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Preoperative CT-based radiomics
nomogram to predict the
micropapillary pattern in
lung adenocarcinoma
of size 2 cm or less
Xiaoyu Pan1†, Liang Fu1†, Jiecai Lv2, Lijuan Feng1, Kai Li1,
Siqi Chen1, Xi Deng1 and Liling Long1*

1Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi, China, 2Department of Radiology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
Purpose: To develop and validate a radiomics nomogram model for predicting

the micropapillary pattern (MPP) in lung adenocarcinoma (LUAD) tumors of ≤2

cm in size.

Methods: In this study, 300 LUAD patients from our institution were randomly

divided into the training cohort (n = 210) and an internal validation cohort (n = 90)

at a ratio of 7:3, besides, we selected 65 patients from another hospital as the

external validation cohort. The region of interest of the tumor was delineated on

the computed tomography (CT) images, and radiomics features were extracted.

A nomogram model was established using radiomics features, clinical features

and conventional radiographic features. The nomogram model was compared

with the radiomics model and the clinical model alone to test its diagnostic

validity. Receiver operating characteristic (ROC) curves, areas under the ROC

curves and decision curve analysis (DCA) results were plotted to evaluate the

model performance and clinical application.

Results: The nomogram model exhibited superior performance, with an AUC of

0.905 (95% confidence interval [CI]: 0.857-0.951) in the training cohort, which

decreased to 0.817 (95% CI: 0.698-0.936) in the external validation cohort. The

clinical model had AUCs of 0.820 (95% CI: 0.753-0.886) and 0.730 (95% CI:

0.572-0.888) in the training and external validation cohorts, respectively. The

radiomics model had AUCs of 0.895 (95% CI: 0.840-0.949) and 0.800 (95% CI:

0.675-0.924) for training and external validation, respectively. DCA confirmed

that the nomogram model had the better clinical benefit.
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Conclusions: The nomogram model achieved promising prediction efficiency

for identifying the presence of the MPP in LUAD tumors ≤2 cm, allowing

cl inicians to develop more rational and efficacious personal ized

treatment strategies.
KEYWORDS

lung adenocarcinoma, micropapi l lary pattern, radiomics , nomogram,
computed tomography
Introduction

Lung cancer is the primary cause of cancer-related mortality

worldwide (1). Among the various pathological types of non-small

cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) has

emerged as the most prevalent (2). In 2015, the World Health

Organization (WHO) categorized LUAD into five primary

histologic subtypes delineated by prognosis (3). Prior studies have

indicated that the micropapillary pattern (MPP) is classified as the

high-risk subtype owing to its significant correlation with factors

indicating adverse prognosis, including tumor spread through air

spaces (4), lymph node metastasis (5), and vascular invasion (6).

Wang et al. demonstrated that among LUAD patients with

pathological stage pT1N0M0, those with the MPP and solid

pattern subtypes exhibited poorer recurrence-free survival (RFS)

and overall survival (OS) than patients with the other subtypes (7).

Notably, the MPP represents less than 5% of the tumor volume but

still negatively affects OS (8).

The advancement of imaging technology and the widespread

adoption of low-dose computed tomography (CT) have led to a

significant increase in the detection of early-stage lung cancers. In

patients with resectable NSCLC, lobectomy is widely acknowledged as

the standard surgical procedure (9). With the ongoing advancements

in thoracic surgical, sublobar resection, including segmentectomy and

wedge resection, have become increasingly prevalent in the treatment

of NSCLC with a diameter of 2 cm or less. In two Phase III trials

involving patients with tumor sizes of 2 cm or smaller, sublobar

resection demonstrated superiority or non-inferiority to lobectomy

regarding disease-free and overall survival (10, 11). However, Xu et al.

recommended that LUAD patients with a tumor size ≤2 cm and the

MPP constituting more than 5% of tumor volume should undergo

lobectomy and systematic lymph node dissection (12). Given the

unfavorable prognosis linked to MPP, sublobar resections may be

inappropriate for this patient population. Therefore, the preoperative

diagnosis of MPP in LUAD with a tumor size ≤2 cm has significant

implications for the choice of surgical procedure.

