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Evaluating peritumoral and
intratumoral radiomics
signatures for predicting
lymph node metastasis in
surgically resectable
non-small cell lung cancer
Ran Xu1,2, Kaiyu Wang1,2, Bo Peng1,2, Xiang Zhou1,2,
Chenghao Wang1,2, Tong Lu3, Jiaxin Shi1,2, Jiaying Zhao1,2

and Linyou Zhang1*

1Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2The Second Clinical Medical College, Harbin Medical University, Harbin, China,
3Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China
Background: Whether lymph node metastasis in non-small cell lung cancer is

critical to clinical decision-making. This study was to develop a non-invasive

predictive model for preoperative assessing lymph node metastasis in patients

with non-small cell lung cancer (NSCLC) using radiomic features from chest

CT images.

Materials & methods: In this retrospective study, 247 patients with resectable

non-small cell lung cancer (NSCLC) were enrolled. These individuals underwent

preoperative chest CT scans that identified lung nodules, followed by

lobectomies and either lymph node sampling or dissection. We extracted both

intratumoral and peritumoral radiomic features from the CT images, which were

used as covariates to predict the lymph node metastasis status. By using ROC

curves, Delong tests, Calibration curve, and DCA curves, intra-tumoral-peri-

tumoral model performance were compared with models using only

intratumoral features or clinical information. Finally, we constructed a model

that combined clinical information and radiomic features to increase

clinical applicability.

Results: This study enrolled 247 patients (117 male and 130 females). In terms of

predicting lymph node metastasis, the intra-tumoral-peri-tumoral model (0.953,

95%CI 0.9272-0.9792) has a higher AUC compared to the intratumoral radiomics

model (0.898, 95%CI 0.8553-0.9402) and the clinical model (0.818, 95%CI

0.7653-0.8709). The DeLong test shows that the performance of the

Intratumoral and Peritumoral radiomics models is superior to that of the

Intratumoral or clinical feature model (p <0.001). In addition, to increase the

clinical applicability of the model, we combined the intratumoral-peritumoral

model and clinical information to construct a nomogram. Nomograms still have

good predictive performance.
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Abbreviations: NSCLC, non-small cell lung cancer; CT,

KNN, K-Nearest Neighbor; SVM, Support Vec

Multilayer Perceptron.
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Conclusion: The radiomics-based model incorporating both peritumoral and

intratumoral features from CT images can more accurately predict lymph node

metastasis in NSCLC than traditional methods.
KEYWORDS

peritumoral, intratumoral, radiomics, lymph node metastasis, non-small cell lung
cancer
GRAPHICAL ABSTRACT
Introduction

Lung cancer is a prominent cause of cancer-related deaths, with

non-small cell lung cancer (NSCLC) accounting for a significant

proportion (1). For stages IA to IIIA localized lymph node

metastasis, surgery is the primary treatment approach (2);

however, for advanced stage IIIB-IV NSCLC that is not resectable

through surgery, chemoradiotherapy, immune therapy, or targeted

therapy are necessary. Hence, accurate staging is critical for effective

NSCLC treatment. Clinical staging typically begins with chest CT

scans, which may suggest an indication for lymph node metastasis.

Recently, mediastinoscopic lymph node biopsy or endobronchial

ultrasound-guided fine needle aspiration have been proposed as

essential methods for definitive staging (3). However, these methods

are associated with high costs and potential complications.
computed tomography;

tor Machine; MLP,
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Therefore, there is an urgent need to develop non-invasive

methods for preoperative staging of surgically resectable NSCLC

and guide the treatment of NSCLC patients. In addition, PET/CT is

also considered an important basis for determining staging, but CT

is currently the preferred imaging examination for patients with

newly treated pulmonary nodules (4, 5), so the model developed

using CT images is more universal.

Radiomics is a powerful method that can transform CT images

into high-throughput quantifiable data (6). The combination of

these radiomic features with machine learning algorithms to

construct clinical prediction models is a promising research

direction (7). Prior studies have suggested that radiomic features

are useful in predicting patient overall survival, pathological

response to adjuvant therapy, or lymph node metastasis status in

various cancers (8–12), including NSCLC. However, most studies

focused only on intratumoral radiomic features and neglected peri-

tumoral areas despite their importance in encompassing

information related to tumor progression and evolution
frontiersin.org
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influenced by interactions between intra-tumoral cells and elements

