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The accuracy of radiomics in
diagnosing tumor deposits and
perineural invasion in rectal
cancer: a systematic review
and meta-analysis
Xuewu Liu, Feng Lin, Danni Li and Nan Lei*

Radiology Department, The People’s Hospital of Lezhi, Ziyang, Sichuan, China
Background: Radiomics has emerged as a promising approach for diagnosing,

treating, and evaluating the prognosis of various diseases in recent years. Some

investigators have utilized radiomics to create preoperative diagnostic models

for tumor deposits (TDs) and perineural invasion (PNI) in rectal cancer (RC).

However, there is currently a lack of comprehensive, evidence-based support

for the diagnostic performance of these models. Thus, the accuracy of

radiomic models was assessed in diagnosing preoperative RC TDs and PNI in

this study.

Methods: PubMed, EMBASE, Web of Science, and Cochrane Library were

searched for relevant articles from their establishment up to December 11,

2023. The radiomics quality score (RQS) was used to evaluate the risk of bias in

the methodological quality and research level of the included studies.

Results: This meta-analysis included 15 eligible studies, most of which employed

logistic regression models (LRMs). For diagnosing TDs, the c-index, sensitivity,

and specificity of models based on radiomic features (RFs) alone were 0.85 (95%

CI: 0.79 - 0.90), 0.85 (95% CI: 0.75 - 0.91), and 0.82 (95% CI: 0.70 - 0.89); in the

validation set, the c-index, sensitivity, and specificity of models based on both RFs

and interpretable CFs were 0.87 (95% CI: 0.83 - 0.91), 0.91 (95% CI: 0.72 - 0.99),

and 0.65 (95% CI: 0.53 - 0.76), respectively. For diagnosing PNI, the c-index,

sensitivity, and specificity of models based on RFs alone were 0.80 (95% CI: 0.74 -

0.86), 0.64 (95% CI: 0.44 - 0.80), and 0.79 (95% CI: 0.68 - 0.87) in the validation

set; in the validation set, the c-index, sensitivity, and specificity of models based

on both RFs and interpretable CFs were 0.83 (95% CI: 0.77 - 0.89), 0.60 (95% CI:

0.48 - 0.71), and 0.90 (95% CI: 0.84 - 0.94), respectively.

Conclusions: Diagnostic models based on both RFs and CFs have proven

effective in preoperatively diagnosing TDs and PNI in RC. This non-invasive

method shows promise as a new approach.
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1 Introduction

Rectal cancer (RC) is a common tumor in clinical practice

worldwide and a significant contributor to cancer-related mortality

(1, 2). According to the Global Cancer Statistics 2020, colorectal cancer

currently ranks third among all tumors in terms of new cases and

second in terms of mortality (2). In the past, the prognosis of RC was

primarily determined by the depth of tumor infiltration, the presence of

lymph node metastasis, and the potential for distant metastasis.

However, as the understanding of RC gradually deepens, tumor

deposits (TDs) and perineural invasion (PNI) have also become

evaluation indicators.

TDs are focal masses of adenocarcinoma or discontinuous

extramural extensions that are found in the perirectal region. They

lack vascular/neural structures or residual lymph nodes on histological

examination (3). According to the 8th edition of the TNM staging

system developed by the American Joint Commission on Cancer, any

T lesion with negative regional lymph node metastasis and positive

TDs is categorized as N1c (4). The presence of positive TDs can

enhance the clinical staging of RC patients and affect subsequent

clinical treatment plans. PNI is a biological process whereby cancer

cells invade nerves and spread along the nerve sheath (5). Uccello et al.

(6) discovered in animal studies that radiation therapy could exacerbate

the activity of PNI-positive RC. In addition, studies have shown that

PNI can serve as an indicator for distinguishing whether patients can

benefit from neoadjuvant chemoradiotherapy (nCRT) and

postoperative adjuvant chemotherapy (7, 8). Therefore, accurate and

objective preoperative diagnosis of TDs and lymph node metastasis is

of great significance for the personalized treatment of patients.

