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Objective: To evaluate the performance of a clinical-radiomics model based on

contrast-enhanced computed tomography (CE-CT) in assessing human

epidermal growth factor receptor 2 (HER2) status in urothelial bladder

carcinoma (UBC).

Methods: From January 2022 to December 2023, 124 patients with UBC were

classified into the training (n=100) and test (n=24) sets. CE-CT scans were

performed on the patients. Univariate and multivariate analyses were

conducted to identify independent predictors of HER2 status in patients with

UBC. We employed eight machine learning algorithms to establish radiomic

models. A clinical-radiomics model was developed by integrating radiomic

signatures and clinical features. Receiver operating characteristic curves and

decision curve analysis (DCA) were generated to evaluate and validate the

predictive capabilities of the models.

Results: Among the eight classifiers, the random forest radiomics model based

on CE-CT demonstrated the highest efficacy in predicting HER2 status, with area

under the curve (AUC) values of 0.880 (95% CI: 0.813–0.946) and 0.814 (95% CI:

0.642–0.986) in the training and test sets, respectively. In the training set, the

clinical-radiomics model achieved an AUC of 0.935, an accuracy of 0.870, a

sensitivity of 0.881, and a specificity of 0.854. In the test set, the clinical-

radiomics model achieved an AUC of 0.857, an accuracy of 0.760, a sensitivity

of 0.643, and a specificity of 0.900. DCA analysis indicated that the clinical-

radiomics model provided good clinical benefit.

Conclusion: The radiomics nomogram demonstrates good diagnostic

performance in predicting HER2 expression in patients with UBC.
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1 Introduction

Bladder cancer is the most prevalent type of tumor in the

urinary system, commonly originating from the bladder mucosa

(1). Urothelial bladder carcinoma (UBC), one of the most common

types of bladder cancer globally, is classified into two categories

based on the muscle invasion status: non-muscle-invasive bladder

cancer (NMIBC), which is found in approximately 75% of patients,

and muscle-invasive bladder cancer (MIBC), which represents

approximately 25% of cases (2, 3). MIBC is often associated with

a poor prognosis, characterized by a 5-year overall survival rate of

below 50% (4). Although NMIBC has a better prognosis, it is

associated with a high recurrence rate, and approximately 25%-

30% of all NMIBC cases finally progress to MIBC (5).

Human epidermal growth factor receptor 2 (HER2/ERBB2) is a

protein that plays a significant role in various cellular activities,

including cell growth, proliferation, and differentiation (6, 7). It is

found on the surface of certain cell types and belongs to the family

of epidermal growth factor receptors. The expression of HER2 in

UBC has significant clinical implications. Studies have shown that

UBC patients with HER2 overexpression have a poorer prognosis

than those with low HER2 expression (8, 9). Anti-HER2 therapies,

such as disitamab vedotin (RC48), have shown significant clinical

benefits and a manageable safety profile in locally advanced or

metastatic HER2-positive patients with UBC (10). HER2 can

independently predict prognosis in patients with NMIBC

receiving bacillus Calmette-Guérin (BCG) therapy. Patients with

HER2-positive, high-risk NMIBC have an elevated risk of disease

recurrence and progression with BCG therapy. Therefore,

aggressive targeted strategies, such as HER2-targeted therapies,

should be considered for these patients (11). HER2 status is now

considered an important biomarker in UBC for prognosis,

treatment selection, and decision-making.

Currently, the expression of HER2 is examined by

immunohistochemistry (IHC) or fluorescence in situ hybridization

(FISH) in pathological tissue obtained by biopsy or surgical resection.

Both IHC and FISH require invasive procedures to obtain specimens,

which may lead to risks such as infection, bleeding, and other

complications. Additionally, IHC and FISH have disadvantages

such as expensive test kits, time-consuming procedures, and delays

in treatment decision-making (12). Hence, there exists an immediate

and crucial demand for a noninvasive and precise technique to

preoperatively evaluate HER2 status in patients with UBC.