in the peritumoral region, such as lymphatic or vascular invasion

and angiogenesis (10, 13–15). Previous radiomics models of lymph

node metastasis in non-small cell lung cancer usually only focused

on the characteristics of the tumor itself without introducing the

characteristics of the surrounding tissue, which may lead to

limitations in model performance (16–20). The metastatic status

of lymph nodes is not only affected by the characteristics of the

primary tumor, such as tumor size, shape, density, etc., but is also

related to changes in the tumor microenvironment, including

surrounding tissues. Surrounding tissue characteristics can

provide important information about the interaction of the tumor

with its microenvironment. For example, changes in texture of

surrounding tissue, abnormalities in local blood vessel density,

irregularities in tumor boundaries, and the degree of tumor

infiltration may indicate tumor invasiveness and metastatic

potential. Therefore, a comprehensive consideration of radiomic

features of surrounding tumor tissues may better characterize

tumor invasiveness and metastatic potential. Constructing a

comprehensive, non-invasive preoperative radiomic prediction

model for lymph node metastasis status in surgically resectable

NSCLC is essential.

In this study, we collected CT images and clinical data from 247

patients with surgically resectable NSCLC. We established three

preoperative lymph node metastasis prediction models using

intratumoral radiomic features, a combination of peritumoral and

intratumoral radiomic features, and clinical characteristics. We

compared the predictive performance of these models,

highlighting the importance of peritumoral radiomic features in

predicting lymph node metastasis status. Finally, we constructed a

nomogram with wider applicability by fusing the best-performing

intratumoral-peritumoral radiomics model and clinical indicators.

Our results may provide a new perspective for non-invasive

preoperative lymph node diagnosis.
Materials and methods

Data acquisitions

The chest CT images, and clinical information of patients used

in this study were obtained from our center, and the study was

approved by the Ethics Committee (Approval No.: KY2022-144).

The acquisition of written informed consent from patients was

waived because of the retrospective design. All data usage was

performed in accordance with the supervision of the Ethics

Committee. The cases included in the study were diagnosed as

surgically resectable NSCLC at our hospital between 2019 and 2020.

Lymph node metastasis status and pathological diagnosis were

determined through postoperative pathological examination.

Lymph node dissection strategies for all patients were consistent

with current recommendations from The American Association for

Thoracic Surgery (21). The exact pathological classification was

determined by multiple pathological experts in our center after

surgery and a formal medical diagnosis was issued. The detailed
Frontiers in Oncology 03
inclusion criteria were as follows (1): Patients with pulmonary

nodules diagnosed by chest CT; (2) Patients with chest CT

images available in Digital Imaging and Communications in

Medicine (DICOM) format; (3) Patients who underwent

pulmonary lobectomy and systematic lymph node sampling or

dissection; (4) Patients with confirmed postoperative

histopathology of primary NSCLC with clear lymph node

metastasis status for each station; (5) Patients who did not receive

neoadjuvant treatment or chemoradiotherapy in the past; (6)

Patients who did not have previous thoracic surgery. All CT

images were acquired using a 64-channel CT scanner (Discovery

750, GE Healthcare, Milwaukee, USA) with the following scanning

parameters: tube voltage of 120kV, tube current of 100-250mAs,

layer thickness of 0.625-5 mm, field of view (FOV) of 350-400 mm,

512 x 512 matrix, and reconstructed layer thickness of 0.625-5 mm.

The CT images were reconstructed using filtered back-projection

(FBP) and adaptive statistical iterative reconstruction (ASIR) at a

level of 40% ASIR. The standard kernel was used for the

reconstruction. In total, 247 cases were included in the study,

with 87 positive and 160 negatives for lymph node metastasis. In

addition, we extracted the CT imaging data of lung adenocarcinoma

patients (n=219) from two datasets in The Cancer Imaging Archive

(TCIA) database for external validation of the radiomics model

(https://www.cancerimagingarchive.net/browse-collections/,

Co l l e c t i on l abe l : NSCLC-Rad iomi c s -Genomic s and

NSCLC Radiogenomics).
CT image data preprocessing and
ROI segmentation

To eliminate batch differences between CT image data, all CT

data were first adjusted to a window width of -150 and a window

level of 1700. The voxel spacing was then adjusted to 1 × 1 × 1 using

the nearest interpolation algorithm to account for different

scanning parameters and image resolutions (22). Grayscale

discretization was performed using a fixed bin width of 25

Hounsfield Units (HU All chest CTs were loaded into ITK-SNAP

software (23) (version: 3.8.0) for tumor region segmentation by two

thoracic surgeons with over 5 years of clinical experience. The

segmented tumor area was examined layer by layer and revised by a

chief thoracic surgeon and a radiologist.
Extraction of radiomic features from VOI

The volume of interest (VOI) comprised intratumoral and

extratumoral regions. The intratumoral region was manually

segmented layer by layer, while the extratumoral region was

obtained by extending 3 voxels around the intratumoral VOI.