The radiomics method, a recently developed non-invasive

evaluation technique, has received widespread attention from

investigators. By applying a variety of mathematical algorithms to

extract numerous fine-grained features frommedical images, perform

quantitative analysis, and create useful disease diagnosis and prognosis

models to aid in individualized clinical decision-making, radiomics

disrupts the conventional analytical framework of imaging (9). In

recent years, radiomics studies on RC have included preoperative

staging (10), prediction of metastasis (11), prediction of radiotherapy
02
and chemotherapy efficacy (12), and prediction of survival (13). These

studies demonstrated the analytical and predictive ability of radiomics

for RC. Some investigators have explored the accuracy of radiomics in

the preoperativedetectionofTDs andPNI.However, a comprehensive

evidence-based medicine study is currently lacking to support this

claim. Therefore, this systematic review and meta-analysis was

performed to close this gap and facilitate the application of

radiomics in this field.
2 Methods

2.1 Eligibility criteria

2.1.1 Inclusion criteria
1. The subjects were individuals who had been diagnosed with

RC through pathological examination.

2. Investigators developed or used machine learning models

(MLMs) that included at least image features to diagnose

preoperative TDs or PNI.

3. The article was written in English.

4. The investigators clearly described the radiomics models

and reported the diagnostic performance indicators of the

models, or provided enough data for inferring the c-index

and/or accuracy.
2.1.2 Exclusion criteria
1. The study types were meta, review, guidelines, expert

opinions, etc.

2. The investigators only conducted differential factor

analysis, and did not construct a complete MLM.

3. The investigators did not describe the modeling process or

methods, and/or did not report the results of model

performance measurements.

4. The investigators only studied image segmentation.
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2.2 Data sources and search strategies

PubMed, EMBASE, Web of Science, and Cochrane Library were

searched for relevant articles published up to December 11, 2023.

The search adopted a combination of subject-specific and non-

specific terms without any limitations on publication area or period.

Additionally, a manual search of the references of included articles

was performed for potential eligible studies. The search procedures

and strategies are detailed in Supplementary Table S1.
2.3 Study screening and data extraction

After importing the articles into Endnote, any duplicates were

removed at first. Then, the titles or abstracts were read to select

those meeting the specified criteria. Finally, the full texts were

downloaded and read to select eligible studies. Prior to data

extraction, a standard data extraction spreadsheet was developed.

It included a range of information, such as the first author,

publication year, country, study type, patient source, diagnostic

purpose, gold standard for target events, tumor staging, image

source, image parameter description, number of investigators,

ROI segmentation software, total number of events, and total

number of cases. The testing and validation sets encompassed the

number of cases and events, as well as variable screening methods,

model types, and modeling variables.

Two investigators independently conducted the study screening

and data extraction, which were cross-checked. Any objections were

addressed through negotiation with a third reviewer.
2.4 Assessment of study quality

Two investigators used the radiomics quality score (RQS) (14)

to assess the risk of bias in the methodological quality and research

level of the included studies, and conducted cross-checks. Any

differences resolved by the third reviewer.
2.5 Outcomes

The outcome indicators of this study mainly included the c-index

for reflecting the overall accuracy of the model, and the sensitivity and

specificity for identifying the accuracy of outcome events.
2.6 Synthesis methods

This systematic review and meta-analysis was conducted on the

indicator (c-index) used to reflect the overall accuracy of radiomic

models. In instances where the 95% confidence interval (CI) and

standard error were not provided for this indicator, its standard

error was estimated using the study by Debray et al. (15).

Considering the differences in variables and inconsistent
Frontiers in Oncology 03
parameters among MLMs, a random-effects model was used to

conduct the meta-analysis on c-index. Furthermore, a bivariate

mixed effects model was adopted for the meta-analysis on

sensitivity and specificity. In this study, a diagnostic four-grid

table was used for analyzing sensitivity and specificity. However,

the diagnostic four-grid table was not provided in most original

studies. In this case, two approaches were applied to create the table.

