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Mechanisms of crosstalk
between the oropharyngeal
microbiome and human
papillomavirus in oropharyngeal
carcinogenesis: a mini review
Ryan S. Chung, Stephanie Wong, Dechen Lin, Niels C. Kokot,
Uttam K. Sinha and Albert Y. Han*

Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of USC, University
of Southern California, Los Angeles, CA, United States
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common

cancer globally. Notably, human papillomavirus (HPV)-positive oropharyngeal

squamous cell carcinoma (OPSCC) is on the rise, accounting for 70% of all

OPSCC cases. Persistent high-risk HPV infection is linked to various cancers, but

HPV infection alone is not sufficient to cause cancer. Advances in next-generation

sequencing have improved our understanding of changes in the human

microbiome of cancerous environments. Yet, there remains a dearth of

knowledge on the impact of HPV-microbiome crosstalk in HPV-positive OPSCC.

In this review, we examine what is known about the oropharyngeal microbiome

and the compositional shifts in this microbiome in HPV-positive OPSCC. We also

review potential mechanisms of crosstalk between HPV and specific

microorganisms. Additional research is needed to understand these interactions

and their roles on cancer development and progression.
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Highlights

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer

globally. Notably, human papillomavirus (HPV)-positive oropharyngeal squamous cell

carcinoma (OPSCC) is on the rise, accounting for 70% of all OPSCC cases. Persistent high-

risk HPV infection is linked to various cancers, but HPV infection alone is not sufficient to cause

cancer. Additional factors such as chronic inflammation, immune deficiency, and host

microbiome alterations may contribute to cancer development. Recent advances in next-

generation sequencing have improved our understanding of the role of human microbiome in

cancer. This review focuses on the unique features of the oropharyngeal microbiome and its

interaction with HPV in carcinogenesis. It highlights the distinct differences between the oral

and oropharyngeal microbiomes and the compositional shifts in the microbiome of HPV-

positive OPSCC. The review proposes potential mechanisms of HPV-microbiome crosstalk

contributing to carcinogenesis, emphasizing the need for further research to understand these

interactions and their impact on cancer development and progression.
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Introduction

While the overall incidence of head and neck squamous cell

carcinoma (HNSCC) is declining globally, human papillomavirus

(HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC)

has been increasing, with HPV accounting for 70% of all OPSCC (1–

3). HPV is among the most prevalent viral infections worldwide, with

nearly all sexually active people being infected with HPV in their

lifetime, and half of these being high-risk HPV. Despite this, most

people will clear the infection, and only a small minority will have

persistent infection (4). It is well-established that persistent high-risk

HPV infection is responsible for the development of cervical,

anogenital, and oropharyngeal cancers. However, HPV alone is not

sufficient to cause cancer (4). Factors such as chronic inflammation,

host microbiome alterations, and immune deficiency may be related

to pathogenesis, but the mechanisms remain unclear (5).

Recent advances in next generation sequencing have

revolutionized our ability to characterize the human microbiome

(6). Microbiome studies of different normal and cancer samples

have led to improved understanding of associations between

microbes and carcinogenesis with potential for risk stratification

and prognostication in cancer (7). The oral microbiome harbors

over 700 microorganisms (8–10), and disruptions to this

microbiome are known to contribute to inflammatory

environments with carcinogenic potential (11–14). Firmicutes,

Proteobacteria, Bacteroidetes, Fusobacteria, and Actinobacteria

have been identified as the most abundant phyla in HNSCC,

accounting for > 90% of the oral bacterial community (15, 16).

The association between oral dysbiosis and oral squamous cell

carcinoma (OSCC) has been well established (15–20). However,

the oropharyngeal microbiome and its association with HPV-

positive OPSCC are just being uncovered (5). Furthermore, as

HPV infection alone is insufficient for cancer development, it is

crucial to explore the possibility of HPV-microbial crosstalk and its

role in carcinogenesis.

It is important to distinguish the microbiomes of oral cavity and

oropharyngeal cancers. The oral cavity microbiome is heavily

influenced by environmental factors and subsequent dysbiosis

leads to HPV-negative OSCC (19, 21, 22). On the other hand,

being primarily HPV driven, OPSCC is an entirely different disease

which may be less influenced by environmental factors (23). This

review will focus on the unique features of the oropharyngeal

microbiome and its interplay with HPV infection in

oropharyngeal carcinogenesis. Many reviews discuss the

associations between the oral microbiome and OSCC, which will

not be discussed. Given the lack of studies on HPV-microbial

crosstalk in the context of OPSCC, we also aim to propose

potential mechanisms of crosstalk between HPV and specific

microbes and highlight areas requiring future study.
Literature search strategy

We conducted a review of the literature to identify articles

addressing the oropharyngeal microbiome, the oropharyngeal

microbiome in HPV-positive OPSCC, and HPV-oropharyngeal
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microbial crosstalk in OPSCC carcinogenesis. This work is not a

systematic review; therefore, we did not use PRISMA guidelines.