Radiomic features were extracted using the ‘pyradiomics’ package

(24) in Python. To capture a comprehensive set of features, we

extracted features under multiple filters, including Original,

Wavelet, Square, SquareRoot, Logarithm, Gradient, Exponential,

LBP3D, and Laplacian of Gaussian filter (LoG). For the LoG filter,
frontiersin.org
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we used sigma values of 1.0, 2.0, and 3.0 to enhance texture

recognition for fine and rough textures. Under these filters, we

extracted radiomic features from the intratumoral and peritumoral

regions, including First Order Features, Shape Features, Gray Level

Co-occurrence Matrix (GLCM) Features, Gray Level Zone Size

Matrix (GLSZM) Features, Gray Level Run Matrix (GLRLM)

Features, Neighbungay Gray Tone Difference Matrix (NGTDM)

Features, and Gray Level Features (GLDM) Features. The detailed

definition methods of all features can be found at https://

pyradiomics.readthedocs.io/en/latest/features.html#, and all

defined features comply with the Imaging Biomarker

Standardization Initiative (IBSI) (25).
Feature preprocessing and screening

The radiomic features of VOI delineated by different physicians

were assessed for consistency using the Interclass correlation

coefficients method (ICC) (26). Variables with an agreement

greater than 0.75 between groups were considered reliable

imaging features. Subsequently, the features were normalized

using the z-score method. To identify radiomic features

associated with lymph node metastasis, we performed a t-test

between the negative and positive lymph node metastasis groups.

Variables with a p-value< 0.05 were retained for further screening

(27). Furthermore, to address collinearity among variables, Pearson

correlation analysis was conducted to examine variable correlations.

In cases where correlations exceeded 0.9, one of the paired variables

was randomly chosen for model development. Additionally, the

LASSO classifier was employed to mitigate collinearity and screen

variables relevant to lymph node metastasis. Variables with non-

zero coefficients in the LASSO model were ultimately used in

subsequent machine learning model construction (28).
Model construction

We utilized the presence or absence of lymph node metastasis as

the target for prediction, with the characteristics obtained through

the aforementioned screening strategy serving as covariates. The

model was developed using the Scikit-learn (29) framework. For the

intratumoral radiomics feature model, we benchmarked several

algorithms, including Support Vector Machines (SVM), K-

Nearest Neighbor (KNN), Random Forests, Extremely

Randomized Trees (ExtraTrees), XGBoost, Light Gradient

Boosting Machine (LightGBM), Multi-Layer and Perceptron

(MLP), to select the best algorithm. Performance indicators such

as Accuracy, area under the curve (AUC), Sensitivity, Specificity,

Positive Predictive Value (PPV) and Negative Predictive Value

(NPV) were calculated based on the prediction results of each

model. After evaluating the combined performance of the models

on the training and test sets, the MLP model was determined to be

the most suitable. To ensure model comparability, MLP models

were also constructed for subsequent intratumoral-peritumoral

combined models and clinical feature models.
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Model performance comparison

The DeLong test was employed to compare the AUC values

between different models. Additionally, the model accuracy,

sensitivity, specificity, precision, recall, NPV (Negative Predictive

Value), PPV (positive predictive value) and F1 score were also used

for evaluating. The Decision Curve Analysis was conducted to

assess the potential clinical benefit performance of the model.
Nomogram construction

The nomogram was constructed using the R-based rms

package. We integrated the radiomics model scores and clinical

risk factors for lymph node metastasis and used logistic regression

formulas to construct the final nomogram. The DeLong test was

used to evaluate the performance of the AUC of the nomogram

compared to other models. Calibration curve and DCA curve are

used to evaluate the clinical benefit performance of the nomogram.
Results

Clinical characteristics of patients

This study enrolled 247 patients with surgically resectable

NSCLC, and their chest CT images, and clinical information were

collected. All patients underwent lobectomy or segmentectomy with

systematic lymph node dissection. Among them, 87 patients had

lymph node metastasis confirmed by postoperative pathology, while

160 patients had no lymph node metastasis. Table 1 presents the

clinical information of all included patients. Significant differences

were observed between the lymph node metastasis group and the

group without lymph node metastasis in terms of maximum tumor

diameter (p<0.001) and smoking history (p<0.001). The total of 247

patients were randomly divided into training and validation cohorts,

consisting of 172 and 75 patients respectively, following a 7:3 ratio.