The first approach involved using sensitivity, specificity, precision,

and the number of cases for calculation purposes. The second

approach involved extracting sensitivity and specificity based on the

best Youden index and then calculating based on the number of

cases. This study was implemented using R version 4.2.0 (R

development Core Team, Vienna, http://www.R-project.org).
3 Results

3.1 Study screening

A total of 4,409 studies were retrieved from four databases, with

3,250 remaining after removing duplicates. After reading the titles and

abstracts, 3,220 studies were excluded. After reading the full text of the

remaining 29 studies, 14 were excluded for the reasons outlined in

Figure 1. Finally, a total of 15 studies (16–30) were included.
3.2 Study characteristics

For PNI, all studies were conducted in China and published

between 2020 and 2021. Three studies utilized MRI (16–18), one

study employed CT (19), and one study utilized both CT and MRI

(20). Four studies had two investigators (17–20), while one study

had three investigators (16). The ITK-SNAP software was utilized

in all four studies (16–18, 20), except for one study that did not

specify the software utilized for image segmentation (19). All studies

employed the Least Absolute Shrinkage and Selection Operator

(LASSO) method for RF selection and logistic regression modeling.

Meanwhile, all studies constructed radiomics scores and developed

models together with clinical features. All studies were retrospective

and included 938 subjects, of whom 305 were PNI-positive.

For TDs, 9 studies were conducted in China (21–29), and 1 in

the United States (30). Eight studies utilized MRI images (21–25,

27, 28, 30), 1 employed CT (26), and 1 combined MRI and US (29).

Eight studies had two investigators (21–23, 25, 26, 28–30), while

two studies had three investigators (24, 27). In the image

segmentation stage, the ITK-SNAP software was utilized in

5 studies (23–25, 27, 28), while 3D slicer software, A.K software,

UltrasomicsPlatform, and TexRAD software were employed in

other studies (21, 22, 29, 30), and 1 study did not specify the

segmentation software adopted (26). Eight studies utilized

the LASSO method for RF selection (22–29), one study applied

the Principal Component Analysis (PCA) method (21), and one

study did not specify the method for feature selection (30). Seven

studies employed LRMs (21–23, 26–28, 30), 1 applied the support
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vector machine model (25), 1 adopted deep learning model (29),

and 1 utilized both the deep learning model and the support vector

machine model (24). Five studies constructed radiomics scores

and carried out model construction together with clinical features

(21–23, 27, 28). There were 8 retrospective studies (21, 23–28, 30)

and 2 prospective studies (22, 29), which included a total of 2,002

subjects, with 648 patients having TDs.

The study characteristics are presented in Table 1.
3.3 Assessment of study quality

All studies described detailed scanning protocols and used multiple

segmentation methods to segment images. Of the studies reviewed, 11

reported cut-off values, while 9 reported calibration statistics. Fourteen

studies had validation sets or conducted self-cross validation. However,

one study did not have these elements in place, resulting in a deduction

of 5 points for this study. None of the studies provided open-source

data and code. The average score for all studies is 10.93 points.
Frontiers in Oncology 04
3.4 Meta-analysis

3.4.1 Tumor deposits
3.4.1.1 Synthesized results

In the training set, 13 MLMs were constructed based on

radiomic features (RFs) alone. The c-index, sensitivity, and

specificity, as summarized by a random-effects model, were 0.86

(95% CI: 0.82 - 0.91), 0.83 (95% CI: 0.76 - 0.88), and 0.85 (95% CI:

0.74 - 0.91), respectively. Eleven MLMs were constructed based

solely on clinical features (CFs). A random-effects model was used,

and the pooled c-index, sensitivity, and specificity were 0.80 (95%

CI: 0.78 - 0.82), 0.84 (95% CI: 0.73 - 0.91), and 0.76 (95% CI: 0.70 -

0.80), respectively. Seventeen MLMs were constructed based on RFs

combined with interpretable CFs; a random-effects model was used,

and the pooled c-index, sensitivity, and specificity were 0.88 (95%

CI: 0.84 - 0.91), 0.91 (95% CI: 0.85 - 0.95), and 0.82 (95% CI: 0.74 -

0.88), respectively. The forest maps of c-index and the sensitivity

and specificity obtained from different modeling variables are

shown in Figure 2 and Supplementary Figures S1-S3.
FIGURE 1

Literature screening process.
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In the validation set, 8MLMs were constructed based on RFs alone.