Rapid advancements in artificial intelligence are transforming

imaging medicine from a basic diagnostic tool into an essential

element of personalized precision medicine. Radiomics is a

technique that enables the noninvasive and quantitative

description of the biological characteristics and heterogeneity of a
02
tumor (13). Previous studies have demonstrated the utility of

radiomics in predicting the MPP and solid subtypes of LUAD

(14–17). Previous studies included patients with tumor diameters

greater than 2 cm, radiomics models developed without accounting

for tumor diameter may not be suitable for identifying MPP in

LUAD patients with tumor size ≤2 cm. In addition, the significance

of radiographic features in the construction of predictive models

has been neglected, and radiographic features may enhance the

diagnostic efficacy of the model. Furthermore, several studies failed

to perform external validation.

Therefore, in this study, we aimed to develop and validate a

machine learning model by CT radiomics signature with clinical

features and conventional radiographic features to predict the MPP

in LUAD tumors ≤2 cm in size.
Materials and methods

The study followed the Radiomics Quality Score (RQS) system.

The RQS scoring criteria, the scores for this study, and the rationale

underlying for the scores for prediction model development are

detailed in the Supplementary Material.
Patients and data acquisition

This retrospective study was approved by the Institutional Ethics

Committee of the First Affiliated Hospital of Guangxi Medical

University and the Institutional Ethics Committee of the Second

Affiliated Hospital of Guangxi Medical University, and the

requirement for patient informed consent was waived(2024-E246-

01, 2024-KY (0780). We selected patients who were treated at the

First Affiliated Hospital of Guangxi Medical University (hospital A)

from January 2018 to September 2023 as the training and internal

validation cohorts. In addition, the patients for the external validation

cohort were obtained from the Second Affiliated Hospital of Guangxi

Medical University (hospital B). The study flowchart is shown in

Figure 1A. The inclusion criteria were as follows: 1. All enrolled

patients underwent chest CT scans within two weeks before surgery,

and the maximum diameter of the tumor on CT images was ≤2 cm. 2.

Pathology confirmed primary LUAD. 3. Patients did not receive
frontiersin.org
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radiotherapy, chemotherapy, or immunotherapy before surgery. 4.

There was no history of other malignant tumors. The exclusion

criteria were as follows: 1. Lack of complete clinical and pathological

data and preoperative CT images. 2. Presence of other concurrent

malignant tumors. 3. Receipt of anti-tumor treatment before surgery.

4. Presence of multiple pulmonary tumor lesions. 5. patients with

lung fibrosis, COPD, or prior lung resections.

In total, our study included patients with a total of 365 lesions

that were diagnosed as LUAD. Among them, 300 patients from the

First Affiliated Hospital of Guangxi Medical University were

randomly divided into a training cohort (n=210) and an internal

validation cohort (n=90) at a ratio of 7:3. Additionally, 65 cases

from the Second Affiliated Hospital of Guangxi Medical University

were recruited as the external validation cohort. Clinical data and

conventional radiographic features, including age, sex, smoking

history, preoperative carcinoembryonic antigen (CEA) level,

maximum tumor diameter, vascular convergence sign, nodule

type(part solid nodule and solid nodule), lobulation sign,

spiculation sign, vacuole sign, air bronchogram sign, pleural

indentation sign, and CTR, were collected. The maximum tumor

diameter was defined as the maximum diameter on the axial plane

in the lung window, and the solid tumor size was defined as the

maximum diameter of the solid component. The CTR was

calculated as the ratio of the solid tumor size over the tumor size

(Figure 2). We have added figures to explain signs like lobulation
Frontiers in Oncology 03
sign, spiculation sign, air bronchogram sign, vascular convergence

sign, pleural indentation, vacuole sign. The figures were detailed in

the Figure 3.
CT imaging

For CT imaging, the following scanners were used: GE256 row

Revolution CT, Siemens Definition Flash CT, Siemens Dual-source

CT, Siemens Force CT, and Philips iCT 128. The scanning

parameters were as follows: tube voltage, 120 kV; tube current,

250-300 mA; matrix, 512×512; and reconstructed slice thicknesses,

0.6 mm~1.5 mm. The window settings were adjusted to a lung

window width of 1500 HU and a window level of -500 HU.
Histologic evaluation

Two experienced pathologists independently assessed the

histological subtypes according to the 2015 WHO classification of

LUAD (3), resolving any disagreements through discussion to reach

a consensus. In our study, all patients were divided into two groups

based on the proportion of MPP in the tumor, the positive group

included patients with ≥5%MPP, while the negative group included

patients with <5% MPP and patients without MPP (18).
FIGURE 1

Flowchart of the study subjects. Study workflow (A). Radiomics workflow (B). MMP, Micropapillary Patter; CT, computed tomography.
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FIGURE 2

