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Radiomics based on MRI in
predicting lymphovascular
space invasion of cervical
cancer: a meta-analysis
Chongshuang Yang1, Min Wu1, Jiancheng Zhang1,
Hongwei Qian1, Xiangyang Fu1,2, Jing Yang1, Yingbin Luo1,
Zhihong Qin1 and Tianliang Shi1*

1Department of Radiology, Tongren People’s Hospital, Tongren, China, 2Department of Radiology,
Wanshan District People’s Hospital, Tongren, China
Objective: The objective of this meta-analysis is to assess the efficacy of

radiomics techniques utilizing magnetic resonance imaging (MRI) for predicting

lymphovascular space invasion (LVSI) in patients with cervical cancer (CC).

Methods: A comprehensive literature search was conducted in databases

including PubMed, Embase, Cochrane Library, Medline, Scopus, CNKI, and

Wanfang, with studies published up to 08/04/2024, being considered for

inclusion. The meta-analysis was performed using Stata 15 and Review

Manager 5.4. The quality of the included studies was evaluated using the

Quality Assessment of Diagnostic Accuracy Studies 2 and Radiomics Quality

Score tools. The analysis encompassed the pooled sensitivity, specificity, positive

likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio

(DOR). Summary ROC curves were constructed, and the AUC was calculated.

Heterogeneity was investigated using meta-regression. Statistical significance

was set at p ≤ 0.05.

Results: There were 13 studies involving a total of 2,245 patients that were

included in the meta-analysis. The overall sensitivity and specificity of the MRI-

based model in the Training set were 83% (95% CI: 77%–87%) and 72% (95% CI:

74%–88%), respectively. The AUC, DOR, PLR, and NLR of the MRI-basedmodel in

the Training set were 0.89 (95% CI: 0.86–0.91), 22 (95% CI: 12–40), 4.6 (95% CI:

3.1–7.0), and 0.21 (95% CI: 0.16–0.29), respectively. Subgroup analysis revealed

that the AUC of the model combining radiomics with clinical factors [0.90 (95%

CI: 0.87–0.93)] was superior to models based on T2-weighted imaging (T2WI)

sequence [0.78 (95% CI: 0.74–0.81)], contrast-enhanced T1-weighted imaging

(T1WI-CE) sequence [0.85 (95% CI: 0.82–0.88)], and multiple sequences [0.86

(95% CI: 0.82–0.89)] in the Training set. The pooled sensitivity and specificity of

themodel integrating radiomics with clinical factors [83% (95% CI: 73%–89%) and

86% (95%CI: 73%–93%)] surpassed those ofmodels based on the T2WI sequence

[79% (95% CI: 71%–85%) and 72% (95% CI: 67%–76%)], T1WI-CE sequence [78%

(95% CI: 67%–86%) and 78% (95% CI: 68%–86%)], and multiple sequences [78%

(95% CI: 67%–87%) and 79% (95% CI: 70%–87%)], respectively. Funnel plot

analysis indicated an absence of publication bias (p > 0.05).
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Conclusion:MRI-based radiomics demonstrates excellent diagnostic performance

in predicting LVSI in CC patients. The diagnostic performance of models combing

radiomics and clinical factors is superior to that of models utilizing radiomics alone.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/

#myprospero, identifier CRD42024538007.
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1 Introduction

Cervical cancer (CC) ranks as the fourth most prevalent cancer

among women globally. In 2020, statistics reported approximately

604,000 new cases and 342,000 deaths worldwide (1, 2).

Lymphovascular space invasion (LVSI), as the name indicates, occurs

when cancer cells invade the blood vessels or lymphatics. This process

is a critical step in the metastasis of cancer cells to other locations or

organs (3). The National Comprehensive Cancer Network (NCCN)

guidelines for CC consider LVSI a critical determinant in selecting

appropriate treatment plans. Early-stage CC with or without LVSI

requires markedly different therapeutic approaches. For CC patients

with International Federation of Gynecology and Obstetrics (FIGO)

IA1 stage, conization is recommended for tumors without LVSI.