There was no statistical difference in various clinical information

between the training group and the validation group (Table 2).
Feature extraction of intratumoral
radiomics and feature selection

After performing tumor region segmentation on the collected

chest CT images of all patients (details provided in the Methods

section), a total of 1874 intratumoral radiomic features were

extracted using different filters. These features included 360 First

Order Features, 14 Shape Features, 480 GLCM Features, 320

GLSZM Features, 320 GLRLM Features, 100 NGTDM Features,

and 280 GLDM Features (Figures 1A, B). Subsequently, we

performed statistical analysis between the groups with and

without lymph node metastasis to screen for relevant radiomics

features. We retained 1383 features with a p-value < 0.05 for further

analysis (Figure 1C). To address collinearity among variables,
frontiersin.org
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TABLE 1 Clinical characteristics of patients.

Covariates All (n=247) Without lymph node
metastasis (n=160)

Lymph node
metastasis (n=87)

p-value

Age 59.99 ± 9.06 59.9 4± 9.31 60.08 ± 8.64 0.91

Gender (%) Female 130 (52.6) 89 (55.6) 41 (47.1) 0.252

Male 117 (47.4) 71 (44.4) 46 (52.9)

Location (%) LLL* 43 (17.4) 27 (16.9) 16 (18.4) 0.525

LUL* 65 (26.3) 41 (25.6) 24 (27.6)

RLL* 55 (22.3) 33 (20.6) 22 (25.3)

RML* 13 (5.3) 11 (6.9) 2 (2.3)

RUL* 71 (28.7) 48 (30.0) 23 (26.4)

Histology (%) LUAD† 203 (82.2) 134 (83.8) 69 (79.3) 0.486

LUSC† 44 (17.8) 26 (16.2) 18 (20.7)

Maximum Tumor Diameter
(mean ± SD)

25.11 ± 15.43 20.16 ± 14.30 34.20 ± 13.18 <0.001

Smoking History (%) No 130 (52.6) 103 (64.4) 27 (31.0) <0.001

Yes 117 (47.4) 57 (35.6) 60 (69.0)
F
rontiers in Oncology
 05
*LLL, Left Lower Lobe; LUL, Left Upper Lobe; RLL, Right Lower Lobe; RML, Right Middle Lobe; RUL, Right Upper Lobe. †LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous
Cell Carcinoma.
TABLE 2 Clinical characteristics of training and testing sets.

Covariates All
(n=247)

Testing set
(n=75)

Training set
(n=172)

p-value

Age 59.99 ± 9.06 60.93 ± 8.83 59.58 ± 9.16 0.282

Gender (%) Female 130 (52.6) 39 (52.0) 91 (52.9) 1

Male 117 (47.4) 36 (48.0) 81 (47.1)

Location (%) LLL* 43 (17.4) 10 (13.3) 33 (19.2) 0.752

LUL* 65 (26.3) 20 (26.7) 45 (26.2)

RLL* 55 (22.3) 19 (25.3) 36 (20.9)

RML* 13 (5.3) 5 (6.7) 8 (4.7)

RUL* 71 (28.7) 21 (28.0) 50 (29.1)

Histology (%) LUAD† 203 (82.2) 62 (82.7) 141 (82.0) 1

LUSC† 44 (17.8) 13 (17.3) 31 (18.0)

Maximum Tumor Diameter
(mean ± SD)

25.11 ± 15.43 24.80 ± 15.38 25.24 ± 15.50 0.838

Smoking History (%) No 130 (52.6) 37 (49.3) 93 (54.1) 0.584

Yes 117 (47.4) 38 (50.7) 79 (45.9)

Lymph node metastasis (%) No 160 (64.8) 44 (58.7) 116 (67.4) 0.237

Yes 87 (35.2) 31 (41.3) 56 (32.6)
*LLL, Left Lower Lobe; LUL, Left Upper Lobe; RLL, Right Lower Lobe; RML, Right Middle Lobe; RUL, Right Upper Lobe. †LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous
Cell Carcinoma.
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Pearson correlation analysis was conducted on these 1383 variables.