Each query of PubMed’s online repository used the keywords

“oropharyngeal microbiome” or “oropharynx [MeSH] microbiota

[MeSH].” These keywords were paired with combinations of

“human papillomavirus,” “HPV,” “human papillomavirus

[MeSH],” and “oropharyngeal neoplasms [MeSH].” Articles were

sorted based on relevance and evaluated for content. Exclusion

criteria included non-English studies, studies with only pediatric

participants, and studies that utilized non-specific oropharyngeal

collection methods.
Microbiome of normal oropharynx
and HPV-positive OPSCC

The normal oropharyngeal microbiome

While there is overlap between the oral and oropharyngeal

microbiome, the unique function and histology of the oropharynx

lends to differences in how each region interacts with its

microbiome. Most studies recognize six major phyla present in

the oropharynx, including Firmicutes (44%), Bacteroidetes (20%),

Fusobacteria (15%), Proteobacteria (14%), Actinobacteria (6%), and

Spirochaetes (0.5%) as comprising over 99% of the microbiome

(Table 1) (37). The most common genera of bacteria include

Streptococcus (24%), Prevotella (11%), Fusobacterium (10%),

Veillonella (8%), Neisseria (5%), and Actinomyces (4%). The

relative abundance of anaerobic bacteria in the oropharynx is

slightly higher than the oral cavity, likely due to the anaerobic

niche of the tonsillar crypts (38).
The oropharyngeal cancer microbiome

Few studies have compared the microbiomes of normal

oropharynx and oropharyngeal cancers (Table 2). Differences in

sample collection ranging from saliva samples or oral washes, which

is non-specific to the oropharynx, to oropharyngeal swabs and

tissues, which is more specific to the oropharynx, has led to

discordance in the literature (38, 44–50). As the normal flora of

the oropharynx is dominated by a small number of phyla and

genera of bacteria, identifying significant differences between

normal and cancer requires careful evaluation using precise

methods. Some studies report significant differences in bacteria

that account for less than 0.1% of the overall abundance of the

whole oropharyngeal microbiome, putting in question the real

biological relevance of these differences (38, 44, 49). In this

review, we focus on the shifts in relative abundance in the more

abundant bacteria of the oropharynx as well as those with evidence

of pathogenic roles in association with HPV (Figure 1).

When comparing the relative abundances of the tonsillar

microbiota in patients with OPSCC and OSA controls, De Martin

et al. found a relative increase in Firmicutes and Bacteroidetes at the

phylum level (48). At the genus level, there was a relatively
frontiersin.org
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TABLE 1 Summary of the key taxonomic findings in the normal oropharyngeal microbiome based on sampling methods specific to the oropharynx.
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Author and Year Sampling methodology Sequencing
methodology

Key Taxonomic Findings

Siasios et al.,
2024 (24)

Oropharyngeal washings 16STM metagenomics • In COVID-19 positive patients:
o Phyla (relative abundance %): Firmicutes (41.2%), Proteobacteria (28.4%), Actinobacteria (21.5%)

Spirochaetes (0.2%)
o Genera: Streptococcus, Veillonella, Peptostreptococcus, Prevotella, Granulicatella, Dolosigranulum, K

Corynebacterium, Tepidiphilus, Acinetobacter, Staphylococcus, Anoxybavillus

Cui et al., 2024 (25) Oropharyngeal swabs 16S rRNA • In healthy controls:
o Phyla: Firmicutes, Bacteroidota, Proteobacteria, Actinobacteriota and Fusobacteriota accounted fo
o Genera: Prevotella, Streptococcus, Veillonella, Neisseria, Fusobacterium accounted for 73.45 of tota

▪ Additional Genera: Alloprevotella, Haemophilus, Porphyromonas, Actinomyces, Leptotrichia, Gr
Gemella, Campylobacter

Oberste et al.,
2024 (26)

Swabs from directly visible cancerous tissue
or from healthy tissue of the oropharynx
and larynx

16S rRNA • In oropharynx of healthy controls:
o Genera: Streptococcus, Haemophilus, Porphyromonas, Prevotellamassila, Peptostreptococcus (accoun

Chung et al.,
2023 (27)

Oropharyngeal swabs 16S rRNA • In nontumor oropharyngeal samples of patients:
o Genera: Streptococcus, Neisseria, Haemophilus, Gemella, Porphyromonas, Prevotella

Lu et al., 2023 (28) Oropharyngeal swabs Metatranscriptomic
library construction
and sequencing