Radiomics combines medical imaging, computational

analysis, and machine learning to unlock hidden information

within medical images, ultimately aiming to improve patient

care and outcomes through more precise diagnosis, prognosis,

and treatment planning. In recent years, some studies have

highlighted the potential of radiomics in predicting the

expression of HER2 among various tumors (13, 14). Yu et al.

suggested that MRI-based radiomics can better predict HER2

expression in patients with UBC and can be used for prognosis

assessment and clinical decision-making (15). However, no prior

investigations have focused on CT-based radiomics for assessing

HER2 status in patients with UBC. Computed tomography (CT) is
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treatment, and conducting postoperative follow-ups for bladder

cancer. It has become widely adopted in clinical practice. In recent

years, radiomics based on CT images has developed rapidly in

bladder cancer, demonstrating potential in guiding clinical

decisions (2, 16, 17). Consequently, our research aims to

evaluate the efficacy of CT-based radiomics in assessing HER2

expression in patients with UBC.
2 Materials and methods

2.1 Patients and data acquisition

This retrospective study obtained approval from the Ethics

Committee of the First Affiliated Hospital of Guangxi Medical

University, and the requirement for informed consent from

patients was waived. We included 124 patients with UBC in our

cohort between January 2022 and December 2023. The patient

selection flowchart is shown in Figure 1.

The inclusion criteria were: 1) Postoperative pathologically

confirmed UBC at our institution; 2) HER2 expression in

postoperative tissue specimens determined by IHC; and 3)

available preoperative contrast-enhanced CT (CE-CT) images and

complete clinical data.

The exclusion criteria were: 1) Preoperative CE-CT performed

more than 30 days before surgery; 2) chemotherapy, radiotherapy,

or targeted therapy were performed before CT scanning; and 3)

previous history or concurrent upper tract urothelial carcinoma.

Clinical and imaging factors collected included age, gender,

smoking history, clinical T-stage, tumor stalk, and tumor size. A

tumor stalk is a structure that connects a tumor mass to the

surrounding tissue or organ. Kang et al. reported that the tumor

stalk appears as a hypoattenuating or hyperattenuating structure

that contacts the bladder wall at the base of the tumor (18).
2.2 Evaluation of HER2 expression

Experienced pathologists evaluated all samples, selecting a

morphologically representative section. HER2 protein expression

in UBC was assessed using immunohistochemistry (IHC) with an

anti-HER2/neu (4B5) rabbit monoclonal antibody (Ventana; Roche

Diagnostics) on an automated IHC staining instrument (Ventana

Benchmark XT, Roche). HER2 staining was classified using a 4-level

system based on the 2018 American Society of Clinical Oncology/

College of American Pathologists (ASCO/CAP) guidelines (19), as

follows: 0: Negative membrane staining or <10% of cancer cells with

incomplete/weak membrane staining; 1+: ≥10% of cancer cells with

incomplete and weak membrane staining; 2+: ≥10% of cancer cells

with weak to moderate complete membrane staining or <10% of

tumor cells with strong and complete membrane staining; and 3+:

≥10% of cancer cells with strong/complete membrane staining.

HER2 status was categorized as HER2 positive (IHC2+/3+) and

HER2 negative (IHC0, 1+).
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2.3 CT acquisition

CT scans were performed using various scanners, including the

256-row CT (Revolution CT, GE, USA), 64-row CT (LightSpeed

VCT 64, GE, USA), SOMATOM Force (Siemens, Germany), 64-

row multidetector CT scanner (Somatom 64, Siemens AG,

Germany), and dual-source MDCT scanner (Somatom Definition,

Siemens). Parameters were tube voltage: 100–120 kV; tube current:

