGFR activation. Following ligand binding, EGFR undergoes

receptor homo or heterodimerization at the cell surface, followed by

internalization. Dimerization leads to phosphorylation of the

intracytoplasmic EGFR tyrosine kinase domain, which acts as a

binding site for signaling molecules such as RAS (101). Activation

of downstream pathways stimulates cellular proliferation,

angiogenesis, and metastatic development and inhibits apoptosis

(102). PDAC results from multiple mutations, with the initial

precursor lesion being intraepithelial pancreatic neoplasia

(PanIN). The progression from PanIN to invasive cancer involves

sequential steps, starting from PanIN-1 with Kras mutation and

telomere shortening to PanIN-2 with p16 inactivation and PanIN-3

with p53 and SMAD4 inactivation, culminating in invasive
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carcinoma (103). Acinar to ductal metaplasia (ADM) is

considered a crucial precursor in PanIN progression (104).

Other noninvasive pancreatic neoplasms include mucinous

cystic and intraductal mucinous neoplasms (105). Genome

sequencing has identified four genes frequently implicated in

PDAC: Kras, CDKNA2A/p16, SMAD4, and TP53 (106). Kras

oncogene mutations are predominant in PDAC, and their

association with EGFR activation suggests a mechanism in which

EGFR stimulation complements oncogenic pathways (107). Kras

mutations hinder the ability of the Kras protein to hydrolyze

guanosine triphosphate, maintaining the protein in an active

signaling state that activates other pathways, such as the Raf and

PI3 pathways (108).

Insulin-like growth factors and receptors
PDAC remains one of the most lethal cancer types due to its

aggressive nature and resistance to conventional treatments. In the

complex domain of pancreatic cancer progression, IGFs and their

associated receptors have emerged as central regulators, influencing

crucial processes such as angiogenesis, invasion, and cell survival

(109). IGFs, particularly IGF-1 and IGF1R, significantly influence

cancer biology. The IGF system is pivotal in regulating key

processes essential for tumorigenesis and metastasis in various

cancers, including pancreatic cancer (110). Increased expression

of IGF-1 and IGF1R in PDAC is closely associated with unfavorable

clinical outcomes, with elevated levels correlating with poor survival

rates and higher tumor grades, establishing them as prognostic

indicators for pancreatic cancer patients (111). In vitro

investigations employing models of pancreatic cancer have

provided valuable insights into the functional role of IGF-1

(112, 113).

Exogenous IGF-1 has been demonstrated to promote the

development of pancreatic cancer cells, underscoring its function

as a growth factor in disease progression (114). Furthermore, this

growth-promoting effect can be counteracted by using antibodies

designed to neutralize IGF-1, suggesting a potential avenue for

therapeutic intervention. Despite promising preclinical findings, the

translation of IGF1R-targeted therapies to clinical success has faced

obstacles. Clinical trials, exemplified by the phase III trial

investigating ganitumab, an antibody targeting IGF1R in

conjunction with gemcitabine for metastatic pancreatic cancer

patients, failed to yield a statistically significant improvement in

survival (115). Amgen’s discontinuation of the trial underscores the

challenges in translating preclinical success into meaningful clinical

benefits (116). The setbacks in clinical trials targeting IGF1R in

pancreatic cancer have raised critical questions about the

complexities of the IGF system in the clinical context. Potential

reasons for the lack of success may include adaptive resistance

mechanisms, patient population heterogeneity or the influence of

the tumor microenvironment. Future research endeavors should

focus on identifying the roles of IGF signaling in pancreatic cancer,

exploring combination therapies, and identifying potential

biomarkers for patient stratification. While IGFs and their

receptors drive the aggressive behavior of pancreatic cancer, the
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translation of knowledge into successful clinical interventions

remains a formidable challenge in the field of medical research.

Fibroblast growth factor receptor signaling
FGFR signaling is pivotal for cellular processes, including

proliferation, survival, and angiogenesis. Dysregulation of this

pathway has been implicated in various cancers, including

pancreatic cancer (117). A cascade of intracellular events occurs

upon the binding of fibroblast growth factors (FGFs) to their

corresponding FGFRs. This interaction initiates a structural

alteration in the receptor, promoting the autophosphorylation of

distinct tyrosine residues within the intracellular domain of FGFR.

This autophosphorylation activates the receptor, creating docking

sites for downstream signaling molecules (118). A crucial

downstream target of activated FGFR is FGFR substrate 2 (FRS2).

Upon FGF binding, FGFR initiates the phosphorylation of FRS2, a

pivotal event in transducing signals to downstream pathways (119).

Phosphorylated FRS2 is a scaffold for recruiting and activating

components in two principal molecular pathways, the PI3K/Akt

pathway and the rat sarcoma (Ras/MAPK) pathway, which are

critical cellular signaling pathways (120). As a scaffold,

phosphorylated FRS2 facilitates the recruitment and activation of

key signaling molecules. In the PI3K/Akt pathway, activated FRS2

promotes the activation of PI3K, generating phosphatidylinositol

(3,4,5)-trisphosphate (PIP3) and activating Akt, which is pivotal for

cell survival and proliferation (121).

Phosphorylated FRS2 stimulates the Ras/MAPK pathway, which

triggers the phosphorylation of mitogen-activated protein kinase

kinase (MEK), triggering the activation of MAPK (ERK), which is

renowned for its involvement in cellular proliferation and

differentiation (122). Upregulation of the FGFR-1 and FGFR-2

receptors and increased expression of their ligands (FGF1-7) have

been observed in a subset of pancreatic tumors. This dysregulation

contributes to enhanced angiogenesis and mitogenesis, which are

critical processes in cancer progression (123). The aberrant activation

of FGFR signaling establishes an environment conducive to tumor

growth and dissemination. Preclinical models of pancreatic cancer

have demonstrated the therapeutic potential of inhibiting FGFR

signaling. Approaches such as tyrosine kinase inhibitors, short

hairpin RNA (shRNA) targeting FGFRs, and the administration of

dovitinib have been explored. Inhibition of FGFR signaling in these

models resulted in significant anticancer effects, suggesting that FGFR

is a promising therapeutic target for pancreatic cancer (124–126).

Vascular endothelial growth factor
VEGF, a potent angiogenic factor, induces endothelial cell

proliferation and sustains cell viability through engagement with its

receptors, namely, VEGFR-1 and VEGFR-2 (127). In the context of

PDAC, dysregulation of VEGF signaling contributes to establishing a

proangiogenic microenvironment (128). Although PDAC is not

traditionally highly vascularized, increased expression of VEGF

mRNA has been consistently detected in tumor samples from

PDAC patients. This upregulation correlates with disease

progression and increased microvessel density, signifying an

essential function for VEGF in fostering an angiogenic phenotype
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within the TME (129). These findings indicate that increased VEGF

levels are associated with more aggressive tumor behavior, higher

rates of metastasis, and poorer prognosis. The elevated microvessel

density in response to heightened VEGF expression supports the

notion that angiogenesis is a dynamic and critical process in PDAC

progression (130).

