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Spread-out Bragg peak FLASH:
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in a murine model
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Objective: A favorable effect of ultra-high dose rate (FLASH) radiation on normal

tissue-sparing has been indicated in several preclinical studies. In these studies,

the adverse effects of radiation damage were reduced without compromising

tumor control. Most studies of proton FLASH investigate these effects within the

entrance of a proton beam. However, the real advantage of proton therapy lies in

the Spread-out Bragg Peak (SOBP), which allows for giving a high dose to a target

with a limited dose to healthy tissue at the entrance of the beam. Therefore, a

clinically relevant investigation of the FLASH effect would be of healthy tissues

within a SOBP. Our study quantified the tissue-sparing effect of FLASH radiation

on acute and late toxicity within an SOBP in a murine model.

Material/Methods: Radiation-induced damage was assessed for acute and late

toxicity in the same mice following irradiation with FLASH (Field dose rate of 60

Gy/s) or conventional (CONV, 0.34 Gy/s) dose rates. The right hindleg of

unanesthetized female CDF1 mice was irradiated with single-fraction doses

between 19.9-49.7 Gy for CONV and 30.4-65.9 Gy for FLASH with 5-8 mice

per dose. The leg was placed in the middle of a 5 cm SOBP generated from a

mono-energetic beam using a 2D rangemodulator. Acute skin toxicity quantified

by hair loss, moist desquamation and toe separation was monitored daily within

29 days post-treatment. Late toxicity of fibrotic development measured by leg

extendibility was monitored biweekly until 30 weeks post-treatment.

Results: Comparison of acute skin toxicity following radiation indicated a tissue-

sparing effect of FLASH compared to conventional single-fraction radiation with

a mean protection ratio of 1.40 (1.35-1.46). Fibrotic development similarly

indicated normal tissue sparing with a 1.18 (1.17-1.18) protection ratio. The

acute skin toxicity tissue sparing was similar to data from entrance-beam

irradiations of Sørensen et al. (4).
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Conclusion: Full dose-response curves for acute and late toxicity after CONV

and FLASH radiation were obtained. Radiation within the SOBP retains the

normal-tissue-sparing effect of FLASH with a dose-modifying factor of 40% for

acute skin damage and 18% for fibrotic development.
KEYWORDS

FLASH radiation, spread-out Bragg peak, normal tissue sparing, acute toxicity,
late toxicity
Introduction

Radiotherapy is a constant balance between enough radiation to

cure the cancer and avoiding lethal toxic side effects to healthy

tissues. As toxicity to healthy tissues is a limiting factor in

radiotherapy, reducing side effects is a crucial aim of

novel approaches.

FLASH irradiation has shown promise in preclinical studies to

improve treatment outcome by reducing side effects. With FLASH,

the dose is delivered ultra-fast, which has been demonstrated to

reduce healthy tissue toxicity while maintaining the curative effect

on cancer (1–9). The reduced healthy tissue toxicity compared to

conventional dose rates, the FLASH effect, has been documented in

several tissues in vivo for x-ray (10–13), electron (1, 2, 8, 9, 14, 15)

and proton irradiations (3–5, 16, 17).

Proton irradiation has particular potential, compared to

photons and electrons, due to its depth-dose distribution (18), but

few FLASH studies use this ability. Utilizing a spread-out Bragg

peak (SOBP) to create a plateau of high dose is the primary

advantage of proton therapy in clinical practice (19). This method

results in low dose to the entrance of the irradiated tissue, high dose

to deep-seated tumors within the SOBP, and no dose behind (19).

Reducing the integral dose to healthy tissues can cause less damage

and, therefore, fewer side effects. Despite this, proton FLASH

studies have predominantly focused on the entrance region of the

beam (6), due to technical limitations.

The limitations for generating a FLASH SOBP lie in two main

factors. The typical clinical way of forming an SOBP is by using

several energy layers with energies adapted to the tumor depth.