• In healthy volunteers:
o Genera: Bacteroides, Actinomyces, Rothia, Prevotella, Dolosigranulum, Veillonella, Mycoplasma, Sc
o Fungal: Aspergillus, Clavispora, Daldinia, Malassezia, Pseudogymnoascus, Kwoniella, Fusarium, Ko

fungal profiles)

Wu et al., 2023 (29) Oropharyngeal swabs 16S rRNA • In healthy controls:
o Phyla: Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Spirochaetes.
o Genera: Aspergillus, Capnocytophaga, Corynebacterium, Haemophilus, Leptotrichia, Neisseria, Prev

Xu et al., 2023 (30) Oropharyngeal swabs Fungal
ITS sequencing

• In healthy controls:
o Phyla: Ascomycota
o Genera: Malassezia, Candida, Zygosaccharomyces, Flammulina, Aspergillus, Rhodotorula, Alternar

De Martin et al.,
2021 (31)

Tissue collected from tonsils during
tonsillectomy and via punch biopsy

16S rRNA • In patients with OSA:
o Phyla: Bacteroidetes, Chloroflexi, Cyanobacteria, Epsilonbacteraeota, Firmicutes, Fusobacteria, Pat

Verrucomicrobia.
o Abundance of various phyla did not vary significantly between the tonsillar sampling sites (crypt,
o Genera: Fusobacterium, Prevotella, Alloprevotella, Treponema, Haemophilus, Veillonella, Prevotella

Gao et al., 2021 (32) Oropharyngeal swabs 16S rRNA • In healthy controls:
o Phyla: Firmicutes, Bacteroidota, Proteobacteria, and Fusobacteriota.
o Genera: Fusobacterium, Haemophilus, Capnocytophaga, Prevotella, Streptococcus, Leptotrichia, Gra

Bach et al.,
2021 (33)

Oropharyngeal swabs Culture-independent
metagenomic
sequencing

• In healthy participants:
o Phyla: dominated by Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria
o Genera: chiefly Streptococcus, Veillonella, Prevotella, Neisseria, Actinomyces

Yang et al.,
2019 (34)

Oropharyngeal swabs 16S rRNA • In Non-OSA participants:
o Genera: Prevotella, Neisseria, Veillonella, Fusobacterium, Streptococcus. Prevotella, Neisseria, Veillo

the bacteria.

Jensen et al.,
2013 (35)

Tissue collected from tonsil crypts using
sharp surgical spoon. Spoon did not touch
outer tonsil surface.

16S rRNA • In healthy adults:
o Phyla: Bacteroidetes and Firmicutes were associated with healthy adults.
o Genera: Streptococcus, Prevotella, Fusobacterium, Porphyromonas, Neisseria, Parvimonas, Haemop

present in the crypts of human tonsils)

Segata et al.,
2012 (36)

Catch-All™ Sample Collection Swabs. 16S rRNA • In healthy adults:
o Phyla: Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, Actinobacteria, Spirochaetes
o Genera: Streptococcus, Prevotella, Fusobacterium, Veillonella, Neisseria, Actinomyces, Leptotrichia,

Oribacterium, Granulicatella, Rothia, Actinobacillus, Treponema

OSA, obstructive sleep apnea.
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TABLE 2 Summary of the key taxonomic findings in the HPV-positive OPSCC microbiome based on sampling methods specific to the oropharynx.

Author
and Year

Sampling methodology Sequencing
methodology

Key Taxonomic Findings

Oberste
et al.,
2024 (26)

Swabs from directly visible
cancerous tissue or from healthy
tissue of the oropharynx and
larynx (larynx samples taken via
Kleinsasser tube using an
instrument extension)

16S rRNA • Comparing relative abundance in patients with OPSCC to those without:
o Genera: Streptococcus (-), Porphyromonas (-),Peptostreptococcus (-), Eubacterium (-),

Solobacterium (+), Kingella (-), SR1 (-), Streptobacillus (-), Peptoniphilus, Bacteroides,
Alloscardovia (-), Corynebacterium (-), Flavobacteriales (-), Lautropia (-), Flavobacteriaceae
(-), Myroides (-), Glutamicibacter (-), Aerococcus (-), Chryseobacterium(-), Paracoccus(-).
• Comparing relative abundance in HPV-positive patients to HPV-negative:

o Genera: Leptotrichia (+), Staphylococcus (+), Selenemonadaceae (+), Solobacterium (+),
Limosilactobacillus (-), Peptoniphilus (-), Paraburkholderia (-), Mobiluncus (+).

o Notably, these were only obvious differences, not statistically significant differences

De Martin
et al.,
2021 (31)