Given the prominent role of VEGF in PDAC, therapeutic

interventions targeting the VEGF pathway have garnered attention

as potential strategies to prevent tumor growth and metastasis. In

murine specimens, TNP-40, an analog of the antiangiogenic agent

fumagillin, has demonstrated efficacy in reducing tumor growth and

metastasis in PDAC cell lines (131). This preclinical evidence suggests

that targeting angiogenesis through agents such as TNP-40 may have

therapeutic implications for PDAC management. In preclinical

studies involving pancreatic cancer, a viral vector containing PTK

787, a VEGFR tyrosine kinase inhibitor, has shown significant

promise in impeding the metastasis and growth of PDAC (132). By

specifically targeting the tyrosine kinase activity of VEGFR, PTK 787

interrupts downstream signaling cascades, mitigating the

proangiogenic effects induced by VEGF (133). This approach holds

the potential for developing targeted therapies that directly interfere

with the VEGF–VEGFR axis, thereby impeding angiogenesis and

disrupting the tumor’s ability to establish a robust blood supply.

VEGF’s influence on endothelial cell proliferation and survival

significantly contributes to the angiogenic microenvironment

observed in PDAC. As research in this field progresses, the

development of targeted therapies aimed at disrupting VEGF-

mediated angiogenesis holds promise for improving outcomes in

PDAC patients.
The receptor for advanced glycation end
products in pancreatic tissue

The transmembrane receptor, receptor for advanced glycation

end products (RAGE or AGER), is a member of the

immunoglobulin superfamily and is located in the class III region

of the major histocompatibility complex. Activation of this receptor

has been linked to the initiation of inflammatory processes, which

has implications for a spectrum of persistent ailments, such as

hyperglycemia, brain degeneration disorders, and cancer (134).

Recent studies have revealed the distinct roles of RAGE in

pancreatic tumorigenesis and drug resistance, revealing novel

therapeutic possibilities. Studies involving the suppression of

RAGE expression, either through knockdown or knockout

approaches, have demonstrated a notable delay in the growth of

pancreatic tumors driven by oncogenic KRAS (135–137). This

finding emphasizes that RAGE is a critical player in pancreatic

cancer progression. In addition to its role in tumorigenesis, RAGE

has emerged as a factor influencing drug resistance in pancreatic

cancer (138). Suppression of RAGE has been associated with a

reversal of drug resistance in experimental models (139), suggesting

that RAGE, beyond its involvement in tumor initiation and growth,

contributes to developing resistance mechanisms that often limit

the effectiveness of therapeutic interventions in pancreatic cancer.

RAGE alters the interaction between antiapoptotic pathways,

such as the IL6-pSTAT3 pathway, and autophagocytosis in the
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context of PDAC (140). Research involving the crossbreeding of

conditional KRASG12D/+ mice prone to developing pancreatic

cancer lesions with RAGE−/− knockout mice revealed a reduction

in pancreatic lesions and prolonged survival compared to those of

KRASG12D/+ RAGE+/+ mice (141). Another study revealed a

progressive increase in RAGE protein levels as pancreatic lesions

advanced, suggesting that RAGE is involved in PDAC initiation and

disease progression (142). Additionally, heightened expression of

RAGE was identified specifically within cancerous lesions, with no

such elevation observed in neighboring normal tissue (143).

Two noteworthy RAGE ligands, namely, S100P and high

mobility group box 1 (HMGB1), have undergone extensive

examination in the context of pancreatic cancer (144). S100P,

operating through a RAGE-dependent mechanism, stimulates the

proliferation and migration of human pancreatic cancer Panc-1

cells (145). Moreover, S100P has been shown to exhibit protective

effects against the cytotoxicity of 5-fluorouracil in Panc-1 cells

(146). Additionally, RAGE activation by HMGB1 was linked to

enhanced tumor growth, promoting the persistence of cancer cells

by upregulating autophagocytosis and inhibiting apoptosis (147).
Epithelial-mesenchymal transition

A substantial proportion of pancreatic cancer-related deaths can

be attributed to the pivotal role played by EMT in the rapid

progression of metastatic disease (148). Throughout EMT

progression, epithelial cells undergo a profound transformation

characterized by the loss of epithelial markers such as E-cadherin,

occludin, claudin, and laminin-1 while concurrently gaining

mesenchymal markers such as N-cadherin, vimentin, and

fibronectin (149). This phenotypic shift is a hallmark of EMT and

is linked to cancer cell invasion and metastatic potential. Dynamic

alterations in cellular identity are essential for the metastatic cascade

because they allow cancer cells to detach from the primary tumor,

infiltrate surrounding tissues, enter the bloodstream, and colonize

distant organs, particularly the liver (150). There are three distinct

types of EMT, and their occurrence is context-dependent. Type 3

EMT, which is observable in carcinoma cells, is relevant for invasion

and metastasis during tumor development (151). The activation of

EMT mechanisms in carcinoma cells underscores its pivotal role in

promoting the aggressive and metastatic behavior observed in

pancreatic cancer. Hyaluronic acid and collagen are examples of

insoluble components (152). Soluble elements in the extracellular

matrix, including Wnt, FGF, HGF, Notch, TGF-b family members,

TNF-a, and HIF1-a, synergistically contribute to cancer progression
by guiding the EMT process. These components create a dynamic

microenvironment that helps epithelial cells transdifferentiate into

mesenchymal phenotypes (153). Crucial signaling pathways

regulating EMT involve activating transcription factors such as

Zeb-1 and 2, Snail 1 and 2, and members of the bHLH family

(E12, E-47, and Twist). These transcription factors play a central role

in composing the molecular changes associated with EMT (154).

Furthermore, repression of the E-cadherin encoder (CDH1 gene)

has emerged as a shared feature among these transcription

factors (155).
Frontiers in Oncology 09
TGF-b is a crucial mediator of EMT in a variety of tumors. The

conventional TGF-b signaling pathway involves the binding of TGF-b
to a type II receptor, which enables the transactivation of type I

receptor (TbR I) (156). The serine/threonine kinase TbR I

phosphorylates SMAD2, resulting in the association of SMAD2 with

SMAD4. After nuclear translocation, this complex regulates target gene

transcription (157). The activation of the transcription factors Snail,

Zeb-1, Slug, and Twist is pivotal for the TGF-b-mediated induction of

EMT (158). In PDAC, TGF-b may engage a noncanonical pathway,

including the PI3K, ERK/MAPK, p38, RhoA, JNK, and other signaling

pathways (159). EMT responses in the Colo357 pancreatic cancer cell

line were not affected by RNA interference-induced SMAD4

knockdown (160). However, in alternative pancreatic cancer cell

lines, the induction of TGF-b-mediated EMT was efficiently

suppressed by the MEK-1 inhibitor PD98059 (161).

When a Wnt ligand is not present, b-catenin sequestration is

regulated through a degradation component comprising Axin,

adenomatous polyposis coli, glycogen synthase kinase-3 (GSK-3),

and CK-1 (162). This process begins with CK-1 phosphorylating b-
catenin at Ser45 (163). GSK-3 activates b-catenin by phosphorylating it
at Thr41, Ser33, and Ser37. This phosphorylation event triggers

ubiquitination, and subsequently, b-Trcp facilitates the proteasomal

degradation of b-catenin (164). The systematic elimination of b-
catenin prevents its nuclear buildup, impeding interaction with

DNA-bound TCF/LEF complexes and histone deacetylase (HDAC)

activity, ultimately suppressing Wnt target genes (165). Wnt ligands

bind to the Frizzled and LRP5/6 receptors, causing a complex to

develop, phosphorylating LRP5/6, stabilizing Axin, and facilitating

GSK-3 complex disassembly. This process inactivates cytosolic b-
catenin, allowing it to form a complex with TCF/LEF in the nucleus,

thereby regulating genes crucial for cell growth and proliferation (166).