The HRCT imaging information measurement contains the following: (1) the diameter of the tumor (T) was defined as the largest axial diameter of
the lesion on the lung window setting (Blue dotted line); (2) the diameter of consolidation (C) on the axial image on the lung window setting was
measured, and consolidation was defined as an area of increased opacification that completely obscured the underlying bronchial structures and
vascular markings (Pink dotted line); (3) the ratio of the maximum diameter of consolidation relative to the maximum tumor diameter from the lung
window (CTR).
FIGURE 3

Lobulation sign (A): The contour of the tumor appear as an arched protrusion, with alternating arcs creating a lobulated appearance, referred to as
the lobulation sign (pink arrows). Spiculation sign (B): The edges of the tumor display varying degrees of spiculated projections, commonly referred
to as the Spiculation sign (blue arrows). Air bronchogram sign (C): The tumor contains bronchial structures that are filled with air (green arrows).
Vascular convergence sign (D): The vascular convergence sign refers to the phenomenon in which blood vessels converge towards a particular
lesion in certain diseases or pathological conditions as observed in imaging (yellow arrows). Pleural indentation (E): Pleural indentation refers to the
presence of indentations or impressions on the pleura (purple arrow). Vacuole sign (F): The vacuole sign refers to the presence of low-density areas
within a tumor, typically measuring between 1 mm and 3 mm in diameter(orange arrows).
Frontiers in Oncology frontiersin.org04
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Lesion segmentation and radiomics
feature extraction

The radiomics analysis workflow involved lesion segmentation,

feature extraction, feature selection, and model construction

(Figure 1B). All lesions were detected on the CT images. Regions

of interest (ROIs) were manually segmented slice by slice along the

lesions using open software (ITK-SNAP 3.8.0 available at

www.itksnap.org) by 2 radiologists from hospital A who were

blinded to the patients’ histologic information. The segmentations

of X.P with 7 years of diagnostic experience and L.F with 9 years of

diagnostic experience were compared for interobserver differences.

Repeated measurements were performed at an interval of 2 weeks,

and the segmentations were compared for intraobserver differences.

The intraobserver and interobserver differences were assessed by

calculating the intraclass correlation coefficient (ICC) and features

with consistency values<0.7 were removed. Finally, radiomics

features were extracted using the ROI of the first segmentation of

the radiologist with 9 years of diagnostic experience. Prior to

segmentation, we standardized the CT images and resampled

them to voxel sizes of 1 mm × 1 mm × 1 mm. The extracted

features were divided into the following categories: first-order, grey-

level co-occurrence matrix (GLCM), grey-level dependence matrix

(GLDM), grey-level size-zone matrix (GLSZM), grey-level run

length matrix (GLRLM), and neighboring grey tone difference

matrix (NGTDM). In total, 1835 radiomics features were

extracted using pyradiomics (version 2.2.0) from each ROI.
Feature selection and radiomics
model construction

We performed the Mann−Whitney U test for statistical analysis

and feature screening on all radiomics features, retaining only those

with p values<0.01. Features demonstrating high repeatability were

subjected to Spearman’s rank correlation coefficient analysis to

assess correlations between features. Features with a correlation

coefficient >0.9 between any two features were retained. To preserve

the comprehensive depiction of features, a greedy recursive deletion

strategy was employed for feature filtering, wherein the most

redundant feature in the current set was iteratively removed.

Then, the least absolute shrinkage and selection operator

(LASSO) regression model was subsequently applied to the

discovery dataset to construct the signature. Depending on the

regularization weight l, LASSO shrinks all regression coefficients

towards zero and assigns coefficients of irrelevant features to zero.

To determine the optimal l, 10-fold cross-validation with

minimum criteria was utilized, where the final l value was chosen

based on the minimum cross-validation error. The features with

nonzero coefficients were retained for regression model fitting and

amalgamated into a radiomics signature. Subsequently, a radiomics

score was computed for each patient through a linear combination

of retained features weighted by their model coefficients. The

Python scikit-learn package was used for LASSO regression

modelling. After feature screening, 22 features were input into the
Frontiers in Oncology 05
logistic regression (LR) model for risk model construction. Here,

we adopted 10-fold cross-validation to obtain the final

radiomics signature.
Construction of the clinical model
and nomogram

The process used to construct the clinical model was almost the

same as that used for the radiomics model. First, univariable analysis

was performed on clinical indicators and CT morphological features to

identify factors with a p-value < 0.05. Subsequently, multivariable

logistic regression was used to determine the independent factors

associated with MPP. We also used the same machine learning

model in the radiomics model-building process. The nomogram

model was developed by integrating the radiomics signature with the

clinical independent factors. In every cohort, Receiver operating

characteristic (ROC) curves were used to assess the diagnostic

performance of models to identify the presence of MPP in LUAD.