However, patients with LVSI, even at the IA1 stage, require radical

hysterectomy and pelvic lymph node dissection. Therefore,

preoperative determination of LVSI plays a pivotal role in patient

surgical planning and systemic treatment (4).

Magnetic resonance imaging (MRI) is the most commonly used

imaging methods for CC evaluation, and MRI-based assessment has

significantly improved the accuracy of CC diagnosis in recent decades

(5). Although functional MRI techniques, including dynamic contrast-

enhanced MRI (DCE-MRI), amide proton transfer imaging, and

diffusion-weighted imaging (DWI), have been employed for

predicting LVSI in CC (6, 7), the accuracy of conventional MRI

based on subjective visual assessment by radiologists remains low.

Radiomics, an approach that extracts quantitative features from

imaging regions of interest in an automated and high-throughput

manner, can quantify tumor heterogeneity, including tumor cell

density, extracellular matrix deposition, angiogenesis, and necrosis

degree, thereby reflecting tissue characteristics (8). In recent years,

MRI-based radiomics has been widely applied to predict pathological

type, grade, parametrial invasion, LVSI, and lymph node metastasis

in CC (9–12). These outstanding results suggest that MRI-based

radiomics may serve as an accurate and non-invasive tool for

evaluating CC by analyzing primary tumors preoperatively.

Current studies on MRI-based radiomics for assessing LVSI in

CC are predominantly single-center investigations with limited

sample sizes, resulting in substantial heterogeneity in the reported
02
diagnostic performance parameters. Studies conducted byWang et al.

(13) showed that the sensitivity of MRI-based radiomics in predicting

LVSI in CC was as high as 94.2%, while Cui et al. (14) reported a

sensitivity of only 58.1%. Furthermore, the overall diagnostic

performance of MRI-based radiomics in predicting LVSI in CC has

not yet been systematically evaluated. Therefore, the purpose of this

meta-analysis was to determine the diagnostic performance of

radiomics based on preoperative MRI in predicting LVSI in CC.
2 Methods

This study was conducted in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines (15). The evidence-based analysis was

prospectively registered in PROSPERO. Two researchers (Yang CS

and Wu M) independently performed each step of the analysis,

engaging in discussion to reach a consensus in case of disagreements.
2.1 Search strategy

Systematic searches were conducted in Embase, PubMed,

Cochrane Library, Medline, Scopus, Wanfang, and CNKI databases

up to 08/04/2024. The search formula was as follows: [(“Uterine

Cervical Neoplasms”[Mesh]) OR (Cervical Neoplasm, Uterine) OR

(Neoplasm, Uterine Cervica) OR (Uterine Cervical Neoplasm) OR

(Neoplasms, Cervical) OR (Cervical Neoplasms) OR (Cervical

Neoplasm) OR (Neoplasms, Cervix) OR (Cervix Neoplasm) OR

(Neoplasm, Cervix) OR (Cervix Neoplasms) OR (Cancer of the

Uterine Cervix) OR (Cancer of the Cervix) OR (Cervical Cancer)

OR (Cancer, Cervical) OR (Cervical Cancers) OR (Uterine Cervical

Cancer) OR (Cancer, Uterine Cervical) OR (Cervical Cancer,

Uterine) OR (Uterine Cervical Cancers) OR (Cancer of Cervix) OR

(Cervix Cancer) OR (Cancer, Cervix)] AND [(magnetic resonance

imaging) OR (MRI) OR (MR)] AND [(radiomic) OR (machine

learning) OR (deep learning) OR (artificial intelligence) OR

(texture)]. Additionally, the reference lists of the included studies

were examined to identify further eligible publications.
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2.2 Inclusion and exclusion criteria

The inclusion criteria encompassed peer-reviewed publications in

Chinese and English that met the following conditions: utilization of

biopsy or surgical pathology results as the gold standard; employing

radiomics based on MRI as the index test for assessing LVSI in CC;

ensuring blinding of radiologists and pathologists; and possessing the

ability to calculate true positives, false positives, true negatives, and

false negatives in both Training and Validation sets. Exclusion criteria

comprised animal or laboratory studies, case reports, conference

reports, comments, and responses.
2.3 Literature screening and
data extraction

Duplicate publications were excluded using EndNote 21

software. The titles and abstracts of the remaining articles were

thoroughly scrutinized to eliminate reviews, conference abstracts,

and individual case reports. A comprehensive examination of the

screened articles was performed to exclude studies that did not

focus on MRI-based radiomics in predicting LVSI of CC or lacked

extractable data. Furthermore, when multiple articles utilized data

from the same set, only the study containing the largest number of

cases and the most detailed information was included in this meta-

analysis. This meticulous process resulted in the final selection of

included publications.