In addition to its role in b-catenin regulation, GSK-3b also

promotes the phosphorylation and proteasomal degradation of

Snail (167). Conversely, Wnt suppresses GSK-3b activity, causing

increased Snail protein levels (168). K-Ras-induced activation of the

Wnt/b-catenin pathway upregulates EMT stimulators in cancer

cells (169). By decreasing the expression of Slug and Twist,

reinstatement of Wnt inhibitory factor 1 causes a reduction in the

levels of mesenchymal markers and an increase in epithelial

indicators. Inhibition of b-catenin through the use of small

hairpin RNA results in increased expression of E-cadherin,

coupled with a decrease in the levels of mesenchymal markers

such as vimentin, N-cadherin, and MMP-2 (170).

The Notch signaling pathway, which is integral to tissue

development and apoptosis, encompasses four Notch receptors and

five Notch ligands (Delta-like 1, 3, 4, Jagged-1, and 2) (171).

Activation ensues upon the binding of the Notch protein to a

neighboring cell’s receptor, initiating proteolytic cleavage facilitated

by metalloproteases, TNF-a converting enzymes, and g-secretase
(66). The resulting active Notch intracellular domain fragment

(NICD) translocates to the nucleus, where it forms a CSL-NICD

complex with the transcription factor CSL (CBF1, a suppressor of

Hairless, and Lag-1) (172). Functioning as a coactivator, this complex

recruits additional coactivators, including p300, activating Notch

target genes pivotal in governing cellular processes such as growth,

proliferation, angiogenesis, and programmed cell death (173).
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Noteworthy target genes implicated in solid and hematological

cancers include Cyclin D1, COX-2, Akt, MMP9, ERK, VEGF, c-

Myc, mTOR, NF-kB, p53, p27, and p21 (174, 175). The Notch

signaling pathway directly induces EMT by activating Slug and Snail-

1 (176). The depletion of Notch-2 or midkine suppresses EMT in

pancr ea t i c c ance r ce l l s through Notch-2 -med i a t ed

mechanisms (177).
Growth factors and EMT

The initiation of EMT in pancreatic cancer involves

relationships among distinct molecular entities, each contributing

unique functions to the dynamic process (Figure 5). Major surface

protease (MSP) collaborates with IGF1 to induce cellular growth

and survival, while tumor growth factor b (TGFb) orchestrates

alterations in cell morphology and promotes invasiveness (178).

This process is complemented by bone morphogenetic proteins

(BMPs), which influence cell differentiation and apoptosis, thus

impacting the plasticity of cancer cells undergoing EMT (179).

Recepteur d’Origine Nantais (RON) plays a pivotal role in

influencing cell motility and invasion by interacting with

neuropilin 1 (NRP1), which, in turn, contributes to angiogenesis

and neural guidance within the TME (180). Retinoic acid-induced 1

(Ra1) influences cell cycle progression in concert with extracellular

signal-regulated kinase (Erk), a key player in signaling cascades that

transduce external signals to the nucleus, thereby affecting the

cellular changes observed during EMT (181). Histone deacetylases

1 and 2 (HDAC1/2) modulate gene expression through epigenetic

regulation, while Msh homeobox 2 (MSX2) influences cell
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differentiation and migration (182). S100 calcium binding protein

A4 (S100A4) impacts cytoskeletal dynamics and motility and is

crucial for the migratory aspects of EMT (183). ZO-1 contributes to

cell adhesion and polarity through its role in tight junctions (184).
Hippo signaling pathway

Pancreatic cancer, a formidable challenge in oncology, demands a

comprehensive understanding of the underlying molecular pathways.

The Hippo signaling network is a conserved system that governs

cellular proliferation, organ growth, and regenerative processes

(Table 1). At its core are the serine/threonine kinases MST1,

MST2, LATS1, and LATS2 (200). MST1 and MST2 phosphorylate

and activate the LATS1 and LATS2 kinases in collaboration with

SAV1 (201). Subsequently, MOB1 binds to LATS1 and LATS2,

leading to the phosphorylation of the Hippo transducers YAP and

TAZ (202). This phosphorylation impedes the accumulation of YAP

and TAZ in the nucleus and their interaction with TEAD

transcription factors (201). When the regulatory module is inactive

or when independent stimuli activate YAP/TAZ, these molecules

translocate to the nucleus, where they engage with transcription

factors (203). This interaction initiates the transcription of target

genes, including CTGF, CYR61, ANKRD1, BIRC5, and AXL (204).

Mechanical stimuli in the cellular environment (mechano-

transduction), soluble substances, and metabolic pathways

collectively impact the Hippo signaling pathway. Additionally, the

system extensively communicates with other signaling pathways,

such as the TGF-beta, Wnt, Sonic Hedgehog, and Notch

pathways (205).
FIGURE 5

Illustration of the initiation of epithelial-mesenchymal transition (EMT) in pancreatic cancer through the activation of growth factor signaling
cascades and the modulation of EMT-associated genes. Interaction between growth factors and their respective receptors initiates the expression of
genes associated with EMT. Key molecular players involved in this process include Macrophage-Stimulating Protein (MSP), Insulin-like Growth Factor
1 (IGF1), Transforming Growth Factor-beta (TGFb), Bone Morphogenetic Proteins (BMPs), Recepteur d’Origine Nantais (RON), Neuropilin-1 (NRP1),
Ras-like GTPases (Ra1), Extracellular signal-Regulated Kinases (Erk), Histone Deacetylases 1/2 (HDAC1/2), Msh Homeobox 2 (MSX2), S100 Calcium-
Binding Protein A4 (S100A4), and Zonula Occludens-1 (ZO-1). The complex interaction among these molecular components promotes the induction
of EMT in pancreatic cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1427802
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mustafa et al. 10.3389/fonc.2024.1427802
Snail transcription factors

Snail-1 and Snail-2 are transcription factors that play pivotal

roles in regulating the initiation of EMT, a crucial process

implicated in the progression and metastasis of pancreatic cancer.

These transcription factors are characterized by their conserved

C2H2-type zinc finger motifs and the essential Snail1/GFI domain

at the amino terminus, which is critical for maintaining the
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transcriptional suppression of target genes and protein stability

(206, 207). In PDAC, Snail and its closely related family member

Slug have emerged as key mediators of EMT. Furthermore, Slug is

present in 50% of PDAC patients, while Snail expression is detected

in a striking 68% of cases (208). Elevated Snail expression levels in

pancreatic cancer have been associated with lymph node invasion

and distant metastasis, underscoring its role in promoting invasive

and metastatic behavior. When pancreatic cancer cell lines are
TABLE 1 The Hippo signaling pathway regulates cell processes involving MST1, MST2, LATS1, and LATS2 kinases.