The AUCs of the models were evaluated with the Delong test. The

calibration curves were used to assess the concordance between the

predictions of the nomogram and the actual observations. Decision

curve analysis (DCA) was utilized to map and evaluate the clinical

utility of the predictive models.
Statistical analysis

Statistical analyses were performed using SPSS (version 26.0; IBM

Corp.) and the “One-key AI” platform (https://www.medai.icu), which

is based on PyTorch 1.8.0. Normally distributed data were analyzed

using independent t tests, and nonnormally distributed data are

expressed as medians (interquartile ranges) and analyzed using

Mann−Whitney U tests. Categorical variables were analyzed using

chi-square tests. The independent predictors of MPP in LUAD

patients were determined by univariable and multivariable logistic

regression analyses. Bilateral p values < 0.05 were considered to

indicate statistical significance. ROC curves were drawn, and the

area under the curve (AUC) was calculated to assess the diagnostic

performance of each model. The AUCs of the models were

evaluated with the Delong test. DCA was utilized to map and

evaluate the clinical utility of the predictive models.
Results

Clinical characteristics

The clinical factors and conventional radiographic characteristics

of the patients are listed in Table 1. In the training cohort, there was a

statistically significant difference (P < 0.05) in maximum tumor

diameter, sex, nodule type, vascular convergence sign, and CTR

between the MPP-positive and MPP-negative groups. The maximum

tumor diameter was greater in the MPP-positive group (1.72 ± 0.23 cm

vs. 1.50 ± 0.24 cm, p<0.001). The solid type was the predominant type

in the MPP-positive group (69.1% vs. 30.1%, p<0.001). In the training
frontiersin.org
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TABLE 1 Clinical and conventional radiographic features of patients in the training and two validation cohorts.

External validation cohort
(n=65)

p MPP-positive
(n=17)

MPP-negative
(n=48)

p

1 1

7(41.2%) 19(39.6%)

10(58.8%) 29(60.4%)

0 56.24 ± 10.11 57.96 ± 10.07 0.547

0 0.086

6(35.3%) 6(12.5%)

11(64.7%) 42(87.5%)

0 0.594

2(4.2%) 2(11.8%)

46(95.8%) 15(88.2%)

0 1.65 ± 0.31 1.57 ± 0.27
0.367

< 0.003

13(76.5%) 15(31.3%)

4(23.5%) 33(68.7%)

0.321

5(29.4%) 7(14.6%)

12(70.6%) 41(85.4%)

0 0.711

9(52.9%) 21(43.8%)

8(47.1%) 27(56.2%)

0 0.297

17(100.0%) 42(87.5%)

0(0%) 6(12.5%)
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Characteristic Training cohort
(n=210)

Internal validation cohort
(n=90)

MPP-positive
(n=55)

MPP-negative
(n=155)

p MPP-positive
(n=28)

MPP-negative
(n=62)

Gender 0.039

Male 27(49.10%) 50(32.3%) 12(42.9%) 26(41.9%)

Female 28(50.9%) 105(67.7%) 16(57.1%) 36(58.1%)

Age, years 60.22 ± 11.39 57.52 ± 8.43 0.065 62.32 ± 10.94 59.24 ± 9.11

Smoking history 0.142

Yes 17(30.9%) 31(20%) 7(25.0%) 12(19.4%)

No 38(69.1%) 124(80%) 21(75.0%) 50(80.6%)

CEA 0.076

Yes 10(18.2%) 14(9.0%) 4(14.3%) 4(6.5%)

No 45(81.8%) 141(91.0%) 24(85.7%) 58(93.5%)

Maximum tumor
diameter,cm

1.72 ± 0.23 1.50 ± 0.24 <0.001 1.61 ± 0.25 1.49 ± 0.25

Nodule type <0.001

SN 38(69.1%) 44(28.4%) 23(82.1%) 22(35.5%)

PSN 17(30.9%) 111(71.6%) 5(17.9%) 40(64.5%)