Relevant information was meticulously extracted from each

selected article, including the first author, publication year, type

of research, MRI machine manufacturer and magnetic field

strength, MRI sequences, segmentation details, total patient

population (encompassing both training and Validation sets),

method of radiomic feature selection, FIGO stage, true positive,

true negative, false positive, and false negative values.

If an article reported multiple models, the model with the

largest sum of sensitivity and specificity in the Training set was

considered the best model for that article. Subsequently, subgroups

(T2WI sequence model, T1WI-CE sequence model, multiple-

sequence model, and radiomics combined with clinical factor

model) were defined based on the MRI sequences from which

radiomic features were extracted.
2.4 Quality assessment

Two reviewers independently assessed the methodological

quality and risk of bias of the included studies using the Quality

Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (16)

and Radiomics Quality Score (RQS) (8) guidelines, respectively.
2.5 Meta-analysis

Meta-analysis was performed using Stata 15 (Stata Corp,

College Station, TX) and Review Manager 5.4. Pooled sensitivity,
Frontiers in Oncology 03
specificity, DOR, positive and negative likelihood ratios (PLR and

NLR), and AUC, with corresponding 95% confidence intervals

(CIs), were calculated. A forest plot and a summary receiver

operating characterist ic (SROC) plot were generated.

Heterogeneity among study results was analyzed using the chi-

square test, and the extent of heterogeneity was quantitatively

determined. Deek’s funnel plot was employed to detect the

presence of publication bias. p < 0.05 was considered

statistically significant.
3 Results

3.1 Literature screening

The electronic search yielded a total of 1,670 potentially eligible

citations, of which 714 studies were duplicates and 1 study was not

in Chinese or English language. Subsequently, 927 studies were

excluded after the assessment of title and abstract. Following a

careful evaluation of the full text, an additional 15 studies were

excluded. Finally, 13 articles were included, comprising 4 studies in

Chinese and 9 studies in English. The flowchart of the study

screening process is depicted in Figure 1.
3.2 Basic features of studies

All studies were retrospective in nature. ROIs of all studies were

3D and manually segmented. The total sample size of the studies

ranged from 110 to 300. Patients in two studies were from multiple

centers. MRI sequences used in all studies included T2WI-Axis,

T2WI-FS-Axis, T2WI-sag, T1WI-Axis, T1WI-CE-Axis, DWI-Axis,

ADC-Axis, and combinations of these sequences. Eight articles (14,

17–23) reported radiomic models based on T2WI sequences (four

articles with T2WI-Sag, three articles with T2WI-Axis, and one

article with T2WI-FS-Axis). Seven articles (3, 13, 14, 18, 19, 21, 22)

reported radiomic models based on T1WI-CE sequences (five

articles with T1WI-CE-Axis, two articles with T1WI-CE-Sag). Six

articles (18, 19, 21, 22, 24, 25) reported radiomic models based on

multiple sequences. Seven studies (3, 14, 21, 23–26) reported

radiomic models based on the combination of radiomic features

and clinical factors. Deep learning was utilized to diagnose LVSI of

CC in two studies. The basic features of the included studies are

presented in Table 1.
3.3 Quality of literature

The total RQS was 36, and the RQS of the articles included in

this meta-analysis ranged from 12 to 16, with an average of 13.54 ±

1.33. All studies were retrospective in design, and no studies

analyzed cost-effectiveness or biological correlates. The detailed

RQS is shown in Table 2.