Based on the experience of previously published articles (30), for

variables with correlations greater than 0.9, one variable was

randomly retained, resulting in 271 variables being finally retained.
Model construction of intratumoral
radiomic features

In the training group, we employed the LASSO classifier to

further identify variables that significantly influenced lymph node

metastasis for constructing subsequent models. When l reaches

the optimal value of 0.0339, fourteen variables with non-zero

coefficients were retained for subsequent modeling (Figures 2A–

C). Various machine learning algorithms including SVM, KNN,

Random Forests, ExtraTrees, LightGBM, and MLP were

benchmarked to select the best algorithm. All models underwent
Frontiers in Oncology 06
5-fold cross-validation in entire dataset. In 5-fold cross-validation,

the MLP model showed the highest median AUC (Supplementary

Figure 1A). Therefore, the MLP model may be a potentially

optimal model. In subsequent modeling, we use the training set

for training and the testing set to evaluate the final metrics of the

model. (Table 3). The accuracy, AUC values and F1 scores of the

models were visualized for testing set (Figures 2D–F). It is worth

noting that among all models, although SVM has the highest

AUC, the MLP model has higher accuracy and F1 Score. Since

there is a certain imbalance between the two categories in our data,

F1 scores is more robust to evaluating the performance of the

model than AUC. Therefore, we chose the MLP model as the final

model (Figure 2G). The MLP model constructed using

intratumoral radiomic features achieved AUC values of 0.912

(95% CI: 0.871-0.953) and 0.877 (95% CI: 0.779-0.975) in the

training and testing sets, respectively, for predicting lymph

node metastasis.
FIGURE 1

Distribution of intratumoral radiomics features data. (A) Proportions of different types of radiomic features. (B) Number of different types of
radiomics features. (C) T-test results comparing different types of radiomic features between lymph node metastasis and non-metastasis groups.
The horizontal axis represents different feature types, and the vertical axis represents p-values. Features below the red dashed line indicate a p-
value <0.05.
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Radiomics feature extraction and feature
selection for intratumoral and
peritumoral combination

To investigate the impact of peritumoral radiomics features on

the predictive ability of lymph node metastasis, we extended

manually delineated tumor ROI regions outwards by 3 individual

voxels to obtain peritumoral regions by referring to methods in

previously published articles (8, 31). Peritumoral features were

extracted using the same method as intratumoral feature

extraction and merged with intratumoral features for subsequent

feature selection. After combination, we obtained a total of 3748

intratumoral and peritumoral radiomics features. Similarly, we

screened and obtained 2572 features with p-value < 0.05 in lymph

node metastasis and non-lymph node metastasis samples

(Figures 3A–C). As in the modeling of intratumoral features only,
Frontiers in Oncology 07
we performed Pearson correlation analysis on these combined

features and retained one variable from paired variables whose

correlation between variables was greater than 0.9. Eventually, we

selected 539 variables for subsequent construction of intratumoral

and peritumoral prediction models.
Model construction of intratumoral and
peritumoral combination radiomic features

Consistent with the modeling strategy using only intratumoral

features, we employed the LASSO classifier to screen combined

intratumoral and peritumoral features and used the MLP algorithm

to test the impact of peritumoral features on the model for variables

with absolute values of coefficients greater than zero. After LASSO

classifier screening, we finally obtained 64 variables with non-zero
FIGURE 2

Screening and model construction of intratumoral radiomics features. The LASSO classifier is used for feature selection. (A) Coefficient trajectory
plot for various Lambda values. (B) Mean squared error (MSE) of the model at different Lambda values. The black dashed line indicates the optimal
Lambda value determined by minimizing the MSE. (C) Coefficient plot for variables in the model at the optimal Lambda value. The X-axis represents
model coefficients. Model metrics (D) and ROC curves (E, F) of the model on the training and testing sets of different machine learning models.
(G) ROC curve of the MLP model, determined as the optimal model, on the training and testing sets.
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TABLE 3 Model performance of intratumoral model.