When working with FLASH, requiring several energy layers is

problematic. Cyclotron-based facilities can only deliver ultra-high

dose rates at the highest proton beam energies, with large beam

ranges of 30-40 cm. Furthermore, the delivery of multiple energy

layers would prolong the treatment duration due to beam pauses for

each energy shift, which could be detrimental to the FLASH effect.

Thus, a passive SOBP generation is needed to obtain

FLASH conditions.

A proton SOBP can be obtained from a mono-energetic beam by

using a range modulator to broaden the energy distribution. This

approach enables the combination of FLASH and SOBP (17, 20–22),

which could improve the radiotherapeutic treatment (23–25). The
02
dose conformality of the SOBP would ensure low doses to most

healthy tissues. At the same time, the FLASH effect would reduce

toxicity in the irradiated healthy tissues, resulting in fewer side effects

overall. The limited literature in this field suggests retained

neuroprotection and abdominal sparing (26, 27), yet quantification

of the combined SOBP-FLASH effect on tissue toxicity is very sparse.

In order to investigate side-effect reduction by FLASH in the

clinical practice of SOBP, the current study was designed to quantify

the tissue-sparing effect of SOBP proton FLASH irradiation.

Simultaneously, the study was designed to enable direct

comparison to entrance-beam proton FLASH effects published in

Sørensen et al. (4). Using a murine model, we constructed full dose-

response curves of biological response for conventional and FLASH

dose rates through two simultaneous assays to capture the full

impact of the treatment. Initially, acute radiation-induced damage

was evaluated using a skin damage assay, followed by an assessment

of late radiation-induced damage using a fibrotic assay, both

conducted on the same animals.
Methods

Mouse preparation

Female C3D2F1 twelve to eighteen weeks old mice were used

for normal tissue damage assessment. The mice were obtained from

Janvier Labs (Le Genest-Saint-Isle, France) and housed in groups of

four with weights evenly distributed between cages. The mice were

provided food pellets and water ad libitum and acclimated to our

lab for at least six weeks. All experiments were performed under

ethical and legal permit from the Danish Licensing Authority no.

2022-15-0201-01110, and the study adheres to the ARRIVE

guidelines (28). Mice were weighed, earmarked, and given an ID

shortly before irradiations.

Mice were allocated to first a dose rate, then to different doses,

resulting in a total of 19 treatment groups (Table 1). Allocation to

treatment groups was partly randomized. However, it was manually

ensured that there was not more than a 10 Gy difference between

mice in the same cage due to welfare considerations. Treatment

groups consisted of doses between 19.9 - 49.7 Gy for conventional

radiations with low dose rate (CONV) and doses between 30.4 -
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65.9 Gy for ultra-high dose rate radiations (FLASH). Based on

previous data, the dose groups were chosen to provide full dose-

response curves for both acute and late responses (3, 4).

Irradiations were conducted over nine months in four

consecutive experiments: three with 40 mice and one with 25

mice. Each mouse was considered an experimental unit, giving

145 units. The sample size was based on previous studies of similar

designs (3, 4). Irradiations were conducted at the same time interval

during the day (between 5 PM and 12 AM) to avoid the influence of

diurnal rhythm.

The study design did not enable investigators to be blinded

during irradiations due to the apparent differences in delivery

time between CONV and FLASH. Likewise, dose rates could not

be fully randomized within the same day due to the resource-

intensive task of changing between CONV and FLASH beams

combined with the limited time available with beamline access.

Instead, within the same day, irradiations used either CONV

first, and FLASH thereafter, or vice versa. The order of

treatment doses was randomized within the CONV and

FLASH groups.
SOBP irradiations

The effect of FLASH irradiation within an SOBP was quantified

using an experimental setup similar to previous FLASH studies with

proton entrance beams (3, 4). Like these previous studies,

irradiations used a fixed horizontal proton beamline (ProBeam,

Varian, a Siemens Healthineers Company, Palo Alto, CA, USA) at

the Danish Centre for Particle Therapy (Aarhus University

Hospital, Denmark). A 2D range modulator (20–22) designed

and manufactured at the University of Applied Sciences in

Giessen, was used to generate a 5 cm wide SOBP from a mono-

energetic beam of 250 MeV for FLASH and 244 MeV for CONV. A

beam degrader of 26.5 cm solid water was used in front of a water
Frontiers in Oncology 03
bath in which the mouse leg target was placed in total treatment

depths of 34.5 cm for FLASH and 33 cm for CONV (Figure 1).