Hippo Signaling
Component

Description Function References

MST1 and MST2
(HPO in Drosophila)

Serine/threonine kinases constitute the foundational
mechanisms of the Hippo cascade and collaborate with
Salvador homolog 1 (SAV1) to execute the phosphorylation
and activation of LATS1 and LATS2 kinases.

Initiates the phosphorylation cascade that regulates the
downstream elements of the Hippo transduction. Prevents
nuclear accumulation and communication of YAP and TAZ
with transcription factors.

(185)

LATS1 and LATS2 Large tumor suppressor 1 and 2 kinases activated by MST1
and MST2. Combine with MOB kinase activator 1 (MOB1)
to phosphorylate Hippo transducers YAP and TAZ.

The phosphorylation of YAP and TAZ obstructs their
accumulation in the nucleus and their engagement with
transcription factors, limiting their ability to carry out
transcriptional activities.

(186)

SAV1 Salvador homolog 1 works with MST1 and MST2 to activate
LATS1 and LATS2 kinases.

Facilitates the phosphorylation and stimulation of LATS1
and LATS2 kinases

(187)

MOB1 Adaptor protein that interacts with LATS1 and
LATS2 kinases.

Forms a complex with LATS1 and LATS2, leading to the
phosphorylation of YAP and TAZ in the Hippo
signaling pathway.

(188)

YAP Hippo transducer, upon phosphorylation, causes inhibition
in the nuclear buildup and communication with
transcription factors, including TEAD1, TEAD2, TEAD3,
and TEAD4.

Phosphorylation by LATS1 and LATS2 inhibits YAP’s
transcriptional activity.

(189)

TAZ (Transcriptional
co-activator with
PDZ-binding motif)

The Hippo transducer, akin to YAP, undergoes regulation
through phosphorylation. Phosphorylated TAZ experiences
inhibition in nuclear accumulation and interaction with
transcription factors.

Phosphorylation by LATS1 and LATS2 inhibits TAZ’s
transcriptional activity.

(190)

TEAD (TEA
Transcriptional
Factor)

Transcription factors that interact with YAP and TAZ when
not phosphorylated.

YAP and TAZ, in their non-phosphorylated state, interact
with TEAD transcription factors, directing the transcription
of target genes associated with cell proliferation and growth.

(191)

Connective Tissue
Growth
Factor (CTGF)

Target genes of the Hippo pathway under the regulation of
YAP and TAZ.

Expression of CTGF is mediated by YAP and TAZ when
not phosphorylated, contributing to cell proliferation and
tissue growth.

(192)

Cysteine-rich
Angiogenic Inducer
61 (CYR61)

YAP and TAZ regulate the target gene of the
Hippo pathway.

CYR61 expression is influenced by YAP and TAZ, playing a
role in angiogenesis.

(193)

Ankyrin Repeat
Domain 1 (ANKRD1)

The Hippo pathway, subject to regulation by YAP and TAZ,
influences target genes.

ANKRD1 expression is modulated by YAP and TAZ,
contributing to various cellular processes.

(194, 195)

Baculoviral Inhibitor
of Apoptosis Repeat-
containing 5 (BIRC5)

YAP and TAZ regulate the target gene of the
Hippo pathway.

BIRC5 expression is influenced by YAP and TAZ, playing a
role in apoptosis regulation.

(196)

AXL Receptor
Tyrosine
Kinase (AXL)

YAP and TAZ regulate the target gene of the
Hippo pathway.

AXL expression is modulated by YAP and TAZ, influencing
cellular responses.

(197)

Inputs Control
Hippo Signaling

A variety of inputs, including mechanical cues from the
cellular surroundings, soluble substances, and pathways
related to metabolism.

Multiple external factors, such as mechanical signals, soluble
factors, and metabolic pathways, influence Hippo signaling.
These inputs play a role in controlling cellular proliferation
and development.

(198)

Crosstalk with
Other Signaling

The Hippo pathway interacts with different signaling
pathways, including transforming growth factor-beta, Wnt,
Sonic Hedgehog, and Notch.

Interactions with multiple signaling pathways coordinate
cellular processes, encompassing cell proliferation
and differentiation.

(199)
It controls YAP and TAZ translocation, influencing target gene transcription and crosstalk with various signaling pathways.
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transfected with Snail, they exhibit increased invasive and

metastatic potential in orthotopic pancreatic cancer models,

manifesting EMT characteristics during the invasive phase of

tumor progression (209).

Importantly, the inhibition of Snail amplifies the response to the

chemotherapeutic agent gemcitabine and contributes to extended

overall survival in a murine model engineered for PDAC (210). This

finding highlights the potential therapeutic benefits of targeting

Snail in pancreatic cancer treatment. The mechanisms by which

Snail exerts its pro-metastatic effects in pancreatic cancer involve

suppressing genes crucial for maintaining the epithelial phenotype,

such as occludin, E-cadherin, claudin, and cytokeratin-18, while

simultaneously promoting the expression of mesenchymal genes

like N-cadherin, vimentin, and fibronectin (211). Moreover, Snail

governs the expression of genes linked to apoptosis (P53, BID, and

DFF40) and cell polarity (Crumbs3, Lgl2, and dlg3), with a

particular emphasis on downregulating the key epithelial marker

E-cadherin (212).
Zeb transcription factors

Numerous studies have examined the Zeb family of

transcription factors, demonstrating their important function as

strong EMT inducers (213). Interestingly, there is a positive

correlation between elevated Zeb-1 expression in the tumor-

associated stroma and pancreatic cancer cells and a poor

prognosis for individuals with PDAC. Examination of human

tissue specimens and pancreatic cancer cell lines revealed a

connection between Zeb-1 and the expression of E-cadherin

(214). Inhibition of Zeb-1 has been associated with notable

decreases in cell migration, tumorigenesis, and dissemination

(215). Research indicates that decreased expression of essential

components related to epithelial development, cellular adhesion,

and cellular polarity is a recognized consequence of heightened

Zeb-1 expression (216). Specifically, Zeb-1 selectively engages either

HDAC-1/2 or the switch/sucrose nonfermentable chromatin

remodeling protein BRG1 at the promoter region of the CDH-1

gene, resulting in a reduction in E-cadherin synthesis (217).

Consequently, inhibiting Zeb-1 has emerged as a potentially

impactful treatment strategy for individuals with PDAC.
bHLH Transcription factors

bHLH proteins, including E12, E47, Twist 1, and Twist 2, which

are essential EMT players (218), have been investigated. EMT is

actively promoted by E47 and E12, which suppress the production

of E-cadherin (219). Twists 1 and 2, which have been identified as

the primary regulators of EMT during pathogenesis, play important

roles (220). Patients with PDAC typically have very weak or no

Twist expression in their samples (221). Comparably, whereas

Twist expression is enhanced under hypoxic conditions,

pancreatic cancer cell lines such as PANC-1, MiaPaCa-2, Capan-

1, AsPC-1, and HPAF-2 cells exhibit low Twist expression,
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suggesting a possible role for Twist in the invasive nature of

pancreatic tumors (222). Twist has been linked to decreased E-

cadherin expression and increased N-cadherin expression (223).