250–300 mA; matrix 512×512; pitch: 0.6–1.25 mm; and

reconstruction slice thickness: 1 mm, 1.25 mm, or 2 mm. Patients

were advised to fast for 6–8 hours before the examination and to

drink water to ensure adequate bladder filling. The patient assumes

a supine position, and the scanning range is from the upper pole of

the kidney to the symphysis pubis, starting with a plain CT scan of

the urinary system followed by contrast agent injection (iohexol,
Frontiers in Oncology 03
iodine content 350 mg/mL) using a high-pressure injector. Images

were acquired at 30 seconds for the corticomedullary phase, 60

seconds for the nephrographic phase, and 5 minutes for the

excretory phase.
2.4 Lesion segmentation and CT
features extraction

Figure 2 illustrates the workflow of the radiomics analysis. CE-

CT images in the corticomedullary phase were analyzed. In our

study, all CT features involved in extraction and selection were

completed using the “One-key AI” platform. Before image

segmentation, all CT images were resampled to a uniform image

spacing of 1.0 mm in three anatomical directions due to different
FIGURE 2

Workflow of radiomic analysis in this study.
FIGURE 1

Flow chat of patient selection.
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pixel sizes and slice thicknesses of various CT scanners. The region-

of-interest of tumor lesions was segmented slice by slice using ITK

SNAP software (www.itksnap.org). Two radiologists with 5 and 7

years of experience in genitourinary system diagnosis manually

segmented the UBC lesions, blinded to HER2 status. An interclass

correlation coefficient value ranging from 0.75 to 1 indicated

good agreement.

A total of 1130 radiomics features were extracted from CT

images, classified into three categories: geometric, intensity, and

texture features. Geometric features assessed three-dimensional

tumor morphology, intensity features described the distribution

and variation of voxel intensities, and texture features captured

various mathematical methods, including statistical measures,

frequency domain analysis, and spatial domain analysis. Common

texture features include gray-level run length matrix (GLRLM),

gray-level co-occurrence matrix (GLCM), gray-level size zone

matrix (GLSZM), and fractal features. Texture features refer to

quantitative measures that capture the spatial arrangement and

variation of pixel intensities within an image.
2.5 Feature selection and model building

We used the U test (significance threshold of p<0.01) for feature

selection to recognize the most relevant features. For highly

repeatable radiomic features, Spearman correlation analysis was

conducted, removing features with a correlation coefficient

exceeding 0.90, with one of them randomly removed. For

signature construction, we utilized the least absolute shrinkage

and selection operator (LASSO) regression model with 10-fold

cross-validation. The final selected features were inputted into

machine learning models, including support vector machine

(SVM), random forest (RF), logistic regression (LR), multilayer

perceptron (MLP), extremely randomized trees (ExtraTrees), light

gradient boosting machine (LightGBM), extreme gradient boosting

(XGBoost), and K-nearest neighbor (KNN). Five-fold cross-

validation was conducted to construct the final Rad signature.

The model with the highest area under the curve (AUC) in the

test set was considered optimal.

Clinical factors were assessed using T-tests, Mann-Whitney U

tests, or chi-square tests. Univariate and multivariate analyses

explored independent predictors for HER2 status in patients with

UBC. Clinical factors with p<0.05 were used to construct a clinical

model. The radiomic nomogram was constructed by integrating the

radiomics score with the clinical signature. Receiver operating

characteristic (ROC) curves evaluated the diagnostic performance

of the predictive models, and decision curve analysis (DCA)

assessed their clinical usefulness.
2.6 Statistical analysis

Statistical analyses were performed using SPSS (IBM SPSS

version 26.0) and the “One-key AI” platform (available at: https://

www.medai.icu). Continuous variables were assessed using the

Mann-Whitney U test or Student’s t-test, depending on their
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distribution. Categorical variables were analyzed using chi-square

tests. Bilateral p<0.05 were considered statistically significant. ROC

curves were plotted, and the AUC was computed to evaluate the

diagnostic efficacy of the models. DCA was used to assess the

clinical efficacy of the predictive models. The DeLong test was

employed to compare the AUCs of the three models.
3 Results

3.1 Clinical characteristics

The basic clinical data of patients with UBC in our study are

presented in Tables 1, 2. We analyzed 124 patients diagnosed with

UBC, categorizing them into two groups based on HER2 expression

levels: HER2 positive (73 cases) and HER2 negative (51 cases). After

random grouping, 100 patients were allocated to the training group,

while the test group comprised 24 patients. Gender and stalk

showed significant differences between the HER2-positive and

HER2-negative groups on multivariable analysis (p<0.05).
3.2 Feature selection and optimal machine
learning algorithm

Five features were selected to build the radiomics signature.