Tissue collected from tonsils
during tonsillectomy and via
punch biopsy

16S rRNA • Comparing relative abundance of HPV p16 positive primary, untreated tonsillar squamous
cell carcinoma to OSA controls

o Phyla: Bacteroidetes (+), Firmicutes (+), Spirochaetes (-), Synergistetes (-).
o Genera: Fusobacterium (-), Prevotella (-), Alloprevotella (-), Treponema_2 (-),

Streptococcus (+), Haemophilus (no change), Veillonella (+), Prevotella_7 (+).
o No significant differences in the microbial community composition of tumor-affected

vs contralateral tonsils of same patient.
o Species level analysis of top 10 most predictive in cancer:
▪ Porphyromonas NA (-), Fretiacterium NA (-), T. denticola (+), F. periodonticum (+), F.

alocis (-), F. nucleatum subsp. vincentii (-), M. micronuciformis (+), P. melaninogenica (+),
Streptococcus NA (+), V. atypica (+)

Rajasekaran
et al.,
2021 (39)

Tissue specimen from controls
(tonsillectomy for OSA) and from
cancer (biopsy proven HPV-
positive tonsil cancer).

Metagenomics • Shift towards more gram-negative bacteria in specimens with cancer present
• Burkholderia pseudomallei was unique to all specimens that contained cancer.
• All cancer patient cohorts including the negative nodes shared signatures for Anaplasma
phagocytophilum, Bacillus subtilis, Chlamydia trachomatis, Chlamydophila psittaci, Lactococcus
lactis, and Proteus mirabilis.
• Specimens from patients with nodal metastasis contained unique signatures for the gram
negative, facultative anaerobe Shigella dysenteriae; Orientia tsutsugamushi and Neisseria
gonorrhoeae.
• Three species signatures were unique to negative-node primary:

o Leptospira interrogans, Sphingomonas wittichii, and Coxiella burnetiï
• Five species were unique to positive-node primary:

o Bartonella clarridgeia, Frateuria aurantia, Haemophilus aegyptius, Peptostreptococcus
anaerobius, Propionibacterium acnes, and Yersinia pseudotuberculosis

Oliva et al.,
2021 (40)

Oropharyngeal swabs Metagenomics • OP swabs in HPV-positive OPSCC:
o Phyla: Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria
o Genera: Mostly oropharyngeal anaerobes and facultative anaerobes including Bacteroides,

Prevotella, Veillonella, Streptococcus, Actinomyces, Neisseria.
o Taxonomic composition of oropharyngeal swabs significantly differed across stage III vs

stage I-Il patients (p < 0.05).
o Four genera were enriched in patients with stage III, including Fusobacterium

(Fusobacterium nucleatum), Gemella (Gemella morbillorum and Gemella haemolysans),
Leptotrichia (Leptotrichia hofstadii) and Selenomonas (Selenomonas sputigena and
Selenomonas infelix)

Zakrzewski
et al.,
2021 (41)

Tumor tissue, Normal tissue
within 2 cm of tumor

16S rRNA • Treponema (+) in HPV-positive normal tissue
• Changes in genera Neisseria, Veillonella, Fusobacterium, Prevotella, Porphyromonas
associated with HPV status
• Rothia (-) in HPV+ tumor tissues

Bahig et al.,
2020 (42)

Oropharyngeal swabs of tumor 16S rRNA • Comparing buccal swab controls to OP swabs of tumor:
o Genera: Veillonella (+), Leptotrichia (+)

Banerjee
et al.,
2017 (43)

FFPE from mostly HPV-positive
OPSCC (HPV16 found in 98%
of samples)

PathoChip • Identifying unique signatures associated with HPV-positive OPSCC when compared to
adjacent normal controls (matched) and oral tissue (uvula)

o Genera: Escherichia, Rothia, Peptoniphilus, Brevundimonas, Comamonas, Alcaligenes,
Caulobacter, Cardiobacterium, Plesiomonas, Serratia, Edwardsiella, Haemophilus,
Frateuria (unique to cancer), Arcanobacterium, Actinomyces, Aeromonas, Bordetella,
Aerococcus, Pediococcus, Acinetobacter, Actinobacillus, Veillonella, Mobiluncus,
Propionibacterium, Prevotella, Citrobacter, Sphingomonas, Peptostreptococcus, Mycobacterium,
Sphingobacterium, Streptococcus

o Porphyromonas was unique to normal control
o Campylobacter and Streptobacillus were unique to matched controls
o Fungal: Rhodotorula, Geotrichum, Pneumocystis (unique to cancer), Fonsecaea,

Malassezia, Cladosporium, Pleistophora, Absidia, Phialophora, Cladophialophora
o Parasitic: Hymenolepis, Centrocestus, Trichinella (unique to cancer), Dipylidium,