According to QUADAS-2 guidelines, two articles scored high

risk of bias in the patient selection field due to the absence of
frontiersin.org

https://doi.org/10.3389/fonc.2024.1425078
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2024.1425078
reporting on continuous enrollment and random sampling. Four

articles scored unclear risk of bias in the patient selection field as

inappropriate exclusions were not reported. All other indicators

exhibited low risk. Overall, the methodological quality of the

included studies was at a medium level. The methodological

quality of the studies is illustrated in Figure 2.
3.4 Diagnostic value of the best
radiomic model

The overall sensitivity and specificity of the Training set and

Validation set were 83% (95% CI: 77%–87%), 72% (95% CI: 74%–

88%), and 77% (95% CI: 69%–83%), 79% (95% CI: 73%–84%),

respectively. AUC, DOR, PLR, and NLR of the Training set and

Validation set were 0.89 (95% CI: 0.86–0.91), 22 (95% CI: 12–40), 4.6

(95% CI: 3.1, 7.0), 0.21 (95% CI: 0.16–0.29), and 0.85 (95% CI: 0.81–

0.85), 13 (95% CI: 8.0–19), 3.7 (95% CI: 2.9–4.7), and 0.29 (95% CI:

0.22–0.39), respectively. The forest plots of sensitivity and specificity

are presented in Figure 3, and the SROC curve is depicted in Figure 4.
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3.5 Subgroup analysis

In the subgroup analysis, the area under the curve (AUC) of

radiomics combined with clinical models [0.90 (95% CI: 0.87–0.93)]

was higher than that of T2WI sequence models [0.78 (95% CI: 0.74–

0.81)], T1WI-CE sequence models [0.85 (95% CI: 0.82–0.88)], and

multiple sequence models [0.86 (95% CI: 0.82–0.89)] in the

Training set. The pooled sensitivity of radiomics combined with

clinical models [83% (95% CI: 73%–89%)] was superior to that of

T2WI sequence models [79% (95% CI: 71%–85%)], T1WI-CE

sequence models [78% (95% CI: 67%–86%)], and multiple-

sequence models [78% (95% CI: 67%–87%)] in the Training set.

Furthermore, the pooled specificity of radiomics combined with

clinical models [86% (95% CI: 73%–93%)] outperformed that of

T2WI sequence models [72% (95% CI: 67%–76%)], T1WI-CE

sequence models [78% (95% CI: 68%–86%)], and multiple-

sequence models [79% (95% CI: 70%–87%)] in the Training set.

The comprehensive results of the subgroup analysis are presented in

Table 3, and the corresponding subgroup analysis plots are

illustrated in Figure 5.
FIGURE 1

Flow diagram illustrating the process for selecting studies.
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3.6 Heterogeneity evaluation

The I2 statistic indicated that the overall heterogeneity for

sensitivity and specificity in the Training set and Validation set

were 67.55%, 81.33% and 46.17%, 31.12%, respectively. The

heterogeneity for sensitivity and specificity of studies (Training set)

with T2WI sequence models, T1WI-CE sequence models, multiple-
Frontiers in Oncology 05
sequence models, and radiomics combined with clinical models were

29% and 0%, 80.56% and 87.7%, 79.33% and 78.43%, and 79.40% and

77.17%, respectively. In the Validation set, the heterogeneity for

sensitivity and specificity of studies with T2WI sequence models,

T1WI-CE sequence models, multiple-sequence models, and

radiomics combined with clinical models were 52.44% and 72.59%,

41% and 72.64%, 0% and 18.75%, and 0% and 70%, respectively.
TABLE 1 The basic information of literatures.