Details of these features are illustrated in Figure 3. Eight models

were built and compared to find the best-performing model. The

results for all algorithms in the training and test sets are shown in

Table 3; Figure 4. In both the training and test groups, the RF

algorithm demonstrated the highest AUC values for predicting

HER2 status in UBC, with AUCs of 0.880 (95% CI 0.813–0.946)

and 0.814 (95% CI 0.642–0.986), respectively.
3.3 Construction of the
radiomics nomogram

The clinical model was built using features with p<0.05 in our

cohort. Only baseline gender and stalk met this criterion; therefore,

these two features were employed to construct the clinical signature.

The clinical model showed an AUC of 0.684 (95% CI 0.579–0.788)

in the training group and 0.621 (95% CI 0.400–0.843) in the test

group (Table 4; Figure 5).

In the training group, the clinical-radiomics model exhibited an

AUC of 0.935 (95% CI 0.886–0.985), with accuracy, sensitivity, and

specificity values of 0.870, 0.881, and 0.854, respectively. In the test

group, the AUC was 0.857 (95% CI 0.707–1.000), with

corresponding accuracy, sensitivity, and specificity values of

0.760, 0.643, and 0.900, respectively (Table 4, Figure 5). The

clinical-radiomics model demonstrated strong predictive

performance for HER2 status, leading to the construction of a

radiomics nomogram (Figure 5).

Figure 6 displays the DCA results for the clinical, radiomics, and

clinical-radiomics models. DCA indicated that the radiomics-

clinical model could offer greater benefit in many scenarios.
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Differences between the AUCs of the clinical-radiomics and

clinical models were statistically significant in both the training and

test groups (DeLong test; p<0.01). A significant difference was also

found between the AUCs of the clinical-radiomics and radiomics

models in the training group (DeLong test; p=0.022). However, in

the test group, no significant difference was observed between the

clinical-radiomics and radiomics models (DeLong test; p=0.095).
4 Discussions

In this study, we developed three predictive models (clinical model,

radiomics model, and clinical-radiomics model) to predict HER2 status

in patients with UBC. The results showed that the clinical model had

the poorest performance (AUC=0.621 in the test set), followed by the

radiomics model (AUC=0.814 in the test set). The combined model
Frontiers in Oncology 05
had the best performance (AUC=0.857 in the test set). Therefore, a

radiomics nomogram based on CE-CT could be an effective and

noninvasive tool for predicting the HER2 status in patients with

UBC. The radiomics nomogram showed that HER2 status was

associated with gender and tumor stalk. However, there is no

literature to explore the relationship between tumor stalk and HER2

status in bladder cancer. About three-quarters of UBCs are papillary,

and approximately sixty-six percent of these exhibit stalks (20). The

pathological basis of the tumor stalk is composed of loose connective

tissue with fibrotic tissue, capillaries, some inflammatory cells, and

tissue edema (21). Kang et al. reported that the tumor stalk refers to

hypo- or hyperattenuating structures on CE-CT during the

corticomedullary to nephrographic phase (18). The typical

appearance of tumor stalk on MRI was low-signal intensity on T2-

weighted and diffusion-weighted images, and continuous submucosal

enhancement at the base of the tumor on fat-suppressed dynamic
TABLE 2 Univariate and multifactor logistic regression analysis of diagnostic factors.

Characteristic Univariable logistic regression Multivariable logistic regression

OR (95% CI) p value OR (95% CI) p value

age 1.001 (0.994–1.008) 0.871

gender 1.331 (1.074–1.649) 0.029 1.328 (1.088–1.623) 0.021

diameter 0.998 (0.960–1.038) 0.935

smoke 1.197 (1.017–1.409) 0.070

Clinical T stage 1.267 (1.079–1.487) 0.016 1.173 (1.003–1.373) 0.094

stalk 0.689 (0.579–0.819) 0.001 0.726 (0.610–0.865) 0.003
OR, odds ratio; CI, confidence interval.
TABLE 1 Baseline characteristics of patients in the training and test cohorts.