Prosthodendrium, Contracaecum, Toxocara
F
rontiers in On
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HPV, human papillomavirus; OPSCC, oropharyngeal squamous cell carcinoma; OSA, obstructive sleep apnea; FFPE, formalin-fixed, paraffin-embedded.
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decreased abundance of Fusobacterium and a relatively increased

abundance of Streptococcus (48). One study found enriched

presence of Chlamydia trachomatis in HPV-positive tonsil SCC

and patients with more advanced disease were colonized with

Neisseria gonorrhoeae (47).
Crosstalk between HPV and the
oropharyngeal microbiome

Persistent HPV infection in the oropharynx is a known risk factor

for the development of OPSCC. While 4% of adults have oral high-

risk HPV DNA present, not all develop persistent infection or

OPSCC (4, 51–53). Patients with detectable oral HPV (vs non-

detectable HPV) and patients with HPV-positive OPSCC (vs HPV-

negative OPSCC) have significant shifts in oral microbiome (54–57).

Other studies have similarly identified compositional shifts in the

vaginal microbiota of pre-malignant lesions and cervical cancer, with

mechanistic evidence of HPV-microbial crosstalk contributing to

neoplastic progression (58–62). Therefore, HPV-microbial crosstalk

may contribute to neoplastic progression in the oropharynx.

After our review of the literature, no study has independently

validated the interplay between specific microbes and HPV in

OPSCC. Some have reported the oral bacterial signatures of

HPV-positive OPSCC, but these are primarily descriptive (9, 17,

63–65). In the subsequent sections, we propose potential

mechanisms of crosstalk between HPV and specific microbes
Frontiers in Oncology 05
identified from our literature search in promoting HPV-

related carcinogenesis.
HPV-Neisseria/Chlamydia: overview

HPV-positive OPSCC patients exhibit tumor microbiome

enriched in Neisseria, particularly in regionally metastatic disease

(Table 2) (45–47). Furthermore, one study identified Neisseria

gonorrhoeae (NG) as the only signature present in patients with

nodal disease and Chlamydia trachomatis (CT) as a shared

signature amongst all HPV-positive OPSCC patient cohorts

(Table 2) (47). These findings contribute to the growing evidence

linking Neisseria and Chlamydia to persistent HPV infection and

HPV-positive cancers of the cervix and oropharynx (66–68).

The carcinogenic potential of the crosstalk between HPV-NG

and HPV-CT in the oropharynx may stem from their abilities to

enable persistent HPV infection within tissues. Cervicitis is

associated with prolonged duration of HPV infection as well as

an increased likelihood of high-grade cervical dysplasia (69, 70).

Furthermore, high-risk HPV (HR-HPV) and NG co-infection

showed an increased risk of atypical squamous cells of

undetermined significance (≥ ASC-US) and high-grade squamous

intraepithelial lesions (HSIL) (66). HPV-CT co-infection resulted in

5 times higher risk of both ≥ ASC-US and HSIL. A meta-analysis of

22 studies confirmed that HPV-CT co-infection conferred a higher

risk of cervical cancer than either alone (71). As NG and CT are
FIGURE 1

Summary findings of enriched genera/species identified in normal, HPV-infected premalignant, and HPV-positive OPSCC tonsils based on our
focused review of the literature. The enriched genera/species outlined in this figure result from studies using sampling methods specific to
the tonsils.
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primarily GU pathogens, they are thought to be transplanted to the

oropharynx during oral sex (59) and subsequently cause chronic

subclinical infections, with a predilection to tonsillar tissues where

they are difficult to eradicate (72, 73).

HPV-NG crosstalk: proposed mechanisms
Although both NG and CT contribute to persistence of HPV

infection in the oropharynx, their underlying mechanisms may

differ. NG disrupts the mucosal barrier by inhibiting epithelial cell

renewal and exfoliation. More specifically, NG can engage human

carcinoembryonic antigen-related cell adhesion molecules

(CEACAMs) present within pharyngeal and urogenital mucosal

surfaces by using outer membrane adhesins (74–76). Once engaged,

NG blocks detachment of infected epithelial cells from the

extracellular matrix (ECM) by triggering the full-length

expression of CD105. CD105 is sufficient to inhibit infection-

induced detachment, suggesting a mechanism by which NG can

disrupt the innate defense mechanism of epithelial exfoliation (77).

In vitro studies have demonstrated that NG can also induce

DNA damage . Normal vag ina l mucosa and cerv ica l

adenocarcinoma cell lines infected with NG displayed

significantly more DNA strand breaks compared to uninfected

controls (78). NG was also shown to induce the cell cycle

inhibitors, p21 and p27 (79). Interestingly, NG infected cells can

evade DNA damage-induced apoptosis via downregulation of

tumor suppressor p53 (78). Through expression of Tfp/pilT, NG

can activate the extracellular signal-regulated kinase (ERK)

prosurvival pathway resulting in downregulation of proapoptotic

proteins Bim and Bad (80). By inhibiting apoptosis in host cells, NG

can delay the immune response, triggering a “carrier state” and/or

intracellular survival. In HPV-infected epithelium, such a survival

mechanism may confer greater immortality in combination with

well described oncoproteins HPV E6/E7.