The pencil-beam scanning (PBS) proton irradiations followed a

spot pattern of 5 x 7 spots with a spot spacing of 6 mm in the

isocenter plane and 6.5-6.8 mm in the treatment depth, yielding a

field size of approximately 2 x 3 cm (Supplementary 1A) to cover

the mouse foot, as described further in Kanouta et al. (29). The spots

at the rim of the field had 40% higher weight than those in the inner

part. For CONV, to achieve a low field dose rate of 0.35 Gy/s and to

increase motion robustness, the spot pattern was delivered with

144-360 repaintings (depending on the dose) and mean beam

pauses of 4.4 ms between each spot delivery. For FLASH, the spot

pattern was painted once to achieve a field dose rate of

approximately 60 Gy/s. Daily fluctuations in the current output of

FLASH irradiations were accounted for by adapting the requested

beam current to give the intended field dose rate. A field dose rate of

60 Gy/s was chosen rather than using the maximum possible beam

current because this allowed better adaptation to daily variations

and because entrance-beam FLASH experiments with the same

murine model indicated that a maximum FLASH level was reached

at this field dose rate (30). Both the field dose rates and beam

energies were chosen to resemble previous proton FLASH studies

(3, 4).

The target was the right hind leg of unanesthetized mice

restrained in Lucite jigs. The mice were placed in a water bath of

25°C with the leg extended into the water and brass shielding of the

mouse body (Figure 1). One mouse was radiated per round.
Dosimetry

Several dosimetric methods were implemented before and

during treatment to ensure the correct delivery of the planned

dose to the target. Radiochromic films (EBT-XD Gafchromic films)

were used to measure the dose profile at the treatment depth. An
TABLE 1 Mice per treatment group included in analysis of skin toxicity and fibrosis.

FLASH CONV

Dose (Gy) Skin toxicity assay Fibrosis assay Dose (Gy) Skin toxicity assay Fibrosis assay

30.4 7 7 19.9 7 7

35.5 7 7 24.9 8 8

40.5 8 8 29.8 8 8

43.1 8 8 32.3 7 7

45.6 8 8 34.8 8 8

48.1 8 8 37.3 8 8

50.7 8 8 39.8 8 6

55.7 7 7 44.8 8 8

60.8 7 7 49.7 5 5

65.9 5 4

Total 73 72 Total 67 65
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Advanced Markus ionization chamber was used for depth-dose

characterization and absolute dose calibration. The field dose rate

was calculated for each mouse irradiation as the dose divided by the

total field duration. For FLASH, the field duration was extracted as

the sum of all spot deliveries in machine log files (31). For CONV,

the field duration was measured with fiber-coupled scintillators

since the machine log files lacked information on the beam pauses

between spots (31). Similar to Sørensen et al. (4), the local PBS dose

rate DRPBS95% was calculated in the plane of the mouse leg target as

95% of the dose divided by the time interval between the cumulative

dose reached 2.5% and 97.5% of its final value (32).

To catch gross errors, in vivo dosimetry was performed using

alanine dosimeters wrapped in parafilm and placed in the water

bath by the mouse foot. Alanine pellets (Batch CD600 from Harwell

Dosimeters) with a diameter of 4.8 mm and a height of 2.8 mm were

read out as described previously (33). A beam quality correction

factor of kQ = 1.032 ± 0.021 was applied to correct for the change in

alanine response in the proton beam SOBP relative to the response

in the 60Co calibration beam. The correction was derived based on a

direct comparison between alanine measurements and

measurements with a small-core graphite calorimeter (34).
Normal tissue damage assays

The acute biological response to radiation was quantified using

an acute skin toxicity assay. The assay visually assessed skin damage
Frontiers in Oncology 04
using an established skin damage scoring system (35, 36). Skin

damage was quantified with a grade between 1.5 (mild damage) and

3.5 (severe damage) with increments of 0.5. The grade was based on

the following parameters on the foot alone: skin redness, percentage

area with hair loss and moist desquamation, foot form and number

of visibly distinguishable toes.