Characteristic Training cohort
(n=100)

Test cohort
(n=24)

HER2-positive
(n=59)

HER2-negative
(n=41)

p HER2-positive
(n=14)

HER2-negative
(n=10)

p

age 64.64 ± 11.56 64.24 ± 12.78 0.871 59.71 ± 13.60 64.50 ± 7.89 0.330

diameter 3.86 ± 1.68 3.90 ± 2.70 0.309 2.89 ± 1.44 3.68 ± 2.06 0.412

Clinical T stage 0.028 0.831

<T2 23(38.98) 26(63.41) 8(57.14) 7(70.00)

≥T2 36(61.02) 15(36.59) 6(42.86) 3(30.00)

stalk 0.001 0.339

NO 50(84.75) 22(53.66) 12(85.71) 6(60.00)

YES 9(15.25) 19(46.34) 2(14.29) 4(40.00)

gender 0.056 1.000

NO 6(10.17) 11(26.83) 2(14.29) 1(10.00)

YES 53(89.83) 30(73.17) 12(85.71) 9(90.00)

smoke 0.106 0.464

NO 28(47.46) 27(65.85) 6(42.86) 2(20.00)

YES 31(52.54) 14(34.15) 8(57.14) 8(80.00)
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contrast-enhanced MRI (22, 23). Several studies have found that

bladder tumors with stalks are an important imaging feature in

differentiating NMIBC (T1-stage or lower) from MIBC (T2-stage or

higher) (23, 24). Bladder tumors without stalks tend to be of advanced

T-stage (T2-stage or higher). A meta-analysis indicated that HER2

overexpression was significantly correlated with high tumor stage (25).
Frontiers in Oncology 06
Therefore, tumors without stalks may be correlated with HER2

overexpression. Additionally, integrating the radscore with tumor

stalk could enhance predictive performance, providing an effective

and noninvasive tool for clinical decision-making (23, 26). Tumors

with stalks can be resected more easily and typically indicate a lower

T-stage, which correlates with a better prognosis (22).
TABLE 3 Characteristics of all radiomics models.

Model Cohort AUC Accuracy Sensitivity Specificity

LR Training cohort
Test cohort

0.683 (0.577 - 0.788)
0.771 (0.574 - 0.969)

0.680
0.750

0.898
0.571

0.366
1.000

SVM Training cohort
Test cohort

0.767 (0.669 - 0.865)
0.579 (0.323 - 0.835)

0.710
0.625

0.678
0.714

0.756
0.500

RF Training cohort
Test cohort

0.880 (0.813 - 0.946)
0.814 (0.642 - 0.986)

0.790
0.707

0.695
0.429

0.927
1.000

KNN Training cohort
Test cohort

0.759 (0.670 - 0.849)
0.646 (0.419 - 0.874)

0.530
0.500

0.203
0.429

1.000
0.600

ExtraTrees Training cohort
Test cohort

0.773 (0.683 - 0.864)
0.711 (0.497 - 0.925)

0.730
0.667

0.831
0.643

0.585
0.700

XGBoost Training cohort
Test cohort

0.952 (0.911 - 0.994)
0.561 (0.318 - 0.804)

0.900
0.625

0.915
0.357

0.878
1.000

LightGBM Training cohort
Test cohort

0.818 (0.734 - 0.902)
0.768 (0.575 - 0.961)

0.720
0.625

0.593
0.429

0.902
0.900

MLP Training cohort
Test cohort

0.698 (0.595 - 0.802)
0.793 (0.605 - 0.981)

0.620
0.750

0.525
0.714

0.756
0.800
AUC, area under the curve; LR, logistic regression; SVM, support vector machine; RF, random forest; KNN, k-nearest neighbors; ExtraTrees, extremely randomized trees; XGBoost, extreme
gradient boosting; LightGBM, light gradient boosting machine; MLP, multi-layer perceptron.
FIGURE 3