The c-index, sensitivity, and specificity, as summarized using a

random-effects model, were 0.85 (95% CI: 0.79 - 0.90), 0.85 (95% CI:

0.75 - 0.91), and 0.82 (95%CI: 0.70 - 0.89), respectively. SixMLMswere

constructed based solely on CFs; a random-effects model was used, and

the pooled c-index, sensitivity, and specificity were 0.68 (95% CI: 0.61

-0.75), 0.48 (95% CI: 0.28 - 0.69), and 0.79 (95% CI: 0.69 - 0.86),
Frontiers in Oncology 05
respectively. Seven MLMs were developed based on RFs combined

with interpretable CFs; a random-effects model was used, and the

pooled c-index, sensitivity, and specificity were 0.87 (95% CI: 0.83 -

0.91), 0.91 (95% CI: 0.72 - 0.99), and 0.65 (95% CI: 0.53 - 0.76),

respectively. The forest maps of c-index and the sensitivity and

specificity obtained from different modeling variables are shown in

Figure 3 and Supplementary Figures S4-S6.
TABLE 1 Characteristics of included studies.

Study Country Study
design

Data
source

Diagnostic
purpose

Stage Image
source

Number of
patients
in the

training set

Number of
patients in
the test set

Types of
machine
learning

Technique
used for
feature
selection

Yan-song
Yang
(2021) (16)

China Retro
Single
institution

PNI I-III MRI 99 41 LR LASSO

Yang
Zhang
(2022) (17)

China Retro
Single
institution

PNI I-III MRI 194 85 LR LASSO

Yu Guo
(2021) (20)

China Retro
Single
institution

PNI I-III MRI, CT 65 29 LR LASSO

Jiayou
Chen
(2020) (18)

China Retro
Single
institution

PNI I-III MRI 87 35 LR LASSO

Mou Li
(2021) (19)

China Retro
Single
institution

PNI I-III CT 242 61 LR LASSO

Rui Yang
(2023) (21)

China Retro
Single
institution

TDS T3 MRI 114 49 LR PCA

Hang Li
(2023) (22)

China Pros
Multiple
institution

TDS I-III MRI 94
114 (92
Exception
Verification)

LR LASSO

Yumei Jin
(2023) (23)

China Retro
Single
institution

TDS I-III MRI 163 41 LR LASSO

Chunlong
Fu
(2023) (24)

China Retro
Single
institution

TDS I-III MRI 133 NA SVM, ANN LASSO

Feiwen
Feng
(2023) (25)

China Retro
Single
institution

TDS I-III MRI 103 45 SVM LASSO

Yong-
Chang
Zhang
(2022) (26)

China Retro
Single
institution

TDS I-III CT 163
56 (15
additional
verification)

LR LASSO

Yan-song
Yang
(2021) (27)

China Retro
Single
institution

TDS I-III MRI 98 41 LR LASSO

Yumei Jin
(2021) (28)

China Retro
Single
institution

TDS I-III MRI 203 51 LR LASSO

Isha D.
Atre
(2021) (30)

USA Retro
Single
institution

TDS I-III MRI 15 NA LR NA

Li-Da
Chen
(2019) (29)

China Pros
Single
institution

TDS I-III US, MRI 87 40 ANN LASSO
Retro, Retrospective; Pros, Prospective; LR, Logistic regression; SVM, Support vector machine; ANN, Artificial neural network; LASSO, Least Absolute Shrinkage and Selection Operator; PCA,
Principal component analysis; NA, Not available.
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3.4.1.2 Reporting biases

In the training and validation sets, some studies appear to have

publication bias (PB), as indicated by Egger’s test with p < 0.001.

The c-index funnel plot is shown in Figure 4.

3.4.2 Perineural invasion
3.4.2.1 Synthesized results

In the training set, 5 MLMs were constructed based on RFs

alone. The c-index, sensitivity, and specificity, as summarized using

a random-effects model, were 0.80 (95% CI: 0.74 - 0.87), 0.69 (95%

CI: 0.58 - 0.78), and 0.78 (95% CI: 0.66 - 0.87), respectively. Four

MLMs were constructed based solely on CFs; a random-effects

model was used, and the pooled c-index, sensitivity, and specificity

were 0.73 (95% CI: 0.69 - 0.77), 0.63 (95% CI: 0.56 - 0.69), and 0.72

(95% CI: 0.68 - 0.76), respectively. Four MLMs were developed

based on RFs combined with interpretable CFs; a random-effects

model was used, and the pooled c-index, sensitivity, and specificity

were 0.84 (95% CI: 0.81 - 0.88), 0.65 (95% CI: 0.57 - 0.72), and 0.89

(95% CI: 0.85 - 0.93), respectively. MLMs based on RFs alone or on

the combination of RFs and CFs outperformed MLMs based on CFs
Frontiers in Oncology 06
alone. The forest maps of c-index and the sensitivity and specificity

obtained from different modeling variables are shown in Figure 5

and Supplementary Figures S7-S9.