To achieve a more complete understanding of the effect of

FLASH, late damage was assessed on the same mice after

developing acute damage. The late biological response in the

radiated leg was quantified using a leg extension assay, which is a

functional assay for the level of subcutaneous fibrosis (36, 37). The

assay visually assessed leg flexibility by extending the leg without

force. The fibrosis was quantified as 50%, 25% or 0% flexibility by

grades 2, 3, or 4, measured relative to the non-irradiated leg (36, 37).

For images of the extension assay, see supplementary in Overgaard

et al., 2023 (36).

One of three observers scored the toxicity and photographically

documented the acute damage when feasible. Observers scored the

mice while blinded for treatment and previous grades and with

minimal interobserver variability (38). Each mouse was assessed for

acute response daily between eight to twenty-eight days post-

irradiation to ensure that the maximum reached damage was

captured. For late response, the mice were assessed biweekly

between 9-30 weeks for time-resolved fibrotic development. Each

mouse assessment used the non-irradiated left hind leg as a control

to the irradiated right hind leg. When determining a parameter in

the assay, e.g. in terms of percentage hair loss on the foot, the non-
FIGURE 1

A schematic of the experimental setup for FLASH irradiations and the placement of the mouse foot relative to the generated spread-out Bragg peak.
The treatment depth was 34.5 cm for FLASH (250 MeV) and 33 cm for CONV (244 MeV).
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irradiated left foot was used as reference to the ‘normal’ hairiness for

that specific mouse, thus utilizing the mouse to be its own control in

both assays. The grades provided data on the damage development

over time and captured the maximal damage for each mouse.
Analysis of biological response

Maximal damage was analyzed as a function of dose in dose-

response curves for FLASH and CONV. As the acute toxicity assay

includes five toxicity grades of interest (Grade 1.5 - 3.5), and the

fibrotic assay includes three (Grade 2 - 4), a separate graph was

made for each grade. Within each grade, the scores for each mouse

were converted to binomial data, informing whether the grade was

achieved at least once. Logistic regression was used to model the

toxicity as a function of dose for FLASH and CONV, as in Sørensen

et al. (3, 4).

An automated code was used for data management, including

relating mouse ID with treatment and data analysis to ensure

investigator blinding during analysis. Mice were excluded based

on predefined criteria of humane endpoints: weekly weight loss

above 20%, skin damage outside the target area, development of

severely necrotic tissue or if alanine dosimetry indicated a delivered

dose that differed more than 15% from the planned dose. Data

management, analysis and visualization used the statistical program

R Studio and the graphical program GraphPad Prism (39, 40).

Dose-response curves were used to quantify the effect of the two

treatments (CONV and FLASH). The FLASH effect was quantified

for all toxicity grades as the dose-modifying factor (DMF), that is,

the ratio between CONV and FLASH at TD50 (median toxic dose:

Dose at which toxicity occurred in 50% of cases) and their

corresponding 95% confidence intervals. A DMF below 1 would

indicate increased toxicity from the FLASH treatment compared to

CONV, and likewise, a factor above 1 would indicate a decreased

toxicity and, thus, an improved radiotherapeutic treatment.

The resulting acute dose-response curves and DMF were

compared to the data published in Sørensen et al. (4), to enable a

comparison of the FLASH effect between entrance-beam and SOBP

proton irradiation. Sørensen et al. and the current study used the

same acute toxicity assay, murine model, homogenous dose field

size and experimental setup with horizontal beam line and water

bath (4). The two studies differed slightly in proton spot spacing,

spot weighing, and FLASH field dose rate.
Results

SOBP acute response

The acute toxicity resulted in complete dose-response curves

ranging from 0% to 100% responders for both CONV and FLASH

dose rates, illustrated in Figure 2. The FLASH dose-response curve

consistently required higher doses for a response than CONV,

which is evident across all toxicity grades (Figure 2). Each

treatment group had 5-8 mice (Table 1). Five mice were excluded

from the data analysis: one due to a technical error, two due to off-
Frontiers in Oncology 05
target toxicity, and two due to low alanine doses, although there

were no other indications of erroneous dose delivery. For the

remaining mice, the mean (SD) alanine dose relative to the

planned dose was 97.1% (2.1%) for CONV and 97.7% (2.7%) for

FLASH (Supplementary 2). The quantified difference between the

curves, the DMF, was similar across all toxicity grades, with an

overall mean of 1.40 (1.35-1.46), but tended to be smaller with more

severe grades (Table 2).