Vascular convergence sign <0.001

Yes 20(36.4%) 19(12.3%) 9(32.1%) 21(33.9%)

No 35(63.6%) 136(87.7%) 19(67.9%) 41(66.1%)

Spiculation sign 0.052

Yes 36(65.5%) 76(49.0%) 16(57.1%) 30(48.4%)

No 19(34.5%) 79(51.0%) 12(42.9%) 32(51.6%)

Lobulation sign 0.770

Yes 54(98.2%) 149(96.1%) 27(96.4%) 58(93.5%)

No 1(1.8%) 6(3.9%) 1(3.6%) 4(6.5%)
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TABLE 1 Continued

Internal validation cohort
(n=90)

External validation cohort
(n=65)

MPP-positive
(n=28)

MPP-negative
(n=62)

p MPP-positive
(n=17)

MPP-negative
(n=48)

p

5 0.816 0.438

10(35.7%) 19(30.7%) 5(29.4%) 8(16.7%)

18(64.3%) 43(69.3%) 12(70.6%) 40(83.3%)

1 0.499

5(17.9%) 11(17.7%) 6(35.3%) 11(22.9%)

23(82.1%) 51(82.3%) 11(64.7%) 37(77.1%)

9 0.082 0.502

18(64.3%) 26(41.9%) 9(52.9%) 19(39.6%)

10(35.7%) 36(58.1%) 8(47.1%) 29(60.4%)

01 0.001 0.095

0(0%) 21(33.9%) 2(11.8%) 18(37.5%)

28(100.00) 41(66.1%) 15(88.2%) 30(62.5%)
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Characteristic Training cohort
(n=210)

MPP-positive
(n=55)

MPP-negative
(n=155)

p

Vacuole sign 0.56

Yes 68(43.9%) 21(38.2%)

No 87(56.1%) 34(61.8%)

Air bronchogram 1

Yes 14(25.5%) 39(25.2%)

No 41(74.5%) 116(74.8%)

Plural indentation 0.20

Yes 32(58.2%) 73(47.1%)

No 23(41.8%) 82(52.9%)

CTR <0.

<50% 3(5.5%) 61(39.4%)

≥50% 52(94.5%) 94(60.7%)

Unless otherwise specified, categorical variables are presented as number (%).
MPP, Micropapillary Patter; SN,Solid Nodule;PSN,Part Solid Nodule.
0
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cohort, internal validation cohort and external validation cohort, the

variables age, smoking history, CEA level, lobulation sign, spiculation

sign, vacuole sign, air bronchus sign and plural indentation did not

significantly differ between the MPP-positive and MPP-negative

groups (P>0.05). Nodule type and maximum tumor diameter were

identified as the independent predictors of the MPP in LUAD patients

through multivariable logistic regression analysis (Table 2).
Feature selection and Rad
score establishment

After selection, a total of 22 features with a nonzero coefficient

value remained. The radiomics signature was constructed based on

the coefficient values of the selected features. The details of the

features are shown in Figure 4. The radiomics model was

constructed by using all selected features. In the training cohort,

the model had an AUC of 0.895 (95% CI 0.840-0.949) with balanced

sensitivity and specificity of 0.836 and 0.819, respectively. In the

internal validation cohort, the AUC was 0.834 (95% CI 0.741-0.925),

with a sensitivity and specificity of 0.750 and 0.774, respectively

(Table 3, Figures 5A, B). In the external validation cohort, the AUC

was 0.800 (95% CI 0.675-0.924), and the sensitivity and specificity

were 0.647 and 0.812, respectively (Table 3, Figure 6B).
Establishment and performance of the
clinical model and nomogram model

Multivariate logistic regression analysis revealed that nodule

type and maximum tumor diameter were independent predictors of
Frontiers in Oncology 08
the presence of MPP in LUAD patients, and these features were