Radiomic feature selection. Coefficients of 10−fold cross validation (A) and mean standard error of 10−fold cross validation (B). Final extracted
radiomics features (C).
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Accurately predicting HER2 status in patients with UBC is

crucial because HER2-positive and HER2-negative cases have

different clinical treatments and prognoses. In recent years, there

has been significant progress in medical therapy for UBC. Following

chemotherapy and immune checkpoint immunotherapy, anti-

HER2 targeted treatments, such as monoclonal antibodies, small

molecule tyrosine kinase inhibitors, and antibody-drug conjugates,

have shown significant efficacy in locally advanced or metastatic

HER2-positive urothelial carcinoma (27, 28). Additionally,

anti-HER2 targeted therapy could be a viable option for high-risk

and HER2-positive patients with NMIBC who have the highest risk

of disease recurrence and progression after BCG therapy (11).

Medical imaging is a common approach for preoperative cancer

diagnosis; however, its accuracy in assessing HER2 status remains

unsatisfactory. HER2 status is typically determined using invasive

procedures like IHC or FISH, which can pose risks of infection,

bleeding, and other complications. Moreover, IHC and FISH are

time-consuming, labor-intensive, and expensive (29). Therefore,

developing a noninvasive and effective method for accurately

assessing HER2 status in patients with UBC is critical.

Currently, radiomics is at the forefront of medical imaging

analysis, utilizing advanced techniques to extract quantitative

features from radiographic images such as CT, MRI, or

ultrasound scans. These radiomics features (such as first-order

features, shape features, and textural features) contain a wealth of

information beyond what is visible to the naked eye (30). Once

extracted, these features are analyzed using statistical methods to

build predictive models. Radiomics has shown promise in various

medical applications, particularly in oncology. In cancer diagnosis
Frontiers in Oncology 07
and treatment, radiomics can help identify biomarkers associated

with tumor aggressiveness, predict treatment response, assess

patient prognosis, and more. By leveraging radiomics, clinicians

can potentially tailor treatment plans to individual patients, leading

to more effective and personalized care. Overall, radiomics

represents a powerful tool for unlocking hidden information

within medical images, enabling more precise diagnosis,

treatment planning, and patient management across various

medical specialties. Numerous reports have highlighted the utility

of radiomics for the noninvasive prediction of various factors in BC,

including pathological grade, staging, lymph node metastasis, Ki67

status, prognosis, and recurrence (16, 17, 31–33). Li et al. reported

that the radiomics model achieved an AUC of 0.910 in the test set,

demonstrating its potential usefulness for noninvasively and

preoperatively assessing tumor grade in NMIBC (31). Feng et al.

demonstrated that their clinical-radiomics model exhibited

significant accuracy for the prediction of Ki67 status of bladder

cancer in both the training and validation cohorts, achieving AUC

values of 0.836 and 0.887, respectively (17). Park et al. used

contrast-enhanced CT to construct a radiomics model to evaluate

objective response and disease control of patients with metastatic

urothelial carcinoma treated with immunotherapy targeting

programmed cell death 1 (PD-1) and its ligand (PD-L1). The

AUCs for objective response and disease control in the training

cohorts were 0.87 and 0.77, whereas those in the validation cohorts

were 0.87 and 0.88, respectively (16). To the best of our knowledge,

there is only one report focused on radiomics features for predicting

HER2 status in UBC. Yu et al. reported an MRI-based radiomics

approach that can be used as a noninvasive tool to assess HER2
TABLE 4 The effectiveness of clinical model, radiomics model and nomogram model.

Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity

Clinical Training cohort
Test cohort

0.684 (0.579 - 0.788)
0.621 (0.400 - 0.843)

0.620
0.417

0.610
0.000

0.634
1.000

Radiomics Training cohort
Test cohort

0.880 (0.813 - 0.946)
0.814 (0.642 - 0.986)

0.790
0.701

0.695
0.429

0.927
1.000

Nomogram Training cohort
Test cohort

0.935 (0.886- 0.985)
0.857 (0.707 - 1.000)

0.870
0.760

0.881
0.643

0.854
0.900
FIGURE 4

The effectiveness of radiomics models in the training cohort (A) and test cohort (B).
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status in patients with UBC, with an AUC of 0.929 in the training

cohort, 0.859 in the validation cohort, and 0.712 in the test cohort

(15). However, no prior research has focused on CT radiomics for

predicting HER2 status in patients with UBC.