The mean (SD) of the field dose rate was 0.34 Gy/s (0.04 Gy/s)

for CONV and 60.0 Gy/s (4.2 Gy/s) for FLASH (Supplementary 3).

For a FLASH delivery with a field dose rate of 60 Gy/s, the mean

DRPBS95% in the high dose region that received 95% or higher doses

was 86 Gy/s (range: 72-101 Gy/s) (Supplementary 1B). For CONV,

DRPBS95% was essentially equal to the field dose rate due to

the repainting.

Acute skin damage was induced around day 12 in a dose- and

dose-rate-independent manner (Supplementary 4). For CONV and

FLASH, the maximum impact was reached around Day 14 - 17

post-irradiation (Supplementary 4). The maximal median score and

the total time spent with each score were dose-dependent. The skin

damage had a similar time pattern for CONV and FLASH when

considering the FLASH factor's effect in the dose dependency

(Supplementary 4).
Comparison of SOBP and entrance
acute response

The same acute dose-response curves were used to compare the

FLASH dose modification in entrance-proton irradiations of

Sørensen et al. (4) (Figure 2). The biological response to FLASH

was similar between entrance-beam and SOBP irradiations, a trend

seen for all toxicity grades (Figure 2). There was, however, a

discrepancy between the CONV response in the entrance and the

SOBP, with a generally lower dose needed to achieve toxicity in the

entrance study. The ratio of TD50 between the SOBP (current study)

and the entrance plateau (4) across the five toxicity levels was 1.06

(95% CI: 0.99-1.1) for CONV and 0.99 (95% CI: 0.98-1.02) for

FLASH (Table 2). The higher TD50 for CONV in the SOBP is

reflected in a lower DMF compared to those reported for entrance-

beam irradiations (4).
SOBP late response

Similarly to the acute skin response, the late toxicity differed

between the FLASH and CONV dose rates (Figure 3), with a mean

DMF of 1.18 (1.17-1.18) (Table 3). In addition to the mice excluded

prior to acute toxicity analysis, three mice were excluded from the

late toxicity analysis due to necrotic development before a fibrotic

score was reached (Table 1). The figure demonstrates a full dose-

response curve for the moderate fibrotic development equal to

grade 2, with a clear difference between FLASH and CONV, while

the other grades showed similar results but lacked completion of the

CONV curve, resulting in the overlapping 95% confidence interval.

(Table 3; Figure 3).
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Discussion

FLASH irradiations in the SOBP retained the tissue-sparing

effect, highlighting its potential to improve side effects in current

clinical practice. Using a 2D range modulator to form an SOBP with

a FLASH dose rate, we saw a reduced biological response to

radiation for both acute (Figure 2) and late damage (Figure 3).

Thus, the FLASH SOBP treatment was less toxic than the

conventional dose rate. The different toxicity grades all showed

the same trend, confirming the robustness of our assay (Figures 2,

3). The use of FLASH in the SOBP showed a clear change in the

biological response of the irradiated foot.

One of the major limiting factors of radiotherapy is the healthy

tissue toxicity, and while some toxicity is expected, reduction is the

key to improving treatment. Our study had a mean acute skin-
Frontiers in Oncology 06
sparing effect of 1.40 (range 1.35-1.46), meaning that a 40% (35-

46%) higher dose was needed for FLASH to cause the same degree

of acute skin damage as for a conventional dose rate (Specific effect

for each toxicity grade in Table 2). Compared to the reported

abdominal LD50-derived (lethal dose for 50%) FLASH effect in

Evans et al. (27) of 10-20%, our acute skin TD50-derived FLASH

effect is markedly higher, possibly due to differences in sparing

effects across different tissue types (41). Our results on acute

damage validate the sparse literature on the presence of FLASH

effects in SOBP (26, 27).