Twist engages with various elements of the Mi2/nucleosome

remodeling and deacetylase complex, contributing to the

inhibition of E-cadherin transcription (224).
The tumor microenvironment in
pancreatic cancer

TME is characterized by distinct physical and biochemical

properties that promote interactions between stromal and

malignant cells to drive metastasis, carcinogenesis, disease

progression, and resistance to treatment (225). In addition to

the resistance linked to desmoplasia, pancreatic cancer is

characterized by a very immunosuppressive environment with

several components and processes that obstruct efficient immune

responses directed against malignancy (226). Due to the many

immunological regulatory cells that enter the pancreatic cancer

stroma, the principal processes of the TME are challenging to

understand. Important TME constituents include soluble factors,

immune cells, acellular stroma, and pancreatic stellate cells (227).

Desmoplasia, a condition in which hyperactive cancer-associated

fibroblasts deposit abnormal ECM, primarily fibrillar type I

collagen, is a characteristic of PDAC (228). Disruption of cell-

ECM homeostasis and stromal remodeling are linked to treatment

resistance and metastasis during cancer progression (229). A

thorough mechanistic understanding of PDAC pathophysiology

requires additional sophisticated in vitro and in vivo models

owing to the critical interactions between the tumor and the

stromal extracellular matrix. The roles of the TME, constituents,

and consequences in PDAC are listed in Table 2.

The interstitial matrix (IM) and basement membrane (BM)

make up the ECM found in both PDAC and normal tissues (240).

BM is a thin, sheet-like structure that provides polarization and

protection to epithelial cell layers. It primarily comprises laminin,

nonfibrillar type IV collagen, and heparan sulfate proteoglycans

(241). In contrast, specific mesenchymal cells, such as fibroblasts,

inhabit the IM and are primarily composed of fibrillar type I

collagen (242). According to one study, collagen density may play

a role in cancer cells’ ability to evade the immune system by acting

as a unique anticancer T-cell function controller in three-

dimensional T-cell culture (243). The expression of cytotoxic and

regulatory markers is influenced by collagen density, which also

affects the activity of T lymphocytes that infiltrate tumors (243).

Like collagens, fibronectin has distinct impacts on the biology of

prostate cancer and serves as a connecting protein between

integrins and collagens, promoting the function of collagens

(244). Fibronectin promotes the malignancy and fibrogenesis of

PDAC cells, as evidenced by its involvement in pancreatic stellate

cell ECM creation and PDAC cell penetration into the basement

membrane (245).

In the stroma of malignant tumors, including PDAC,

hyaluronan (HA), a significant ECM component, accumulates
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abundantly. This accumulation is associated with the advancement

of tumors, as it stimulates cellular proliferation, movement,

infiltration, metastasis, angiogenesis, and resilience to

chemotherapy (246). According to research, HA and its receptors

are overexpressed in PDAC, and abnormal HA buildup is

associated with a poor prognosis (247). Therefore, targeting HA

may have therapeutic benefits in the treatment of PDAC. The TME

is maintained by ongoing interactions among cells and between

cells and the extracellular matrix, and the initiation of interactions

between epithelial cells, pancreatic cancer cells, and stromal cells in

the TME is critical for drug resistance and the progression of

connective tissue in primary and metastatic locations (248).

TME components can promote EMT and angiogenesis, which

contribute to the capacity of pancreatic cancer to spread.

Furthermore, the TME complicates immunotherapeutic

treatments (249). Tumor-infiltrating lymphocytes (TILs),

including CD8+ T cells and CD4+ helper T1 lymphocytes, are

related to positive outcomes, whereas CD4+ helper T2 lymphocytes

are linked to unfavorable patient survival (250). Immune and

inflammatory cells play essential roles in the TME of pancreatic

cancer, contributing to chemotherapy resilience and serving as early

contributors to carcinogenesis and metastasis.
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Therapeutic approaches for
pancreatic cancer

Pancreatic cancer poses a significant challenge in oncology

because of its aggressive behavior and restricted treatment

modalities. This study examined an integrative strategy that

combines conventional medical interventions with complementary

and alternative therapies to improve the comprehensive well-being of

individuals with pancreatic cancer.
Noncoding RNA

Noncoding RNAs (ncRNAs) are a different family of molecules

that play critical regulatory roles in several life processes, including

pathological illnesses such as cancer, cardiovascular disease, and

neurodegenerative disorders (251). MicroRNAs (miRNAs) and

synthetic antagomirs, which have an approximate length of 22

nucleotides, are crucial in the delicate arrangement of cellular

processes and significantly influence cellular proliferation,

apoptosis, and autophagy (252). Among them is miR-203,
TABLE 2 Tumor microenvironment characterization, constituents, and consequences in pancreatic ductal adenocarcinoma.

TME
Component

Description Role in Pancreatic Cancer References

Immune Cells Various immune regulatory cells in the heterogeneous
pancreatic cancer stroma contribute to an
immunosuppressive environment.

Contribute to therapeutic resistance and influence
immune responses.

(230)

Pancreatic
Stellate Cells

Cancer-associated fibroblasts in a heightened state deposit a
substantial extracellular matrix (ECM), predominantly
consisting of fibrous type I collagen, leading to the
development of desmoplasia.

Involved in the advancement of cancer, the spread of cancer
cells, and resistance to drugs.

(231)

Acellular Stroma The extracellular matrix (ECM) lacks cellular components, a
key element of desmoplasia in pancreatic cancer.

Contributes to the remodeling of the stroma and the
dysregulation of cell-ECM homeostasis.

(232)

Soluble Factors Various signaling molecules and cytokines in the TME
influence cell behavior and communication between
oncogenic and stromal cells.

Contribute to the advancement of the disease and resistance
to therapeutic interventions.

(233)

Basement
Membrane (BM)

A slender, sheet-like arrangement primarily composed of
laminin, non-fibrous type IV collagen, and heparan sulfate
proteoglycan acts as a protective and polarizing barrier for
layers of epithelial cells.

Important in maintaining epithelial cell integrity
and polarization

(234)

Interstitial
Matrix (IM)

The ECM, rich in fibrillar type I collagen, accommodates
distinct mesenchymal cells like fibroblasts.

Crucial for mesenchymal cell support and function (235)

Collagen Density Collagen density, a significant component of the ECM,
influences tumor-infiltrating T-cell activity and may regulate
immune evasion by cancer cells.

Modulates T cell activity, affecting the expression of cytotoxic
and regulatory markers

(236)

Fibronectin Protein bridges collagens and integrins, promoting collagen
activity and implicated in the infiltration of PDAC cells into
the basement membrane.

Contributes to the spite of PDAC cells and the process
of fibrogenesis.

(237)

Hyaluronan (HA) Richly gathered in the stroma of malignant tumors, including
PDAC, associated with tumor progression, promoting various
cancer-related processes.

Linked to cellular activities such as proliferation, migration,
invasion, metastasis, blood vessel formation, and resilience
against chemotherapy.

(238)

Tumor-Infiltrating
Lymphocytes (TILs)

CD8+ T lymphocytes and CD4+ helper T lymphocytes,
where CD8+ is linked with favorable outcomes, while CD4+
helper T2 lymphocytes negatively impact patient survival.