Specificity PPV* NPV* Precision Recall F1 Cohort

0.802 0.693 0.959 0.693 0.929 0.794 Train

0.886 0.833 0.867 0.833 0.806 0.820 Test

0.828 0.722 0.960 0.722 0.929 0.812 Train

0.864 0.806 0.864 0.806 0.806 0.806 Test

0.931 0.800 0.818 0.800 0.571 0.667 Train

0.932 0.833 0.719 0.833 0.484 0.612 Test

0.845 0.743 0.961 0.743 0.929 0.825 Train

0.932 0.870 0.788 0.870 0.645 0.741 Test

0.836 0.703 0.898 0.703 0.804 0.750 Train

0.818 0.750 0.837 0.750 0.774 0.762 Test

0.983 0.965 0.991 0.965 0.982 0.973 Train

0.909 0.833 0.784 0.833 0.645 0.727 Test

0.914 0.833 0.946 0.833 0.893 0.862 Train

0.773 0.714 0.850 0.714 0.806 0.758 Test

0.767 0.654 0.947 0.654 0.911 0.761 Train

0.864 0.818 0.905 0.818 0.871 0.844 Test

X
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Model_name Accuracy AUC 95% CI Sensitivity

LR 0.843 0.931 0.8956 - 0.9661 0.929

0.853 0.866 0.7633 - 0.9684 0.806

SVM 0.860 0.945 0.9118 - 0.9789 0.929

0.840 0.889 0.8071 - 0.9700 0.806

KNN 0.814 0.908 0.8684 - 0.9482 0.571

0.747 0.844 0.7551 - 0.9333 0.484

RandomForest 0.872 0.965 0.9418 - 0.9880 0.929

0.813 0.857 0.7662 - 0.9471 0.645

ExtraTrees 0.826 0.907 0.8635 - 0.9498 0.804

0.800 0.847 0.7547 - 0.9388 0.774

XGBoost 0.983 0.999 0.9965 - 1.0000 0.982

0.800 0.865 0.7810 - 0.9492 0.645

LightGBM 0.907 0.963 0.9394 - 0.9870 0.893

0.787 0.854 0.7675 - 0.9399 0.806

MLP 0.814 0.912 0.8710 - 0.9532 0.911

0.867 0.877 0.7790 - 0.9746 0.871

*NPV, Negative Predictive Value; PPV, positive predictive value.
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coefficients (Figures 4A–C). Using the MLP algorithm to predict

lymph nodemetastasis status, AUC values of the model reached 0.977

(95%CI: 0.960-0.994) in the training set and 0.905 (95%CI: 0.833-

0.977) in the testing set (Figure 4D). In addition, since the SVMmodel

of intratumoral radiomics features showed the highest accuracy

(Figure 2F), we also tried the SVM modeling after combining

intratumoral and peritumoral features. In the test group, the SVM

model of intratumoral and peritumoral features had an AUC of 0.876

(95% CI 0.792 – 0.960) (Supplementary Figure 2A), which was lower

than the MLP model. In addition, the F1 score of the SVM model in

testing set is also lower than that of the MLP model (Table 4). Finally,

the MLP model was identified as the suitable model of intratumoral

and peritumoral features. Overall, compared to the AUC in the MLP
Frontiers in Oncology 09
model when using only intratumoral features (Figure 2G), the

predictive performance of the MLP model improved to a certain

extent upon inclusion of peritumoral features. In addition, we

validated the intratumor-peritumoral feature MLP model in an

external dataset. The AUC of the external dataset was 0.812 (95%

CI, 0.741-0.884), which showed that the model had good robustness

(Supplementary Figure 3A).
Clinical model construction

Clinical information as an important indicator of current

clinical assessment, we collected patients’ clinical information,
FIGURE 3

Distribution of intratumoral and peritumoral radiomics features data. (A) Proportions of different types of radiomic features. (B) Number of different
types of radiomics features. (C) T-test results comparing different types of radiomic features between lymph node metastasis and non-metastasis
groups. The horizontal axis represents different feature types, and the vertical axis represents p-values. Features below the red dashed line indicate a
p-value <0.05.
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including age, gender, preoperative CT diagnosis of tumor location,

smoking history, maximum tumor diameter, pathological types of

tumors diagnosed by intraoperative frozen sections and a series of

laboratory indicators. Univariate logistic regression was applied to

these clinical details to assess their risks for lymph node metastasis.