Another impact of radiation treatment is the late damage, which

gives continued side effects long after the treatment. FLASH needed

an 18% (17-18%) higher dose than the conventional dose rate to

cause the same radiation-induced fibrosis. Thus, our FLASH

treatment had a lower sparing effect for late relative to acute
A B

D

E

C

FIGURE 2

Dose-response curve for acute toxicity after irradiations with conventional (CONV, pink diamonds) or FLASH (blue squares) dose rates compared to
previously published data on entrance-plateau irradiation-induced toxicity (grey) (4) for (A) grade 1.5, (B) grade 2.0, (C), grade 2.5, (D) grade 3.0, and
(E) grade 3.5.
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effects. The lower late effect suggests that late-responding tissues are

less responsive to the FLASH effect, as indicated in previous studies

(3, 42, 43). Studies quantifying the FLASH effect in late-responding

tissues are, however, sparse, making it difficult to compare our effect

with other studies and tissues (41). Compared to a tumor control

study using the same murine model and fibrotic assay with

entrance-proton irradiations (3), our SOBP study showed a

similar mean DMF for grade 3 radiation-induced fibrosis of 1.18

relative to their 1.14 (3). Likewise, their fibrotic grade 3 TD50 (48.6

Gy for CONV, 55.6 Gy for FLASH (3)) was very similar to ours

(47.5 Gy for CONV, 55.9 Gy for FLASH). Despite the entrance-

beam study having a low and skewed distribution of animals per

dose group (3), which does not support a robust dose-response

curve, the fibrotic DMF also seems alike between entrance and

SOBP irradiations. Tissue sparing was thus present for acute skin

damage and radiation-induced fibrosis, validating the FLASH

effects in SOBP and demonstrating a retained effect compared to

entrance-proton irradiation.

The majority of proton FLASH studies so far have focused on

the entrance plateau rather than the SOBP (6). Therefore, our study

design directly compared one previous study in the entrance plateau

from Sørensen et al. (4) and our new study in the middle of an

SOBP. The acute FLASH effect was retained when moving from the

entrance plateau to SOBP, as seen from the overlapping dose-
Frontiers in Oncology 07
response curves (Figure 2). The comparison of entrance and SOBP-

induced acute toxicity did indicate slight differences in the FLASH

effect (DMF in Table 2). However, these were due to differences

between the two conventional treatments (TD50 in Table 2). The

conventional entrance plateau treatment was more radiosensitive

than the SOBP treatment. The CONV dose rate was very similar

between the two studies, and the difference cannot be explained by

differences in linear energy transfer (LET), as the SOBP treatment

would be expected to be more radiosensitive. We do not have a clear

explanation for the observed difference in the CONV dose-response

curves. Overall, our findings support that the tissue sparing of

proton FLASH is unaffected by treatment depth in the beam (26, 27,

44), and thus, the beneficial ability of SOBP does not compromise

the FLASH effect.

The similarity between entrance and SOBP was the same across

all toxicity grades, indicating that at the same dose rate and within a

limited span of very high single doses, the FLASH effect is not

influenced by the dose dependency of our endpoints. Conversely,

the FLASH effect was shown to be dose-rate dependent in a recent

study using the same acute toxicity assay (30).

While the field dose rate for FLASH (49-70 Gy/s,

Supplementary 3) was comparable with the entrance-beam

FLASH study of Sørensen et al. (65-92 Gy/s (4)) the much

broader proton spots in the SOBP depth (~8mm (29) versus ~4
TABLE 2 Dose-modifying factor (DMF) and TD50 (toxic dose for 50% of the population) mean (95% CI) for acute toxicity grades.