Author
(years)

Type of
research

MRI Sequence Sample
size

Training
set

Validation
set

Segmentation ROI Radiomics
feature

reduction

FIGO
staging

He YM
(2022)
(20)

Retro
Philips,
3.0 T

T2WI-sag 110 77 33 Manually 3D LASSO, LR IB-IIA

Jia YJ
(2023)
(26)

Retro
Philips,
3.0 T

T2WI-axis,
ADC-axis,

T1WI-CE-axis
168 117 51 Manually 3D

mRMR
LASSO

IB-IIA

Lin BJ
(2024)
(23)

Retro
Siemens,
3.0 T

T2WI-sag 178 142 36 Manually 3D LASSO NA

Wang HB
(2021)
(19)

Retro
Siemens,
3.0 T

T2WI-FS-axis,
DWI-axis,

T1WI-CE-sag
134 91 43 Manually 3D LASSO IA-IIA

Yu HQ
(2022)
(21)

Retro
GE,
3.0 T

T2WI-axis,
T1WI-CE-axis

123 87 36 Manually 3D
mRMR
LASSO

IA-IIIC

Cui LP
(2022)
(14)

Retro
Siemens,
3.0 T

T2WI-axis,
T1WI-CE-axis

163 108 55 Manually 3D LASSO, LR IA-IIA

Hu QM.
(2022)
(22)

Retro
Siemens,
1.5/
3.0 T

T2WI-axis,
T1WI-axis,

T1WI-CE-axis,
DWI-axis

276 195 81 Manually 3D mRMR, LASSO IA-IB

Hua QW,
2022
(18)

Retro
Siemens,
3.0 T

T1WI-CE-
axis、

T2WI-sag
167 111 56 Manually 3D SVM NA

Li ZC
(2019)
(3)

Retro
GE,
1.5 T

T1WI-CE-axis 105 70 35 Manually 3D
Univariate
LR, mRMR

NA

Wang S.
(2019)
(17)

Retro NA T2WI-axis 120 80 40 Manually 3D LASSO IB-IIB

Wang SX
(2023)
(13)

Retro
Siemens
1.5/
3.0 T

T1WI-CE-axis 300 198 102 Manually 3D LASSO I-III

Wu Y.
(2023)
(25)

Retro
Siemens,
1.5/
3.0 T

T1WI-axis,
T2WI-FS-axis,
T1WI-CE-axis

168 129 39 Manually 3D
Spearman,
LASSO, LR

IB-IIB

Xiao ML.
(2022)
(24)

Retro
Siemens
1.5 T

T1WI-axis,
T2WI-FS-axis,
T1WI-CE-axis,
DWI-axis,
ADC-axis

233 154 79 Manually 3D LASSO IB-IIB
fro
Retro, retrospective; D, dimensionality; T, Tesla; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; T2WI-FS, T2-weighted imaging fat suppression; T1WI-CE, contrast-enhanced T1
weighted imaging; SVM, support vector machine; LR, logistic regression; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; LASSO, least absolute shrinkage and selection
operator; mRMR, max-relevance and min-redundancy; NA, have no data.
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Li ZC
2022)
(3)

Wang S.
(2019)
(17)

Wang SX.
(2023) (13)

Wu Y.
(2023)
(25)

Xiao ML.
(2022)
(24)

1 1 1 1 1

0 0 0 1 1

1 1 1 1 1

0 0 0 0 0

3 3 3 3 3

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 2 2 1

2 2 2 2 2

2 2 2 2 2

0 0 0 0 0

3 1 1 3 3

14 12 13 16 15

Y
an

g
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.14

2
5
0
78

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
6

Study
criteria

He YM
(2022)
(20)

Jia YJ
(2023)
(26)

Lin BJ
(2024)
(23)

Wang HB
(2021) (19)

Yu HQ
(2022)
(21)

Cui LP
(2022)
(14)

Hu QM.
(2022)
(22)

Hua WQ
(2022)
(18)

(

Image
protocol quality

1 1 1 1 1 1 1 1

Multiple
segmentations

0 1 0 1 1 1 1 1

Phantom study 1 1 1 1 1 1 1 1

Imaging at
multiple

time points
0 0 0 0 0 0 0 0

Feature
reduction

3 3 3 3 3 3 3 3

Multivariable
analysis

1 1 1 1 1 1 1 1

Biological
correlates

0 0 0 0 0 0 0 0

Cutoff analysis 0 0 0 0 0 0 0 0

Discrimination
statistics

0 0 0 0 0 0 0 0

Calibration
statistics

0 0 0 0 0 0 0 0

Prospective
study

0 0 0 0 0 0 0 0

Validation 1 1 1 1 1 1 1 1

Gold standard 2 2 2 2 2 2 2 2

Potential
clinical

applications
2 2 2 2 2 2 2 2

Cost-
effectiveness
analysis

0 0 0 0 0 0 0 0

Open Science
and date

1 1 1 1 1 1 3 3

Total score 12 13 12 13 13 13 15 15
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3.7 Publication bias

Deek’s funnel plots were constructed for the included studies to

assess potential publication bias. The results demonstrated that

overall studies distinguishing LVSI positive and negative exhibited

an approximately symmetrical distribution around the central axis.