HPV-CT crosstalk: proposed mechanisms
At a molecular level, CT can also traumatize the epithelium of

susceptible mucosal tissues, creating opportunities for

microabrasions that promote HPV entry (81). Persistent CT

infection in epithelial cells increases the secretion of

proinflammatory cytokines IL-8, GROɑ, GM-CSF, and IL-6, which

can cause oxidative stress (82). Moreover, the epithelial cells continue

to release IL-1ɑ after CT infection, triggering neighboring non-

infected epithelial cells to produce additional cytokines, sustaining

the inflammatory response and ultimately leading to epithelial tissue

damage (82). Of note, HPV-CT co-infected cervical lesions

demonstrate significantly upregulated expression of NF-kB

compared to non-CT infected cervical lesions. NF-kB is a family of

transcription factors that play critical roles in intracellular regulation

of immune response and inflammation (83, 84). The upregulated NF-

kB pathway caused by HPV-CT co-infection can exacerbate IL-8

mediated epithelial tissue damage, facilitating HPV virion penetrance

(85). Furthermore, CT infection has been shown to disrupt N-

cadherin-dependent cell-cell junctions in human cervical epithelial

cells, resulting in an increase in epithelial paracellular permeability

(86). This may explain how CT can increase the risk of HPV
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acquisition and persistence and how HPV-CT co-infection can

increase risk of carcinogenesis (87, 88).

Beyond epithelial disruption, CT can also disturb the immune

response necessary to clear HPV, leading to persistent infection. CT

can cause a shift in the immune landscape from a cell-mediated

response to a humoral response due to its chronic infection in

mucosal tissues (83, 89, 90). As cell-mediated immune responses are

critical for clearance of HPV infections, a shift to a humoral

response creates an environment where HPV infection can thrive

(91). Indeed, a cohort study of Swedish women showed that a self-

reported history of CT infection was the most significant risk factor

for presence of HPV DNA in the blood (92). Furthermore, the CT

outer membrane pore protein OmpA can inhibit apoptosis in

infected host cells by targeting the pro-apoptotic proteins Bax and

Bak. Similar to HPV-NG crosstalk, inhibition of apoptosis may

compound the anti-apoptotic effect of HPV E6/E7 and is a hallmark

of carcinogenesis (93).

Chronic CT infection can also promote carcinogenesis via DNA

damage caused by reactive oxygen species (94). One study used an

HPV16 infected ectocervix organoid and CT co-culture system to

model HPV-CT crosstalk (61). Using this model, they found that CT

impedes HPV-induced mechanisms that maintain genome integrity,

including mismatch repair, creating a genotoxic effect in host cells.

Furthermore, HPV16 E6/E7 integration in the host genome slows the

CT life cycle and induces persistent infection. This study demonstrates

the potential complexity of this bidirectional relationship between CT

and HPV in cancer development and progression (61).

Summary of HPV-NG/CT crosstalk
The crosstalk between HPV-NG and HPV-CT may contribute

to carcinogenesis in the oropharynx by disrupting the normal

mucosal barrier and facilitating entry of HPV virions, delaying

immune response, and promoting genotoxicity. Additional research

is required to evaluate the impact of HPV-NG and HPV-CT co-

infection in oropharyngeal models.

HPV-Fusobacterium: overview and
proposed mechanisms

Fusobacterium spp are well established periodontal pathogens

(95). Of these, Fusobacterium nucleatum (FN) is well known for its

role in OSCC development (96–98). FN colonization increases risk of

OSCC by augmenting IL-6-STAT3 signaling pathways, promoting

tumor growth and invasiveness (15, 99). However, studies on the

oropharyngeal microbiome suggest the contrary: HPV-positive

OPSCC exhibits a reduction of Fusobacterium spp compared to the

normal oropharynx (48). As with NG and CT, such differences can be

partially explained by differences in experimental methods: lack of

stratification of HPV-positive to HPV-negative, sampling methods,

and sequencing methodology (100).

Although less prominent in HPV-positive OPSCC compared to

otherwise healthy adults, progressive over-representation of FN has

been characterized with stage III HPV-positive OPSCC patients,

showing a significantly higher relative abundance of FN compared

to earlier stages. This correlation between FN representation and

stage is consistent with that of OSCC and gastrointestinal squamous
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cell carcinoma studies (46, 98, 101–103). Furthermore, some have

proposed that patients with stage III HPV-positive OPSCC are at a

higher risk of recurrence despite definitive concurrent

chemoradiation due to differences in FN enrichment (104).