Mean
(95% CI)

Grade
1.5

Grade
2.0

Grade
2.5

Grade
3.0

Grade
3.5

SOBP

TD50

CONV
27.1

(25.0-29.0)
28.0

(25.5-30.0)
31.4

(29.8-32.8)
34.1

(32.6-35.5)
38.4

(37.0-40.2)

TD50

FLASH
38.4

(35.8-40.5)
40.7

(38.2-42.7)
44.0

(42.3-46.5)
46.6

(45.4-47.8)
51.8

(49.8-54.3)

DMF 1.42
(1.33-1.62)

1.46
(1.36-1.67)

1.40
(1.34-1.53)

1.37
(1.31-1.47)

1.35
(1.29-1.47)

Entrance

TD50

CONV
24.7

(23.5-25.6)
28.1

(27.3-28.1)
30.0

(29.1-30.7)
32.4

(31.5-33.3)
34.8

(34.1-35.6)

TD50

FLASH
39.1

(38.0-40.0)
40.9

(39.8-42.0)
43.2

(42.2-44.1)
47.4

(48.3-50.9)
52.2

(50.9-55.0)

DMF 1.58
(1.48-1.70)

1.45
(1.38-1.54)

1.44
(1.37-1.52)

1.46
(1.45-1.61)

1.50
(1.43-1.61)
The data on entrance-beam irradiations are directly from Sørensen et al. (4).
A B C

FIGURE 3

Dose-response curve for late toxicity after irradiations with conventional (pink) or FLASH (blue) dose rates for a fibrotic score (A) grade 2, (B) grade 3
and (C) grade 4.
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mm (4, 45)) resulted in considerably smaller PBS dose rates (mean

DRPBS95% in high dose region of 86 Gy/s in the current study versus

185 Gy/s in Sørensen et al. (4)) and a maximum instantaneous dose

rate that was only around 300 Gy/s while it was above 1000 Gy/s in

Sørensen et al. (4). That we see similar FLASH effects in both studies

indicates that the observed FLASH effect may be relatively

insensitive to both the PBS dose rate and the instantaneous dose

rate as long as the field dose rate (i.e. the mean dose rate) is

sufficiently high. For lower field dose rates, the FLASH effect for a

given field dose rate depends much more on the detailed beam time

structure, as previously demonstrated for this mouse model (30, 46).

Radiosensitivity is sex-dependent and increases with age (47).

Thus, care was taken to minimize heterogeneity in the mouse

cohort by using single-sex mice within a narrow age interval. This

limits the results from a more general conclusion across sex and

age, but it was chosen to reduce noise in the data. Another

limitation is that the animals were awake during irradiation and

thus were able to attempt movement. While the fixation method

ensures no major movement, smaller movements could slightly

influence the dose delivered to the foot. Our experience is that the

movement is minimal and of no major influence, but to mitigate

possible influence in the longer delivery of a conventional dose,

we used repainting for all conventional groups. Still, the extent of

this potential problem was investigated using an in vivo

scintillator dosimeter attached to the foot, with results

published elsewhere.

Future proton radiotherapy could benefit from the

implementation of FLASH. The combined SOBP FLASH reduce

skin toxicity and fibrotic development, at least compared to a single

fraction CONV treatment. As this is not a complete picture of

current clinical practice, data from different tissue types and

endpoints and fractionated experiments are still needed prior to a

broad clinical implementation of FLASH. However, if the same

biological response is seen for other tissue types, and the FLASH-

sparing effect is conserved with fractionation, SOBP FLASH could

enable better radiotherapeutic treatment. A comparison to a

fractionated conventional scheme would further facilitate a

transition to clinical applicability. Proton radiotherapy can be

combined with FLASH using current clinical practice methods of

SOBP irradiation and shows excellent potential to reduce side

effects, thus improving current treatments.
Frontiers in Oncology 08
Our preclinical study quantified the FLASH effect with two

robust toxicity assays, yielding a 40% dose-modifying effect for

acute skin damage and 18% for late fibrotic damage. The results

confirm that SOBP FLASH has a tissue-sparing effect. Our study

supports that proton radiotherapy could benefit from using FLASH

in a spread-out Bragg peak for the reduction of side effects.
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