Play a crucial role in immune responses, influence
patient prognosis

(239)
frontiersin.org

https://doi.org/10.3389/fonc.2024.1427802
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mustafa et al. 10.3389/fonc.2024.1427802
which has received attention for its suspected anticancer effects via

precise gene expression control (253). Furthermore, the discovery of

circulating miRNAs with possible biomarker value offers promise

for noninvasive surveillance of the dynamic evolution and severity

of pancreatic cancer (254). MiRNAs such as miR17-92 (255) and

miR-21 limit cellular growth (256), while miR-126 acts as an

antioncogene (257). Additional complexities emerge with miR-

15b and miR-155, which are involved in mutation accumulation

(258), and with miR-10b and miR-29, which are critical for

triggering metastatic pathways (259). The complex interaction

includes miRNAs such as let-7d, miR-23b, miR-126, and miR-

200c, which promote inflammatory responses (260, 261), and miR-

21 and miR17-92, which decrease immune cell clearance (262). Let-

7, miR-16, miR-21, and miR-221/222 all play roles in the

maintenance of replicative immortality, demonstrating the

extensive regulatory networks mediated by these small RNA

species (263–266).

MiR-203 has emerged as a crucial regulator in pancreatic

cancer, limiting cell invasion and migration through the targeted

control of caveolin-1 (267). Its downregulation in pancreatic

cancers emphasizes its importance in disease genesis. Other

miRNAs, such as miR-21, miR-155, miR-221, miR-222, miR-

376a, and miR-301, contribute significantly to tumorigenic

qualities by altering the expression of DJ-1 and affecting the

PTEN-PI3K/AKT pathway (268) . In addit ion to this

complication, miR-203 has dual functions in pancreatic cancer,

limiting cell proliferation while simultaneously promoting

apoptosis via precise changes in the expression of suppressor of

cytokine signaling 3 (SOCS3) (269). However, the specific

molecular processes and crucial functions of miR-203 in

pancreatic cancer remain unknown.
Chemotherapy

Pancreatic cancer therapy presents a daunting challenge, as a

multimodal strategy that considers the disease stage, the patient’s

general health, and the development of research is needed. Surgical

intervention is often the first option for resectable tumors, with the

possibility of a cure if the cancer is restricted to the pancreas.

Adjuvant chemotherapy becomes critical after surgery, with regular

use of medicines such as gemcitabine, fluorouracil (5-FU),

capecitabine, oxaliplatin, and irinotecan (270). Oxaliplatin, a

platinum-based drug, induces cross-linking in DNA, affecting the

nucleotide excision repair (NER) cascade and activating the DNA

damage response (DDR) pathway (271). Erlotinib, an oral EGFR

inhibitor, disrupts essential signaling pathways and is particularly

effective in treating tumors with EGFR abnormalities (272).

Gemcitabine targets the deoxycytidine pathway and affects the

nucleotide pool, mainly affecting the cell cycle and DNA synthesis.

The DNA synthesis and repair route is the primary signaling

mechanism affected by gemcitabine (273). Gemcitabine is a

nucleoside analog that has structural similarities with DNA.

During replication, gemcitabine enters the cell, becomes

phosphorylated, and joins the growing DNA chain. This insertion

stops the DNA chain from elongating and stops further synthesis
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from occurring. Gemcitabine thus causes cell cycle arrest in the S

phase, the stage at which DNA synthesis occurs (274).

A series of events, such as activating cell cycle checkpoints and

DNA damage response pathways, are initiated when DNA

replication stalls. Additionally, gemcitabine prevents the

manufacture of deoxyribonucleotides, which are necessary

building blocks for DNA replication, by inhibiting ribonucleotide

reductase (275). Gemcitabine further inhibits DNA synthesis by

reducing the intracellular pool of deoxyribonucleotides (276). By

targeting the dynamics of microtubules inside cells, nab-paclitaxel

affects signaling pathways linked with microtubules (277). The

ability of paclitaxel, the active ingredient of nab-paclitaxel, to

stabilize microtubules is its primary mode of action. Dynamic

structural elements of cytoskeleton microtubules are essential for

many cellular functions, including mitosis (278).

In particular, nab-paclitaxel disrupts the normal dynamics and

function of microtubules by interfering with their disintegration

during mitosis. This perturbation stops the cell cycle in the G2/M

phase, triggering apoptosis or programmed cell death (279). Nab-

paclitaxel disrupts the mitotic spindle machinery necessary for

appropriate chromosomal segregation during cell division by

targeting microtubules and altering their regular movements

(280). Although nab-paclitaxel primarily affects microtubule

stability and the accompanying effects on cell cycle progression, it

also indirectly affects several signaling pathways linked to cell

survival and division (281). Targeting the thymidylate synthase

enzymes 5-fluorouracil (5-FU) and capecitabine—essential drugs

for treating different types of cancer—has a similar mechanism of

action that involves interfering with DNA synthesis (282). When

administered intravenously, 5-FU acts as an antimetabolite,

inhibiting DNA replication and repair by impeding the

transformation of deoxyuridine monophosphate (dUMP) to

deoxythymidine monophosphate (dTMP) (283).

The main protein target of 5-FU is thymidylate synthase. When

this enzyme is inhibited, many biological reactions are triggered,

including the activation of cell cycle checkpoints, DNA damage

response pathways, and death (284). In contrast, capecitabine is an

oral prodrug that enters tumor cells and proceeds via enzymatic

conversions to produce 5-FU (285). Like 5-FU, which is delivered

directly, 5-FU inhibits thymidylate synthase once it is converted to

exert its antimetabolite effects (286). The protein target for

thymidylate synthase remains constant, causing errors in DNA

synthesis and other cellular reactions that result in cell cycle arrest

and death (287). Oxaliplatin is a platinum-based chemotherapeutic

drug that mainly targets guanine nucleotides in genomic DNA by

forming covalent DNA adducts (288). DNA strands become cross-

linked due to this contact, making it more difficult to separate

during vital biological functions such as transcription and

replication. The resulting structural damage causes apoptosis and

cell cycle arrest, which enhances the therapeutic effectiveness of

oxaliplatin. Although oxaliplatin has a primary effect on DNA, it

also indirectly affects cellular proteins involved in DNA repair,

namely, those involved in the NER pathway (288).

Proteins in this field include XPC (Xeroderma pigmentosum

complementation group C), XPA (Xeroderma pigmentosum

complementation group A), and ERCC1 (excision repair
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cross-complementation group 1) (289). Within the signaling

pathway domain, the DDR pathway is activated by oxaliplatin-

induced DNA damage. Essential proteins in this pathway, such as

the ATM-encoded ataxia-telangiectasia mutated (ATM) protein

and the ATR-encoded ataxia-telangiectasia and Rad3-related

(ATR) protein, are critical for detecting DNA damage and

coordinating biological reactions (290). These defense

mechanisms include inducing cell cycle arrest, facilitating DNA

repair, and encouraging apoptotic cell death if the damage is

not repaired.

As an oral EGFR inhibitor, erlotinib plays a crucial role in

cancer therapy by interfering with vital signaling pathways essential

for cell survival and proliferation (291). Hepatic metabolism, which

is primarily controlled by the cytochrome P450 enzyme system, is

involved in its administration, and enzymes such as CYP3A4 and

CYP3A5 play important roles (292). This metabolic pathway

involves medication interactions and possible differences in drug

response caused by hereditary variables. EGFR, encoded by the

EGFR gene (ERBB1), is a particular protein target of erlotinib.