Ultimately, the etiology explaining these associations remain

unclear. HPV-FN co-infection in the tonsillar tissues of susceptible

patients can be a contributing factor.

The potential mechanisms by which FN contributes to

cancerous growth have been studied in the colon and oral cavity.

FadA, a virulence factor expressed by FN, is a cell surface adhesion

protein involved in the attachment and invasion of epithelial cells. It

can interact with E-cadherin of epithelial cells to stimulate the Wnt/

b-catenin pathway (105). As a result, b-catenin can activate the

expression of cyclin D1, c-Myc, and Wnt signaling genes, which

promote cell proliferation and tumor growth. HR-HPV

oncoproteins also activate the canonical Wnt/b-catenin pathway,

which further contribute to the onset, progression, and

maintenance of transformed cells (106). Studies in cervical cancer
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have highlighted the role of Wnt signaling as the “second hit,”

responsible for transforming HPV-immortalized cells (107).

Therefore, HPV-FN crosstalk may result in a multiplicative effect

on the growth of HPV-positive cancers (Figure 2).

HPV-FN crosstalk may also alter mucosal integrity,

predisposing to HPV infection and OPSCC progression. FN

produces matrix metalloproteinases, which are capable of

degrading components of the extracellular matrix (ECM) (109).

FN can also promote the epithelial-mesenchymal transition (EMT),

predisposing cells to malignant transformation. One study in oral

epithelial cells demonstrated that FN infection can trigger EMT in

both normal and cancerous cells via the lncRNA MIR4435–2HG/

miR-296–5p/Akt2/SNAIl signaling pathway, a process that also

downregulates E-cadherin (110), thereby breaking down the

epithelial barrier and allowing HPV infection and malignant

transformation (111). Additional research must explore the

mechanisms by which HPV-FN crosstalk can foster tumor

growth, progression, and clinical outcomes.
FIGURE 2

Proposed multiplicative effect HPV-Fusobacterium nucleatum (FN) crosstalk in contributing to HPV-positive OPSCC based on our focused review of
the literature. FadA binding enhances when Annexin A1 level increases (105). Annexin A1 is significantly elevated in the margins of HPV-positive
OPSCC compared to HPV-negative OPSCC (108). FadA can interact with E-cadherin of epithelial cells to stimulate the Wnt/b-catenin pathway (105).
As a result, b-catenin can activate the expression of cyclin D1, c-Myc, and Wnt signaling genes, which promote cell proliferation and tumor growth.
HR-HPV oncoproteins E6/E7 can also activate the canonical Wnt/b-catenin pathway, which further contribute to the onset, progression, and
maintenance of transformed cells (106). E7 binds to PP2A in the structural and catalytic domain to contribute to the inhibition of GSK3b activation
(106). The E6/E6AP complex can stabilize b-catenin, avoiding its proteasomal degradation and promoting its nuclear translocation. The binding of E6
to Dishevelled can disrupt the b-catenin degradation complex.
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HPV-Streptococcus: overview and
proposed mechanism

Oropharyngeal microbiome studies have also revealed that

HPV-positive OPSCC patients demonstrate enriched signatures of

the genus Streptococcus (38, 46, 48). Streptococcus has been heavily

associated with both periodontal inflammation as well as OSCC,

and is one of the most common microbes in the oral cavity and

oropharynx (11, 15, 16, 112). Furthermore, one study of salivary

samples from patients with OPSCC revealed that the relative

abundance of Streptococcus could be used to differentiate tumors

from control samples (17). As Streptococcus spp are commensal to

the oral cavity and oropharynx, environmental insults that trigger

dysbiosis may allow for opportunistic organisms to colonize (113).

Streptococcus mutans (SM), a viridans group streptococcus (VGS),

represents one of these species. SM has been shown to induce IL-6

expression in human and mouse oral cancer cell lines, representing

a specific mechanism for its potential carcinogenicity (114). As with

the other microbes mentioned, it is uncertain whether the changes

observed in streptococci are the cause or consequence of cancer.