used to establish the clinical model. In the training cohort, this

model had an AUC of 0.820 (95% CI 0.753-0.886) with a sensitivity

and specificity of 0.673 and 0.819, respectively. In the internal

validation cohort, the AUC was 0.778 (95% CI 0.678-0.877), with a

sensitivity and specificity of 0.643 and 0.726, respectively (Table 3,

Figures 5A, B). A nomogram was constructed based on the

radiomics-clinical model (Figure 5A). In the training cohort, the

nomogram model had an AUC of 0.905 (95% CI 0.857–0.951), with

a sensitivity and specificity of 0.800 and 0.858, respectively. In the

internal validation cohort, the AUC was 0.850 (95% CI 0.770–

0.928), and the sensitivity and specificity were 0.893 and 0.661,

respectively (Table 3, Figures 5A, B). In the external validation

cohort, the AUC of the clinical model was 0.730 (95% CI 0.675-

0.924); the sensitivity and specificity were 0.529 and 0.854,

respectively; the AUC of the nomogram model was 0.817 (95%

CI 0.698-0.936); and the sensitivity and specificity were 0.706 and

0.771, respectively (Table 3, Figure 6B). DCA was employed to

assess the clinical application of the three developed models. The

DCA results indicated that the nomogram model demonstrated

the better clinical benefit in distinguishing patients with MPP from

those without MPP (Figures 5C, D, 6C). The nomogram to

distinguishing MPP in LUAD with size ≤ 2cm (Figure 6A). In

order to compare the clinical model, radiomics model and

nomogram, the AUCs of the models were evaluated with the

Delong test (Supplementary Figure 1, Supplementary Table 1).

The AUCs of the nomogram, radiomics in the training cohorts

were significantly different from the clinical model (p<0.05). The

calibration curves in three cohorts, training cohort (Figure 5E),

internal validation cohort (Figure 5F) and external validation
TABLE 2 Univariable and multivariable logistic regression analysis of Characteristic in the training cohorts.

Characteristic Univariable logistic regression Multivariable logistic regression

OR (95% CI) p value OR (95% CI) p value

Gender 0.869(0.784-0.964) 0.026 0.92(0.841-1.006) 0.125

Vacuole sign 0.956(0.863-1.059) 0.466

Age 1.006(1.001-1.011) 0.066

Air bronchogram 1.003(0.893-1.126) 0.066

Spiculation sign 1.136(1.028-1.255) 0.036 0.918(0.834-1.01) 0.142

Plural indentation 1.089(0.985-1.204) 0.159

Smoking history 1.127(1.00-1.27) 0.099

Lobulation sign 1.131(0.855-1.496) 0.469

CEA 1.191(1.018-1.394) 0.067

Vascular convergence sign 1.361(1.202-1.542) <0.001 1.133(1.004-1.278) 0.089

CTR 1.362(1.229-1.511) <0.001 1.135(1.014-1.27) 0.064

Nodule type 1.392(1.265-1.533) <0.001 1.288(1.157-1.432) <0.001

Maximum tumor diameter 1.914(1.598-2.291) <0.001 1.819(1.539-2.149) <0.001
OR, odds ratio; CI, confidence interval.
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cohort (Figure 5G) indicated good agreement between predicted

probability and actual occurrence.
Discussion

The incidence and mortality of lung cancer, which were already

high, have increased globally. In 2015, China ranked first globally in

terms of both incidence (11.4%) and mortality (18%) of lung cancer

(19). An estimated 609,820 people in the United States died from

cancer in 2023, and the greatest number of deaths were from lung
Frontiers in Oncology 09
cancer (1).Surgical resection is currently the main treatment for

NSCLC, although some scholars suggest that segmentectomy

should be the standard surgical procedure for treating NSCLC

lesions that are ≤2 cm in size (20). Notably, the presence of MPP

accounting for more than 5% of the total tumor volume is an

independent risk factor for recurrence and poor outcomes in lung

LUAD with a size of ≤ 2 cm. This suggests that wedge resection or

segmentectomy may not represent the optimal surgical procedure

for these patients. Therefore, this study was aimed to develop

predictive models, including a clinical model, a radiomics model,

and a nomogram, to estimate MPP in patients with LUAD. The
TABLE 3 The performance of three models in training and two validation cohorts.

Model Cohort AUC(95% CI) Accuracy Sensitivity Specificity

Radiomics Training cohort 0.895(0.840-0.949) 0.824 0.836 0.819

Internal validation cohort 0.834(0.741-0.925) 0.767 0.750 0.774

External validation cohort 0.800(0.675-0.924) 0.769 0.647 0.812

Clinical Training cohort 0.820(0.753-0.886) 0.781 0.673 0.819

Internal validation cohort 0.778(0.678-0.877) 0.700 0.643 0.726

External validation cohort 0.730(0.572-0.888) 0.769 0.529 0.854

Nomogram Training cohort 0.905(0.857-0.951) 0.843 0.800 0.858

Internal validation cohort 0.850(0.770-0.928) 0.733 0.893 0.661

External validation cohort 0.817(0.698-0.936) 0.754 0.706 0.771
AUC, area under curve; CI, confidence interval.
FIGURE 4

All the features and the corresponding p-value results (A). Radiomics feature selection based on LASSO algorithm and Rad score establishment (B);
Ten-fold cross-validated coefficients and 10-fold cross-validated MSE (C);The histogram of the Rad score based on the selected features (D).
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results of this research demonstrated the ability of the three

developed predictive models to accurately identify MPP in LUAD

patients with a tumor size ≤2 cm.