Results indicated that maximum tumor diameter, smoking history,

CA153, CA125 and CEA were risk factors for lymph node

metastasis (Figure 5A). Additionally, we conducted multivariate

logistic regression on these risk factors. In the multivariate analysis,

smoking history and maximum tumor diameter were considered

independent risk factors for lymph node metastasis (Figure 5B,

Supplementary Table 1). To ensure the comparability of the model,

we also used the MLP method to construct a lymph node metastasis

prediction model using these independent risk factors, and the

results showed that the clinical information MLP model had an

AUC of 0.810 (95%CI: 0.747-0.872) and 0.846 (95%CI: 0.749-0.943)

in the training and validation groups, respectively (Figure 5C).
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Model performance evaluation

To evaluate the performance of the three models we constructed

above (intratumoral peritumoral radiomics model, intratumoral

radiomics model and clinical information model), we compared

various model indicators in the entire data set. Radiomic signatures

of intratumoral and peritumoral regional features still exhibit

higher area under the ROC curve than intratumoral features or

clinical feature models alone and DeLong test shows that p values

are all <0.05 (Figures 6A, B). Furthermore, when we summarized

other evaluation metrics for the three models, we found that the

intratumoral and peritumoral feature models were overall higher

than other models in terms of accuracy, sensitivity, specificity,

precision, recall, NPV (Negative Predictive Value), PPV (positive

predictive value) and F1 score (Figure 6C, Table 5). Clinical decision

curves further demonstrated that the model combining

intratumoral and peritumoral radiomics features potentially offers
FIGURE 4

Screening and model construction of intratumoral and peritumoral radiomics features. The LASSO classifier is used for feature selection. (A) Coefficient
trajectory plot for various Lambda values. (B) Mean squared error (MSE) of the model at different Lambda values. The black dashed line indicates the
optimal Lambda value determined by minimizing the MSE. (C) Coefficient plot for variables in the model at the optimal Lambda value. The X-axis
represents model coefficients. (D) ROC curve of the MLP model on the training and testing sets.
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greater clinical benefits (Figure 6D). In order to further evaluate the

stability of the predictive performance of the three models across

the entire dataset, we adopted 5-fold cross-validation. The results

demonstrate that the model incorporating both intratumoral and

peritumoral features still exhibits the highest average AUC value.

(Supplementary Figures 4A–C) In summary, incorporating

peritumoral radiomic features into the prediction model improves

the performance of the model in predicting lymph node metastasis

and may provide potential clinical benefits. Therefore, in this study

the results show that including peritumoral features in radiological

models is necessary for predicting lymph node metastasis.
Construction of lymph node metastasis
nomogram of lung adenocarcinoma

Because of the importance and usefulness of clinical

information in clinical assessment, we should consider it.

Therefore, we further constructed a nomogram by integrating

intratumoral peritumoral radiomics models and clinical risk

indicators of lymph node metastasis to increase clinical

applicability (Figure 7A). The AUC of the nomogram in the

entire cohort was 0.947 (95% CI 0.920-0.974) (Figure 7B).

DeLong test showed that the AUC of the nomogram was higher

than the clinical features model (p<0.001) and comparable to the

intratumoral peritumoral radiomics model (p=0.212) (Figure 7C).

The calibration curves and Decision Curve Analysis still show that

the nomogram has comparable performance to the intratumoral

peritumoral radiomics model and may bring potential clinical

benefit (Figures 7D, E).
Discussion

Accurate clinical staging is crucial for determining treatment

strategies in newly diagnosed NSCLC patients, particularly for

surgically resectable patients. Accurate N staging can guide

decisions regarding preoperative neoadjuvant therapy (32) or

intraoperative lymph node dissection strategies (33). Radiomics is

a promising non-invasive diagnostic approach for lymph node N

staging compared to mediastinoscopic lymph node biopsy or

endobronchial ultrasound-guided fine needle aspiration. At

present, lymph node staging often relies on intraoperative

sampling. However, the diagnosis based on preoperative

radiomics is promising. In this study, we established a MLP

model combining the intratumoral and peritumoral radiomics

characteristics of NSCLC on CT images, which was superior to

traditional intratumoral feature models and clinical information

models in predicting lymph node metastasis status preoperatively.

In addition, the Nomogram integrating clinical information and

intratumoral-peritumoral radiomics sti l l have a good

predictive ability.

Although machine learning models based on intratumoral

radiomics profiles have proved effective in predicting lymph node

metastasis status (16, 34, 35), peritumoral profiles have received

limited attention in research. The peritumoral area provides
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FIGURE 5

Clinical feature selection and model construction. Univariate (A) and multivariate (B) logistic regression of clinical features, with the x-axis
representing log2-transformed odds ratios. (C) ROC curve of the MLP model for clinical features. In (A, B) “*” indicates P-value < 0.05, “**” indicates
P-value < 0.01, and “***” indicates P-value < 0.001.
FIGURE 6