One study demonstrated that Streptococcus may promote

HPV16 entry into basal keratinocytes by supplying a furin-like

peptidase (115). HPV16 infection is initiated by binding to receptor

heparan sulfate proteoglycans (HSPGs) on the exposed basement

membrane (81, 115, 116). Following binding to HSPGs, the L2

cleavage site is exposed and subsequently cleaved by furin,

facilitating HPV16 entry into tissues (116). Unlike HSPGs, the

expression of furin varies based on tissues (117). In the human

oropharyngeal epithelium, furin expression is low in the basal layers

where HPV16 typically initiates infections (118). One study

revealed that PepO, the furin-like peptidase of S. gordonii,

promoted HPV16 infection (119). Altogether, this suggests that

HPV-Streptococcus crosstalk may allow for better penetration of

HPV into the basal keratinocytes, where it can proliferate.
Conclusions and future directions

The intricate composition of the oropharyngeal microbiome is

only beginning to be understood. Previous studies have focused on

saliva due to ease of access (16, 65, 120). Although these findings

have been used as a mirror of the oropharyngeal microbiome,

targeted collection methods have shown unique signatures of

bacteria and other microbes in this region (37, 47, 48).

Trad i t iona l per iodonta l pa thogens found in OSCC

(Porphyromonas gingivalis and Treponema denticolum) did not

present as key players (19, 121). Instead, FN and SM provide pro-

inflammatory environments, in conjunction with chronic HPV

infection, that may increase propensity for the development of

cancer (46, 48). High quality mechanistic studies have yet to provide

a comprehensive landscape of these interactions critical for the

development of novel therapy.

We propose that HPV-microbial crosstalk impacts patient

outcomes at multiple levels. First, it facilitates HPV virion entry

to the basal keratinocytes and fosters an immune environment that

also allows for HPV persistence. Furthermore, as demonstrated in

other solid tumors, direct and secreted microbial features may
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confer treatment resistance in advanced stages of HPV-positive

OPSCC (101, 103). Key microbial signatures of HPV-positive

OPSCC may provide useful biomarkers for deintensification

of patients.

Novel reductionist approaches utilizing tissue-microbe co-

culture may be one way to model microbial effects on HPV-

associated carcinogenesis (61). These studies would also benefit

from including fungi, proteus, and bacteriophages, which occupy

their own niche roles in the microbiome. In cervical cancer, specific

fungal communities (Candida, Malassezia, and Sporidiobolaceae)

were identified as significantly associated with HR-HPV and

premalignant cervical lesions (122). We believe similar

associations occur in the oropharynx, triggering carcinogenesis in

the HPV-infected tonsil. As the incidence of HPV-positive OPSCC

begins to exceed that of cervical cancer, it is necessary to understand

the functional relationships between microbes and HPV to

characterize oropharyngeal premalignant lesions and enhance our

understanding of HPV-related carcinogenesis (123).
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100. Brzychczy-Sroka B, Talaga-Ćwiertnia K, Sroka-Oleksiak A, Gurgul A,
Zarzecka-Francica E, Ostrowski W, et al. Standardization of the protocol for oral
cavity examination and collecting of the biological samples for microbiome research
using the next-generation sequencing (NGS): own experience with the COVID-19
patients. Sci Rep. (2024) 14:3717. doi: 10.1038/s41598-024-53992-3

101. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, et al.
Human microbiome fusobacterium nucleatum in esophageal cancer tissue is associated
with prognosis. Clin Cancer Res. (2016) 22:5574–81. doi: 10.1158/1078-0432.CCR-16-
1786

102. Shao D, Vogtmann E, Liu A, Qin J, Chen W, Abnet CC, et al. Microbial
characterization of esophageal squamous cell carcinoma and gastric cardia
adenocarcinoma from a high-risk region of China. Cancer. (2019) 125:3993–4002.
doi: 10.1002/cncr.32403

103. Yamamura K, Izumi D, Kandimalla R, Sonohara F, Baba Y, Yoshida N, et al.
Intratumoral fusobacterium nucleatum levels predict therapeutic response to
neoadjuvant chemotherapy in esophageal squamous cell carcinoma. Clin Cancer Res.
(2019) 25:6170–9. doi: 10.1158/1078-0432.CCR-19-0318

104. Oliva M, Huang SH, Xu W, Su J, Hansen AR, Bratman SV, et al. Impact of
cisplatin dose and smoking pack-years in human papillomavirus–positive
oropharyngeal squamous cell carcinoma treated with chemoradiotherapy. Eur J
Cancer. (2019) 118:112–20. doi: 10.1016/j.ejca.2019.06.019

105. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium
nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/b-Catenin
Signaling via its FadA Adhesin. Cell Host Microbe. (2013) 14:195–206. doi: 10.1016/
j.chom.2013.07.012

106. Muñoz Bello JO, Olmedo Nieva L, Contreras Paredes A, Fuentes Gonzalez AM,
Rocha Zavaleta L, Lizano M. Regulation of the wnt/b-catenin signaling pathway by
Frontiers in Oncology 11
human papillomavirus E6 and E7 oncoproteins. Viruses. (2015) 7:4734–55.
doi: 10.3390/v7082842

107. Üren A, Fallen S, Yuan H, Usubütün A, Küçükali T, Schlegel R, et al. Activation
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