The p-values of the Training set and Validation set were 0.52 and

0.08, respectively (presented in Figure 6). In the subgroup analysis,

the p-values of the Training set and Validation set in studies with

T2WI sequence models, T1WI-CE sequence models, multiple-

sequence models, and radiomics combined with clinical models

were 0.53 and 0.25, 0.64 and 0.53, 0.45 and 0.14, and 0.13 and 0.24,
Frontiers in Oncology 07
respectively. All p-values exceeded the 0.05 threshold, suggesting no

significant evidence of publication bias.
4 Discussion

LVSI is a microscopic characteristic of tumors and is an

important independent predictor of poor prognosis in CC (27).

Previous studies have shown that the 5-year survival rate of CC

patients with LVSI is significantly lower than that of patients

without LVSI (28, 29). Routine MRI, including DWI (30),

intravoxel incoherent motion MRI (31), and DCE-MRI (32), has
FIGURE 2

Results of Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). (A) Bias risk assessment results of included studies. (B) Risk of bias and
applicability concerns summary.
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FIGURE 3

Forest plot of sensitivity and specificity of the best radiomic model based on MRI for predicting LVSI of CC in the Training set (A) and Validation set
(B), respectively.
FIGURE 4

SROC curve of the best radiomic model based on MRI for predicting LVSI of CC in the Training set (A) and Validation set (B).
TABLE 3 The results of subgroup analysis.

Model No. AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PLR NLR DOR

Training set

T2WI 8 0.78(0.74-0.81) 0.79(0.71-0.85) 0.72(0.67-0.76) 2.8 0.30 10

T1WI-CE 7 0.85(0.82-0.88) 0.78(0.67-0.86) 0.78(0.68-0.86) 3.6 0.28 13

Multiple sequence 6 0.86(0.82-0.89) 0.78(0.67-0.87) 0.79(0.70-0.87) 3.8 0.27 14

Radiomics+clinical 7 0.90(0.87-0.93) 0.83(0.73-0.89) 0.86(0.73-0.93) 5.9 0.20 29

Validation set

T2WI 8 0.77(0.73-0.80) 0.74(0.63-0.83) 0.66(0.48-0.80) 2.2 0.39 6

T1WI-CE 7 0.74 (0.70-0.78 0.75(0.65-0.82) 0.59(0.44-0.71) 1.8 0.43 4

Multiple sequence 6 0.84(0.81-0.87) 0.81(0.73-0.86) 0.77(0.69-0.84) 3.6 0.25 14

Radiomics+clinical 7 0.88(0.85-0.90) 0.80(0.72-0.86) 0.82(0.76-0.87) 4.4 0.25 18
F
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been used to predict LVSI of CC before surgery based on the naked-

eye observation and diagnostic experience of radiologists. However,

the diagnostic efficacy of LVSI based on routine MRI is low and

cannot meet clinical requirements.
Frontiers in Oncology 09
With the development of medical imaging technology, radiomics

has found wide applications in predicting LVSI of cervical cancer.