Erlotinib inhibits EGFR, which interferes with downstream

signaling cascades such as the RAS-RAF-MEK-ERK and PI3K-

AKT pathways, which are required for cellular processes (293). The

effectiveness of this drug is especially noteworthy in tumors with

EGFR overexpression or mutations, which contribute to

uncontrolled cell proliferation. Understanding erlotinib’s

pharmacokinetics, molecular targets, and genetic factors is critical

for customizing its usage in treating pancreatic cancer and other

malignancies and enhancing therapeutic results.
Immunotherapy

Pancreatic cancer has always been a complex disease to treat.

However, immune checkpoint inhibitors have shown promise in this

regard. Among these inhibitors, CTLA-4 and PD-1/PD-L1 inhibitors

have attracted much interest (294). T-cell-expressed PD-1 combines

with cancer cell-expressed PD-L1 to suppress the immune system

(295). Monoclonal antibodies, such as nivolumab and pembrolizumab,

obstruct this connection, enabling T cells to attack cancer cells

efficiently (296). Similarly, CTLA-4 suppresses T-cell activation by

binding with CD28 for binding affinity to antigen-presenting

lymphocytes (APCs) (297). An antitumor immune response is

promoted, and T-cell activation is enhanced when the CTLA-4

inhibitor ipilimumab interferes with this competition (298).

Combinations of CTLA-4 and PD-1/PD-L1 inhibitors have

been studied for potential synergistic effects (299). Although these

treatments have potential, they may cause immune-related side

effects that require close patient observation. Biomarkers, one of

which is PD-L1 expression, help patients choose and predict how

well a therapy will work (300). Peptide vaccines, such as GV1001,

provide a focused immunotherapeutic strategy for treating

pancreatic cancer (301). These vaccines work by identifying

tumor-associated antigens (TAAs), including the telomerase-

derived peptide GV1001, which targets specific proteins in cancer

cells (302). GV1001 has been shown in pancreatic cancer clinical

trials to activate cytotoxic T cells, promoting an immune response
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against cancer cells that display targeted antigens (303). APCs

process and deliver GV1001 to T lymphocytes, activating them to

recognize and attack cancer cells. This is how the mechanism of

antigen presentation works (304). GV1001 also aims to create

immunological memory, guaranteeing a focused and long-lasting

reaction (305). The possibility of a patient-specific design that

enables modification based on unique tumor characteristics is

noteworthy in terms of therapeutic concerns.

Using complete cancer cells expressing various antigens, whole-cell

vaccines, such as algenpantucel-L, constitute a novel immunotherapy

strategy. Algenpantucel-L is composed of irradiated pancreatic cancer

cells and stimulates the immune system in a complicated way, affecting

T cells, B cells, and APCs. APCs process and present a variety of

antigens produced by algenpantucel-L, thereby initiating a thorough

immune response. This is the mechanism of stimulation (306).

Interestingly, the therapeutic considerations for whole-cell vaccines

highlight their objective of concurrently targeting several antigens to

elicit a more comprehensive immune response. A complex signaling

cascade is used in CAR-T-cell therapy to strengthen the immune

response against pancreatic cancer. T cells that have been transformed

express the chimeric antigen receptor (CAR) on their surface after

being given the CAR. Typically, this synthetic receptor comprises an

intracellular signaling domain, a transmembrane domain, and an

extracellular domain for antigen recognition (307). Costimulatory

domains such as CD28 or 4-1BB (CD137) and components such as

CD3z are often found in the intracellular signaling domain (308).

The extracellular domain of the CAR binds exclusively to the

antigen on the surface of pancreatic cancer cells that express the

targeted antigen, such as mesothelin (309). This binding initiates

the CAR-T-cell signaling cascade. The transcription of genes linked

to T-cell activation and proliferation is ultimately caused by the

activation of downstream pathways by intracellular signaling

domains, such as the PI3K-Akt and MAPK pathways (310). The

activation of g-chain-associated protein kinase 70 (ZAP-70) and the

phosphorylation of CD3z are important signaling events that

initiate downstream signaling cascades (311). Additional signals

from costimulatory domains such as CD28 or 4-1BB improve T-cell

activation, proliferation, and survival (312). When these signaling

events occur, CAR-T cells produce cytotoxic chemicals, including

granzymes and perforin (313). To specifically destroy pancreatic

cancer cells, perforin breaks down the membrane of cancer cells,

enabling granzymes to enter and cause apoptosis (314). Treatment

with cytokines, including drugs such as interleukin-2 (IL-2) and

interferon-alpha, is critical for treating pancreatic cancer (315).

The crucial cytokine IL-2 increases T-cell proliferation by

activating the JAK-STAT signaling cascade through binding to the

IL-2 receptor, which contains the IL-2Ra chain (CD25), IL-2Rb chain

(CD122), and IL-2Rg chain (CD132) (316). This cascade improves

both cell growth and effector functions. Furthermore, NK cells are

activated by IL-2, which enhances their antitumor function (317). The

complex signaling pathways that mediate the biological effects of IL-2

include those involving the JAK1, JAK3, and STAT proteins (318).

Type I interferons, such as interferon-alpha, have anti-proliferative and

immunomodulatory effects (319). When interferon-alpha binds to its

receptors, such as IFNAR1 and IFNAR2, it triggers the JAK-STAT

pathway, which involves STAT, JAK1, and JAK2 (320). This signaling
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cascade eventually strengthens the immune system’s defense against

cancerous cells by controlling gene expression.

Moreover, interferon-alpha acts on several angiogenic factors to

suppress angiogenesis (321). Owing to their complex mechanism of

action, oncolytic viruses are a potential approach for pancreatic

cancer immunotherapy. These viruses are genetically altered to

increase and infect cancer cells specifically. They take advantage of

the unique biology of cancer cells by focusing on hyperactive

signaling pathways and weakened antiviral defenses (322).

Furthermore, viruses such as vaccinia, herpes simplex, and

adenoviruses, which are often used in oncolytic virotherapy, may

be modified to improve immunogenicity, tumor selectivity, and

safety (323). For instance, the adenovirus E1A gene may be altered

to enhance tumor selectivity. This gene encodes a protein that

interacts with cellular regulators (324). Cancer cells lyse due to the

infection process, releasing viral particles that spread the infection

to nearby cancer cells. The release of tumor antigens during the lysis

process is another benefit of this selective replication. APCs use

these tumor antigens, which include proteins such as HER2/neu or

carcinoembryonic antigen (CEA), to trigger an immune response

(325). These cells stimulate T lymphocytes by processing and

presenting antigens, mainly via the JAK-STAT signaling

pathway (326).

Herpes simplex viruses may be genetically modified to contain

transgenes that improve antitumor immunity, such as GM-CSF,

which encodes granulocyte-macrophage colony-stimulating factor

(327). Combining treatments with other modalities, such as

checkpoint inhibitors such as PD-1 and PD-L1 inhibitors, is

important from a clinical standpoint (328). This combination

further supports long-term antitumor immunity by boosting the

adaptive immune response involving CD8+ cytotoxic T cells (329).