We developed a clinical model to identify MPP in LUAD patients,

utilizing the clinical features and conventional radiographic features of
Frontiers in Oncology 10
365 patients recruited from two hospitals. The reported incidence of

MPP positivity in LUAD with a diameter of ≤2 cm varies across

different studies (21, 22). The incidence of MPP is correlated with the

solid component of the tumor. The two studies have incorporated pure

ground glass opacity (pGGO), while our study did not include it. This
FIGURE 5

AUC Comparison of clinical, Radiomics, and nomogram models in the training cohort (A) and internal validation cohort (B);Decision curves of the
clinical, radiomic, and nomogram models in the training and internal validation cohort (C, D), The combined nomogram performed optimally in both
the training and internal validation cohort. The calibration curves in three cohorts: training cohort (E), internal validation cohort (F) and external
validation cohort (G), calibration curves are presented based on three models for predicting the micropapillary components of LUAD. The x-axis
represents the predicted micropapillary components probabilities based on the clinic signature, radiomics signature, and nomogram. At the same
time, displays the actual probabilities of these components. The 45° diagonal line symbolizes the ideal prediction, with the blue, yellow, and green
lines representing the predictive performance of the clinical, radiomics, and nomogram, respectively.
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distinction may account for the higher incidence rate observed in our

findings compared to those reported in other studies. By employing

multivariable logistic regression analysis, we identified nodule type and

maximum tumor diameter as independent predictors. Therefore, we

used two indicators, nodule type and maximum tumor diameter, to

construct a clinical model. The performance of the clinical model

demonstrated promising discriminatory power, with an AUC of 0.820

in the training cohort, 0.778 in the internal validation cohort, and 0.730

in the external validation cohort. In the training and internal validation

cohort, significant differences in nodule type, maximum tumor

diameter and CTR were found between the MPP-positive group and

the MPP-negative group, with the MPP-positive patients having larger

diameters, a greater number of solid nodules and more solid

components than did the patients in the negative group. Previous

studies have recognized the CTR as a significant predictor of

aggressiveness in LUAD (23). The CTR is also instrumental in

differentiating various subtypes of adenocarcinoma. Xu observed that

lung adenocarcinomas with a CTR exceeding 0.5 were more likely to

exhibit MPP (24).Chen et al. (25) employed the CTR as the main

morphological predictor to develop a predictive model for

micropapillary/solid components in LUAD, achieving an AUC of

0.85 and demonstrating comparable predictive power to that of

radiomics models. A study by Wang et al. (26)found that the

maximum tumor diameter serves as a valuable indicator for

differentiating between MPP groups, with those MPP positive group

displaying a significantly larger maximum tumor diameter. This

observation aligns with the findings presented in our study. The

larger the diameter of the solid nodule is, the greater the
Frontiers in Oncology 11
aggressiveness of the tumor cells, and the greater the probability of

the presence of high-grade components. In summary, Our study have

demonstrated that the maximum tumor diameter, nodule type, and

CTR all contribute to distinguishing MPP in LUAD patients with a

tumor size ≤2 cm, further research and model development are

necessary to improve its diagnostic accuracy. Our study also revealed

that conventional radiographic features, including lobulation signs,

spiculation signs, pleural indentation, vascular convergence signs,

vacuole signs, and air bronchograms, did not significantly differ

between the MPP-positive group and the MPP-negative group. This

finding deviates from those of earlier studies (26–28), suggesting

potential inconsistencies or limitations in the current understanding

of the diagnostic utility of these features. The observed correlation

between conventional radiographic features and the MPP status in this

study could be influenced by the smaller tumor sizes, warranting

additional research with a larger and more diverse sample to account

for potential size-related variations. Subjectivity and the inherent

difficulty in quantifying conventional radiographic features

contribute to their potential limitations as diagnostic tools, as they

might not consistently capture the heterogeneity of tumor cells. As a

result, predictive models that solely rely on clinical parameters and

conventional radiographic features may fail to fully meet the diagnostic

needs for MPP in patients with LUAD.