In the validation set, 5 MLMs were constructed based on RFs

alone. The c-index, sensitivity, and specificity, as summarized using

a random-effects model, were 0.80 (95% CI: 0.74 - 0.86), 0.64 (95%

CI: 0.44 - 0.80), and 0.79 (95% CI: 0.68 - 0.87), respectively. Four

MLMs were constructed based solely on CFs; a random-effects

model was used, and the pooled c-index, sensitivity, and specificity

were 0.71 (95% CI: 0.64 - 0.78), 0.63 (95% CI: 0.51 - 0.73), and 0.76

(95% CI: 0.69 - 0.82), respectively. Four MLMs were developed

based on RFs combined with interpretable CFs; a random-effects

model was used, and the pooled c-index, sensitivity, and specificity

were 0.83 (95% CI: 0.77 - 0.89), 0.60 (95% CI: 0.48 - 0.71), and 0.90

(95% CI: 0.84 - 0.94), respectively. MLMs based on RFs alone or on

the combination of RFs and CFs outperformed MLMs based on CFs

alone. The forest maps of c-index and the sensitivity and specificity

obtained from different modeling variables are shown in Figure 6

and Supplementary Figures S10–S12.

3.4.2.2 Reporting biases

Both the training and validation sets did not include any PBs in

the studies analyzed, and the p-values from Egger’s test were 0.593

and 0.234, respectively. The c-index funnel plot is shown

in Figure 7.
4 Discussion

4.1 Summary of main findings

The study on TDs revealed that MLMs based on both RFs and

CFs demonstrated significantly better diagnostic performance than

models constructed solely on CFs or RFs. The c-index was 0.87

(95% CI: 0.83 - 0.91) and the sensitivity was 0.91 (95% CI: 0.72 -

0.99). However, the specificity was relatively low at 0.65 (95% CI:

0.53 - 0.76). The study on PNI demonstrated that MLMs based on

both RFs and CFs had significantly better diagnostic performance

than models constructed solely on CFs or RFs. The c-index was 0.83

(95% CI: 0.77 - 0.89), and the specificity was 0.90 (95% CI: 0.84 -

0.94). However, the sensitivity of all three models was inadequate.
4.2 Comparison with previous reviews

Some investigators are exploring non-invasive methods to

identify TDs and PNI that have been associated with adverse

outcomes in previous studies (3, 31). Therefore, some

investigators have examined the efficacy of conventional imaging

and clinical factors in identifying TDs and PNI in RC. In a

retrospective analysis of MRI images of 130 patients, Lv et al. (32)

constructed a nomogram model using MRI-detected TDs and

metastatic lymph nodes for predicting TDs. The results revealed

that patients diagnosed with TDs and metastatic lymph nodes

through MRI before surgery had a 52% chance of ultimately
FIGURE 2

C-index meta-analysis forest diagram for diagnosing TDs using
machine learning models in the training set.
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being diagnosed with TDs through pathology. The nomogram

model demonstrated an AUC of 0.814 (0.720 - 0.908), with a

sensitivity of 73.9% and a specificity of 79.4%. Chen et al.

conducted a meta-analysis on PNI using the included studies and

developed a model for diagnosing PNI based on CFs. The resulting

AUC was 0.768, with a sensitivity of 0.947 and a specificity of 0.358

(33). This study revealed that models utilizing both RFs and CFs to

extract deep information from images outperformed conventional

imaging or models utilizing CFs alone, regardless of TDs or PNI.

These findings suggest that radiomics has enormous potential in

the field.

Although current studies have shown a significant correlation

between RFs and specific tumor biomaterials (34), a single RF lacks

interpretability (35). Compensating for the shortcomings of a single

RF, CFs can provide deeper information in images. Chen et al. (33)

revealed through a meta-analysis that T staging, vascular invasion,

and degree of differentiation are closely related to PNI, which is a

pathological manifestation of a disease. Jhuang et al. (36) discovered

that the state of lymphatic vessel invasion is closely related to TDs.
Frontiers in Oncology 07
These studies suggest that certain CFs are closely associated with

PNI and TDs. Therefore, MLMs that combine interpretable CFs

with more informative RFs often have good diagnostic

performance, which is consistent with the findings of the

present study.