Comparison of multiple model performance. (A) ROC curves of the clinical feature model, intratumoral radiomic feature model, and combined
intratumoral and peritumoral radiomic feature model in the entire dataset. (B) DeLong test for AUC values of the ROC curves of the three models.
(C) The comparison of all performance metrics of the three models. (D) Decision Curve Analysis (DCA) curves of the three models in the entire dataset.
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insights into tumor infiltration and the invasion of microvessels and

lymphatic vessels, making the radiomic characteristics of this region

crucial (36, 37). Additionally, manual segmentation and

measurement of the tumor area often result in unstable features

at the tumor edge. Due to the irregular shape of the tumor edge area,

parts of the tumor margin area will inevitably be missing due to

manual division. Therefore, expanding the artificially segmented

tumor area to include the peritumoral region partially addresses this

issue to enhance model generalization ability. In addition, the

texture changes, abnormal local blood vessel density, and

information on the degree of tumor infiltration provided by the

surrounding tissue characteristics also enable the model to evaluate

the invasiveness and metastasis potential of the tumor from a more

comprehensive perspective, thus enhancing the performance of the

model. We found an article on intratumoral and peritumoral

radiomics profiles for predicting lymph node metastasis status, it

focused exclusively on patients with stage IA NSCLC (38).

However, it is necessary to include surgically resectable cases

ranging from stage IA to stage IIIA, encompassing only localized

lymph node metastases. Compared with previously published

models for predicting lymph nodes based on PET/CT (39, 40),

CT is the first choice examination for patients with initial treatment

of pulmonary nodules, may make our model more universal. In

addition, PET/CT relies on FDG (fluorodeoxyglucose) uptake

imaging, which may be affected by infectious or non-infectious

diseases (such as tuberculosis, pneumoconiosis, or chronic

obstructive pulmonary disease. In our study, we developed three

prediction models for lymph node metastasis status in all included

patients with surgically resectable NSCLC: an intratumoral

radiomics profi le model, a combined peritumoral and

intratumoral radiomics profile model, and a clinical information

prediction model. Upon comparing their performance, we observed

that models incorporating peritumoral radiomics profiles was better

in each metric (accuracy:0.887, sensitivity:0.908, specificity:0.875,

precision:0.798, recall:0.908, negative predictive value:0.946,

positive predictive value:0.798 and F1 score:0.849). Fusion

radiomics features and clinical information making our model

more applicable. Our constructed nomogram can predict lymph

node metastasis of lung cancer in a non-invasive manner, which is

of great significance for clinical treatment planning of lung cancer

patients. Our results found that incorporating radiomic features of

the peritumoral region is necessary in the prediction of lymph node

metastasis in non-small cell lung cancer. The information it

provides on texture changes, abnormal local blood vessel density,

and the extent of tumor infiltration is indispensable for clinical

assessment of the invasiveness and metastatic potential of primary

tumors. Comprehensive consideration of the characteristics of the

tumor itself and the characteristics of these surrounding areas can

enhance the accuracy of lymph node metastasis prediction, bringing

potential clinical benefits to patients.

This study also has some limitations. Even though we used a

publicly available dataset for external validation, there is still a lack

of multicenter data to further verify the generalization ability of the

model. In addition, the dataset in this study also has the problem of

imbalance in the number of outcome categories. To eliminate the

impact of class imbalance on model evaluation as much as possible,
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we not only focus on the accuracy of the model, but also compare

the AUC value under binary classification between models and the

F1 score calculated by precision and recall. In addition, the error

caused by manual segmentation of ROI areas should also be

considered. Although we performed Intraclass Correlation

Coefficient analysis after segmentation by multiple doctors to

screen for robust radiomics features, this issue has not been

completely resolved. In future studies, we would collect

multicenter data for validation and establish better deep learning

algorithm models to solve feature biases caused by manual

segmentation of tumor regions. Furthermore, in the practical

appl icat ion of radiomics models , how to ensure the

standardization and automation of the preprocessing process of

images from different hospitals or different CT scanners is also a

problem that needs to be solved urgently.
Conclusion

Our study proposed a predictive model for lymph node

metastasis status based on preoperative CT radiomics profiles in

patients with operable resected NSCLC. This model included the

characteristics of peritumoral region and improved the performance

of traditional intratumoral feature models and clinical feature models.

Additionally, our constructed nomogram may provide new insights

into the development of clinical treatment strategies for patients with

surgically resectable NSCLC. Our results show that radiomics models

considering the characteristics of the tumor region alone are
Frontiers in Oncology 14
insufficient and future studies should pay more attention to the

region surrounding the tumor.
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