Radiomics, a multidisciplinary approach that extracts high-

dimensional data from medical images, has gained substantial

recognition for its utility in diagnosing and evaluating the

prognosis of lung diseases (29, 30). Previous research has

established the usefulness of radiomics in predicting MPP in
FIGURE 6

The nomogram to distinguishing MPP in LUAD with size ≤ 2cm, Clinic Sig, Clinical Signature; Rad Sig, Radiomics Signature (A); AUC Comparison of
clinical, Radiomics, and nomogram models in the external validation cohort (B); Decision curves of the clinical, radiomics, and nomogram models in
the external validation cohort (C).
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patients with LUAD. However, inconsistencies and substantial

disparities exist among the findings of prior studies. In a previous

study, researchers (31) employed a primary cohort of 286 patients

and an external validation cohort of 193 patients to develop the

radiomics model, achieving internal validation and external

validation AUCs of 0.75 and 0.70, respectively. However, this

multicentre studies demonstrated limited diagnostic performance,

warranting further refinement, and their models lacked the

integration of clinical data and conventional radiographic features

for enhanced accuracy. Xu et al. (16)studied 170 participants and

utilized arterial phase CT radiomics to develop a predictive model,

with an AUC of 0.889 in the training cohort, however, the AUC

decreased to 0.722 in the validation cohort, indicating a significant

decrease in performance, which suggests limitations in model

reliability and clinical applicability. Wang et al. (32)integrated

clinical features, conventional radiographic features and radiomics

features to construct a combined model, achieving AUCs of 0.872

and 0.853 for the training and validation cohorts, respectively.

Although their model displayed promising predictive power, it

lacked an independent external validation cohort to evaluate its

generalizability. In our study, we extracted radiomics features from

plain CT images to develop a predictive model for MPP. The model

demonstrated promising performance, with AUCs of 0.895 in the

training cohort and 0.834 in the internal validation cohort. We also

adopted an external validation cohort to validate the performance of

the developed models. The performance of the developed models in

the external validation cohort remained stable. During the

construction of the radiomics model, we found that radiomic

features extracted on 3D images played a crucial role. As a

representative example of radiomics, voxelbased histogram analysis

(VHA) based on 3D images, have been used in identifying early-stage

LUAD suitable for sublobar resection (21). In contrast to 2D features,

3D features can identify texture variations and irregular shapes in

different regions of the tumor, thereby enhancing the understanding

of its biological characteristics. Conventional radiographic features,

such as the lobulation sign, spiculation sign, maximum tumor

diameter, and the CTR, are all 2D features. This limitation may

account for the observation that clinical models utilizing 2D features

often exhibit lower predictive performance compared to radiomics

models. Additionally, we constructed the nomogram model

integrating nodule type, maximum tumor diameter, and the

radiomics signature to enhance the predictive accuracy for MPP in

patients with LUAD. Notably, the AUCs of the nomogram in the

training, internal validation and external validation cohorts were

0.905, 0.850, and 0.817, respectively. Compared with both the clinical

and radiomics models, the nomogram exhibited improved predictive

performance across all cohorts. The nomogram combines the benefits

of both the clinical model and the radiomics model. In clinical

practice, the nomogram can be used to evaluate the precise risk of

MPP in each LUAD patient on basis of specific clinical indicators,

conventional radiographic features and Radscore. This nomogram

will aid in the individualized assessment of patient survival risk,

providing a reference for clinicians to devise rational and effective

treatment strategies.

Our study has several limitations. First, this investigation was

retrospective and therefore limited by biases such as incomplete data
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acquisition and patient selection. Second, the sample size was relatively

modest, which may have influenced the generalizability of the findings.

Future endeavors will be aimed to increase the sample size and extend

the research to multiple centers for enhanced statistical robustness.

Third, our study did not utilize more advanced technologies, such as

deep learning methods. Consequently, we intend to incorporate deep

learning methods in our study as a next step.
Conclusions

In conclusion, we established a nomogram model based on

radiomics and clinical features to distinguish MPP in LUAD patients

with a tumor size of ≤2 cm that exhibited good performance.

Compared with the clinical model and radiomics model, the

nomogram model exhibited a greater level of predictive accuracy,

providing a promising method to aid clinicians in developing more

rational and efficacious personalized treatment strategies.
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