In this study, we utilized eight machine learning-based

classifiers (LR, SVM, RF, KNN, ExtraTrees, XGBoost, LightGBM,

and MLP) for model construction. RF emerged as the top performer

among these models in predicting HER2 status, with an AUC of

0.880 in the training group and 0.814 in the test group. RF is favored

for its robustness, scalability, and ability to handle complex datasets

and diverse tasks effectively. Its flexibility and ability to provide

insights into feature importance make it a valuable tool in machine

learning applications. Based on prior research, RF has demonstrated

remarkable performance compared with other machine learning

algorithms in various prediction tasks, such as predicting
Frontiers in Oncology 08
preeclampsia, in-hospital mortality for critically ill patients with

sepsis-associated acute kidney injury, telomerase reverse

transcriptase (TERT) promoter mutation status in adult

glioblastoma, and meningioma grade (34–37). Therefore, we

believe RF to be a dependable classifier in radiomics, offering

broad applicability for future research endeavors. We established

a nomogram model based on radiomics and clinical features for the

noninvasive prediction of HER2 status in patients with UBC.

Compared with the clinical model and the radiomics signature,

the nomogram model enhanced the prediction of HER2 status. In

our study, the nomogram model (AUC=0.935, 0.857) performed

better than the radiomics model (AUC=0.880, 0.814) and the

clinical model (AUC=0.684, 0.621) in both the training and test

cohorts. The results indicate that the nomogram can be used to

noninvasively assess HER2 status in UBC, which may help
FIGURE 6

Comparison of the Efficiency of Three Models. DCA curves of three models in both training cohort (A) and test cohort (B).
FIGURE 5

The radiomics-clinical nomogram (A) and ROC of clinical model, radiomics model and clinical radiomics nomogram in both training cohort (B) and
test cohort (C).
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clinicians in more precisely discriminating between HER2-positive

and HER2-negative patients with UBC.

A radiomics nomogram is a graphical tool used to predict the

probability or outcome of specific events. They integrate multiple

predictive factors and quantify risk by mapping them onto an

easily understandable score or scale. Nomograms are commonly

used in medical and statistical fields to assist physicians and

researchers in making personalized predictions and decisions,

such as forecasting patient survival rates or the risk of disease

progression. However, nomograms have several limitations in

their prediction capability. First, there are currently no universal

reporting standards for nomograms (38). Different interpretations

or judgments by different constructors can lead to variations in the

nomogram’s accuracy and usability. Second, nomograms are

suited for linear or simple nonlinear relationships between

variables. If the relationship becomes highly nonlinear or

involves complex functions, a nomogram may not be practical

or accurate. Third, while radiomic nomograms provide predictive

models, interpreting the contributions of individual radiomic

features to the predictions can be challenging. Many radiomic

features may lack direct clinical interpretation, making it difficult

for clinicians to understand the biological or pathological

significance behind the predictions made by the nomogram.

Finally, traditional nomograms are static and cannot easily be

updated (39). In technology-rich environments, electronic risk

assessment tools can be developed for dynamic predictions,

effectively mitigating many limitations associated with

traditional nomograms (40).

However, there are several limitations to this study. Firstly, the

relatively small sample size constrains the actual performance of the

models. Secondly, it is conducted at a single center and lacks an

external dataset for validation purposes. Thirdly, the study design is

retrospective, which may lead to selection bias. Despite these

limitations, integrating conventional clinical factors with radiomic

signatures could potentially enhance the diagnostic prediction of

HER2 expression status. The next phase of our work will focus on

developing prospective, multicenter studies with larger sample sizes.
5 Conclusions

In summary, the nomogram integrating clinical features and

radiomics signatures demonstrated outstanding diagnostic efficacy

in distinguishing HER2-positive and HER2-negative UBC. The

nomogram model displayed higher AUC and accuracy levels than

the radiomics and clinical models, offering a promising tool for

urologists and oncologists to formulate more effective personalized

treatment strategies.
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