The tight ability of oncolytic viruses to limit reproduction in cancer

cells is a safety concern and helps to reduce the possibility of

nonspecific effects (330).
Drugs in clinical trials for pancreatic cancer

Different medications and treatments for pancreatic cancer have

been tested in clinical trials to evaluate their safety, effectiveness, and

possible advantages for patients. The medications listed in

Supplementary Table S1 are quickly listed for the provided

pancreatic cancer clinical trial information.
Conclusions and future perspectives

This review seeks to provide a comprehensive analysis of PDAC,

highlighting the critical molecular pathways involved, such as KRAS,

Notch, and Hedgehog, and their implications for disease progression

and therapy resistance. Current therapeutic strategies, including

surgery, chemotherapy, and radiation, were critically examined, along

with emerging treatments like immunotherapy. Despite advancements,

significant challenges remain, particularly in overcoming drug

resistance and the tumor’s dense stromal environment. The review

also explored innovative diagnostic techniques, such as liquid biopsies,
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which offer a noninvasive approach for early detection, and

personalized medicine, which tailors’ treatment to the patient’s

genetic profile. The potential of CRISPR/Cas9 for precise genomic

editing and computational intelligence for enhancing diagnostic and

therapeutic efficacy was highlighted, showing promise for future

advancements. The findings highlight the necessity of a

multidisciplinary approach to address the complexities of pancreatic

adenocarcinoma. By integrating insights from genetic, molecular, and

clinical research, the review identifies key challenges and proposes

future research directions. These include improving early detection

methods, developing more effective therapeutic strategies, and

overcoming the tumor’s immunosuppressive microenvironment.

The etiology of pancreatic cancer remains insufficiently

understood, necessitating further extensive prospective studies to

enhance our comprehension of the associated risk factors. Patients

exhibiting a predisposition to familial PDAC could be promising

candidates for screening (331). However, consensus is lacking on the

optimal age, frequency, and preferred imaging techniques for

screening. Conducting thorough retrospective and prospective

studies that longitudinally track individuals with familial pancreatic

cancer is crucial for untying disease progression and facilitating the

implementation of effective screening and treatment strategies.

Recognized precursors such as PanIN, IPMN, and MCN offer

opportunities for early identification and intervention (332).

Implementing appropriate follow-up programs based on extensive

retrospective and prospective studies can ensure prompt intervention

for susceptible patients and deter superfluous surgical procedures for

benign lesions. These studies, conducted over extended periods, will

enhance our understanding of disease processes and pinpoint

determinants of the risk of these precancerous conditions, opening

avenues for targeted screening in specific populations.

The advent of neoadjuvant therapy has improved survival in a

few patients, yet challenges persist in identifying those who would

benefit most from this approach (333). Ongoing randomized

studies are needed to identify the optimal candidates for

neoadjuvant therapy. The search for novel biomarkers holds

promise for refining decision-making processes in an era of

precision medicine, tailoring therapies to specific cases. Surgical

excision, which involves vascular resection, is the cornerstone of

curative intervention and offers potential benefits in achieving clear

margins. However, the survival advantage associated with venous

resection warrants further investigation through retrospective

studies, shedding light on patient outcomes and contributing

valuable insights for future guidelines (334).

Despite progress in neoadjuvant and multimodal therapies,

postoperative relapses persist as a formidable challenge, necessitating

innovative interventions (335). The complex interaction among

neoplastic and stromal components within tumor surroundings adds

complexity to the disease. Although surgery remains the primary

remedial modality for initial-stage patients, patients with advanced

disease require a comprehensive approach involving chemotherapeutic

regimens, radiation therapy, and targeted interventions. Promising

strategies for immunotherapy are hampered by immune evasion

mechanisms (336).

The 5-year overall survival rate of individuals with pancreatic

cancer who received FDA-approved chemotherapy and targeted
frontiersin.org

https://doi.org/10.3389/fonc.2024.1427802
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mustafa et al. 10.3389/fonc.2024.1427802
therapies has increased from approximately 2% ten years ago to

11% by 2022 (337). Nevertheless, a deeper understanding of the

biological intricacies inherent in PDAC subtypes has facilitated the

way for more refined and targeted therapeutic strategies (338). New

methodologies in clinical trial design, encompassing drug lead-in,

neoadjuvant exploration of investigational agents, and the

implementation of platform studies for accelerated evaluation of

combinations, are driving progress. Over the subsequent decade,

one might expect apparent advancements in clinical outcomes for a

more extensive cohort of patients undergoing treatment with

tailored combinations of therapeutic agents (339).

The novelty of this review lies in its comprehensive and integrative

approach to understanding PDAC, particularly by highlighting

emerging areas of research and potential therapeutic strategies that

have not been extensively covered in previous literature. The review

provides an updated and detailed exploration of critical molecular

pathways such as KRAS, Notch, and Hedgehog, emphasizing recent

discoveries and their implications for disease progression and therapy

resistance. Additionally, the discussion on innovative diagnostic

techniques, such as liquid biopsies, represents a significant

advancement over conventional biopsy methods. Liquid biopsies

offer a noninvasive means for early detection and monitoring of

pancreatic cancer, providing real-time insights into tumor dynamics.

The review also highlights the promise of personalized medicine,

tailored to individual genetic profiles, which can optimize treatment

outcomes. Furthermore, it examines the application of CRISPR/Cas9

for precise genomic editing, showcasing a cutting-edge approach to

potentially correct oncogenic mutations at their source. Moreover,

while previous works have discussed immunotherapy, this review

provides analysis of the current challenges, particularly immune

evasion mechanisms, and suggests potential strategies to overcome

these hurdles. By integrating these novel insights and emerging

research areas, the review not only builds upon existing knowledge

but also facilitate the way for future research directions that hold

promise for significantly improving the diagnosis, treatment, and

overall management of PDAC.

PDAC represents a profound clinical challenge in the field of

oncology, characterized by an aggressive disease course, high

mortality rates, and limited therapeutic options. The prognosis

for individuals with PDAC is still poor despite advancements in

cancer research and treatment approaches, highlighting the dire

need for a thorough comprehension of this form of cancer. A

complex relationship between hereditary and environmental

variables influences the development of pancreatic cancer.

Elucidating the molecular pathways and signaling cascades

involved in PDAC is crucial for developing novel therapeutic

interventions. It provides a holistic understanding of the critical

pathways, such as KRAS, Notch, Hedgehog, and Wnt/b-catenin,
that drive tumor growth, metastasis, and therapeutic resistance.

Even with a wide range of therapeutic options available, such as

radiation therapy, chemotherapy, surgery, and targeted medicines,

the overall survival rates for people with pancreatic cancer are still

remarkably poor. Pancreatic cancer research is a rapidly evolving

field, with numerous promising approaches on the horizon, such as

immunotherapy, liquid biopsies, personalized medicine, CRISPR/

Cas9 genome editing, and computational intelligence applications.
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PDAC is a complex disease that requires a multidisciplinary

approach involving clinicians, researchers, and experts from

various fields. A thorough assessment can help interdisciplinary

teams work together more effectively by combining expertise from

many fields, creating a common understanding, and pointing out

areas where joint efforts can be made to combat this difficult illness.
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