This study adopts a meta-analysis method to summarize the value of

radiomics based on MRI in assessing LVSI of CC. The results of this
FIGURE 5

Forest plot of sensitivity and specificity of different subgroups. Forest plot of sensitivity and specificity of radiomic models based on T2WI sequences
in the Training set (A) and Validation set (B). Forest plot of sensitivity and specificity of radiomic models based on T1WI-CE sequences in the Training
set (C) and Validation set (D). Forest plot of sensitivity and specificity of radiomic models based on multiple sequences in the Training set (E) and
Validation set (F). Forest plot of sensitivity and specificity of models based on radiomics combined with clinical factors in the Training set (G) and
Validation set (H).
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study show that the comprehensive analysis indices of MRI radiomics

evaluation for estimating LVSI of cervical cancer, combining

sensitivity and specificity, were 83% (95% CI: 77%–87%) and 72%

(95% CI: 74%–88%), respectively. The area under the SROC curve

was 0.89 (95% CI: 0.86–0.91), suggesting that radiomics based on

MRI is an effective, non-invasive, and reliable method for predicting

LVSI of CC. Deek’s funnel plot shows no publication bias, suggesting

that the results of this study are reliable. Similar meta-analyses have

also demonstrated the capability of radiomics based on MRI in

assessing LVSI of endometrial carcinoma (33).

In addition, in the subgroup analyses, we found that the AUC

values of studies using radiomics combined with clinical factor models

[0.90 (0.87–0.93)] to assess LVSI of CC were higher than those of

T2WI sequence models [0.78 (0.74–0.81)], T1WI-CE sequence

models [0.85 (0.82–0.88)], and multiple-sequence models [0.86

(0.82–0.89)]. Previous studies indicated that lymph node metastasis

and high FIGO stage are independent risk factors for predicting LVSI

in CC (34). Therefore, the diagnostic accuracy of radiomic models

may increase when clinical features are added in detecting LVSI. A

meta-analysis conducted by Li et al. (35) also showed that the

diagnostic accuracy of radiomic models in which clinical factors

were added increased significantly in detecting lymph nodemetastasis.

Different MRI sequences reflect different aspects of tumor

information. In theory, the diagnostic performance of

multisequence models, which collect multiple-diameter information

from different sequences and reflect tumor information more

comprehensively, should be better than that of single-sequence

models (19). However, in our study, the pooled sensitivity and

specificity of T2WI sequence models, T1WI-CE sequence models,

and multiple-sequence models showed no significant difference. A

possible reason is that the heterogeneity for sensitivity and specificity

of studies was high, with a wide range (from 0% to 87.7%). This was

attributed to the inconsistent stages of the patients included in the

studies (some studies included patients with stage IIA and below,

some included patients with stage IIB and above, and some studies

did not clearly state the stage of the patients). In addition, all of the
Frontiers in Oncology 10
included studies were retrospectively designed. The potential risk of

selective reporting of positive results is unavoidable due to the lack of

predetermined study protocols. Therefore, this finding also requires

well-designed and appropriate prospective randomized trials to

demonstrate its validity (36, 37).

This meta-analysis has several limitations that should be

acknowledged. Firstly, the original studies included in this meta-

analysis have small sample sizes, which may introduce potential

small sample size effects. Moreover, the high heterogeneity of

individual indicators may decrease the reliability of the results to

some extent. Secondly, our study only includes literature published

in Chinese and English, which may introduce language bias. Third,

our study did not perform subgroup analysis on studies using

different equipment (Siemens, GE, and Philips) or different

magnetic field strengths (3.0 T, 1.5 T).Despite these limitations,

this study represents the first meta-analysis worldwide to examine

the value of MRI-based radiomics in predicting LVSI of CC. The

findings of this paper support the conclusions of previous studies,

demonstrating that MRI-based radiomics can be effectively used to

predict LVSI of CC. Furthermore, this study provides the latest and

most comprehensive evidence-based medical evidence for the

clinical diagnosis of CC using MRI-based radiomics.
5 Conclusion

In conclusion, this meta-analysis demonstrates the value of

MRI-based radiomics in the preoperative prediction of LVSI of CC.

The diagnostic performance of models combining radiomics and

clinical factors was found to be superior to that of radiomics alone.

However, due to the high heterogeneity among the included articles,

no significant difference in diagnostic performance was observed

between models based on single MRI sequences and those based on

multisequence data. This finding still needs to be further verified

through larger-scale, prospective studies to confirm its validity

and generalizability.
FIGURE 6

Deek’s funnel plot of the best radiomic model in the Training set (A) and Validation set (B).
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