When selecting MLMs, it is important to strike a balance

between interpretability and accuracy. Models that are highly

interpretable, such as logistic regression and decision trees, tend

to have lower accuracy. Conversely, models with higher accuracy,

such as neural networks and deep learning, often lack

interpretability (37). In the studies analyzed in this systematic

review and meta-analysis, the MLMs were mainly based on

logistic regression. Only two studies employed deep learning

models, and the AUC of the RF- and CF-based models was 0.83

and 0.88, respectively. The diagnostic performance of deep learning

models has not been significantly improved compared to studies

using LRMs. However, this conclusion is based on extremely limited

evidence. Therefore, more studies are required to validate the

clinical value of deep learning models.
FIGURE 3

C-index meta-analysis forest diagram for diagnosing TDs using machine learning models in the validation set.
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RQS is an objective tool for evaluating the quality of radiomics

studies (14). To ensure accuracy, scoring results in this study were

obtained independently by two experienced investigators (38). Most of

the studies were single-center studies without external validation,

resulting in relatively low RQS scores. This is consistent with the
Frontiers in Oncology 08
results of previous studies (39). Improving the quality of radiomics

studies is heavily reliant on conducting multicenter studies. However,

while focusing on enhancing study quality, it is important to note that

the applicability of RQS system still needs improvement. The system

suggests repeated measurements of patients in a short period of time,
FIGURE 4

C-index funnel plot of TDs (note: A is training set; B is validation set).
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FIGURE 5

C-index meta-analysis forest diagram for diagnosing PNI using machine learning models in the training set.
FIGURE 6

C-index meta-analysis forest diagram for diagnosing PNI using machine learning models in the validation set.
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which contradicts ethics and clinical practice. Additionally, the RQS

system aims to promote the public disclosure of code and data by

investigators. However, this is currently challenging to achieve. At

present, RQS mainly focuses on radiomics studies using traditional

machine learning. Its scope encompasses the evaluation of image
Frontiers in Oncology 10
sources, image segmentation, texture extraction, model construction

and validation. For radiomics studies using deep learning, texture

extraction is usually directly integrated into the modeling process,

which often leads to low RQS (39). Therefore, it is necessary to

continuously improve the RQS system in the future.
FIGURE 7

C-index funnel plot of PNI (note: A is training set; B is validation set).
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4.3 Strengths and limitations

This is the first systematic review and meta-analysis of machine

learning performance in assessing PNI and TDs in RC. It provides

evidence-based support for the radiomic diagnosis of TDs and PNI

in RC for the first time. In the process of analysis, the present study

summarized the clinical feature model, the radiomics model, and

the combination model, and highlighted the advantages of the

radiomics model and the combination model. In addition, the

results of the training and validation sets from the included

studies were analyzed to demonstrate the suitability of each

model. However, this study has its limitations. Most of the

included studies were conducted in China, and most of them

were single-center studies, which greatly limits the generalizability

of the results. Furthermore, although a systematic search was

conducted, the limited number of studies on radiomics for

diagnosing TDs and nerve invasion in RC restricted the number

of studies included in this study, which in turn limited the

interpretation of results. Moreover, additional subgroup analyses,

such as those involving different imaging devices and study models,

were not possible because of the limited number of studies.

Therefore, future studies need to focus on the generalizability of

models across multiple centers and countries to boost its overall

applicability. At the same time, deep learning models are very scarce

and need further development and validation.
5 Conclusions

As a result of ongoing advances in medical studies, the treatment

strategy for RC is being continuously optimized. In the individualized

treatment for RC, surgical resection is not the only preferred method.

Imaging-based preoperative examinations can inform different

treatment decisions for clinical practice. The diagnostic model,

constructed on both RFs and CFs, demonstrates good diagnostic

performance for PNI and TDs in RC. It is expected to become a

non-invasive detection method. Further development and

improvement of radiomic models may provide valuable insights in

clinical practice, enabling accurate diagnosis of PNI and TDs in RC.
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