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learning-based architecture for
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tumor segmentation for
radiation therapy
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2Technology Development Department, Anhui Wisdom Technology Co., Ltd., Hefei, China
Purpose: Addressing the challenges of unclear tumor boundaries and the

confusion between cysts and tumors in liver tumor segmentation, this study

aims to develop an auto-segmentation method utilizing Gaussian filter with the

nnUNet architecture to effectively distinguish between tumors and cysts,

enhancing the accuracy of liver tumor auto-segmentation.

Methods: Firstly, 130 cases of liver tumorsegmentation challenge 2017 (LiTS2017)

were used for training and validating nnU-Net-based auto-segmentation model.

Then, 14 cases of 3D-IRCADb dataset and 25 liver cancer cases retrospectively

collected in our hospital were used for testing. The dice similarity coefficient

(DSC) was used to evaluate the accuracy of auto-segmentation model by

comparing with manual contours.

Results: The nnU-Net achieved an average DSC value of 0.86 for validation set

(20 LiTS cases) and 0.82 for public testing set (14 3D-IRCADb cases). For clinical

testing set, the standalone nnU-Net model achieved an average DSC value of

0.75, which increased to 0.81 after post-processing with the Gaussian filter

(P<0.05), demonstrating its effectiveness in mitigating the influence of liver cysts

on liver tumor segmentation.

Conclusion: Experiments show that Gaussian filter is beneficial to improve the

accuracy of liver tumor segmentation in clinic.
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1 Introduction

Liver cancer is one of the most common malignant tumors

worldwide (1). Radiotherapy, as one of the main treatment methods,

plays a crucial role in liver cancer. Accurate delineation of liver tumor

contours is essential for radiation oncologists and physicists to

formulate precise treatment plans (2). However, manual delineation

of liver tumors is time-consuming and labor-intensive, which may lead

to errors due to the complexity of clinical practice, such as the

variability of liver tumors in location, size and shape, low contrast

between tumors and normal tissues, blurred lesion boundaries, and so

on. Additionally, some low density tumors are often confused with liver

cysts, requiring multiple imaging methods to distinguish cysts from

tumors, posing a significant challenge for commonly used auto-

segmentation algorithms. Therefore, accurate auto-segmentation of

the liver tumor has become a challenging and valuable task.

Deep learning-based (DL) methods using convolutional neural

networks (CNNs) have been widely used in medical image

segmentation with excellent results (3–6), there are also previous

studies of DL-based auto-segmentation for liver and liver tumors (7).

In the public challenges of liver tumor segmentation from 2017 to 2019,

deep learning methods demonstrated absolute advantages (8–18). Ben

Cohen first applied fully convolutional networks (FCN) for liver

segmentation and lesions detection, obtaining comparable

performance relative to manual liver segmentation and detection

with lower true positive rate (TPR) of 0.86 but better false positive

per case (FPC) of 0.6 (9). Bellver et al. adjusted the deep retinal image

understanding (DRIU) for detection aided liver lesion segmentation

from computed tomography (CT) images (10). Han X. et al. used the

modified 3D U-Net architecture to efficiently segment the liver and

liver tumors, which used different skip connections and added multiple

paths to extract multiple features. Themodel was trained with 130 LiTS

training cases and achieved an average DSC of 0.67 for 70 testing cases,

which ranked first in the ISBI 2017 annual conference but cannot be

directly used in clinical practice yet (12). Alom et al. proposed RUNet

and R2UNet for the detection of LiTS2017 datasets with high DSC of

0.75 (13). The AIM-Unet model proposed by Fırat Özcan (16)

effectively solved the key flaw of U-Net’s inability to fully predict

high-resolution edge information of advanced features in the input

image, whose DSC values were 0.89 and 0.76, respectively. However,

the segmentation results for the thin slice did not have advantages, with

an average DSC of 0.68 on 3D-IRCADb dataset. In addition, the

computational cost increased significantly for mU-Net. To solve the

problem of high computational costs caused by a large amount of

labeled data for 3D networks, the hybrid deep attention-aware network

(RA-Unet) (17) and lightweight end-to-end S-Net that integrates

spatial features and attention mechanism (18) were developed. RA-

Unet achieved a DSC score of 0.59 for liver tumor segmentation in the

LiTS2017 challenge dataset. S-Net can get high accuracy for large

tumors with a Dice Global (DG) score of 0.78, but the segmentation

results for small tumors are not good with a DG score of only 0.32. The

challenge of segmenting small tumors still exists.

Various modified algorithms based on U-Net have made great

progress in the auto-segmentation of liver tumors, and the testing

results on standard datasets have been continuously improving.
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However, tumors in standard datasets often have regular shapes

without much interference, whereas actual clinical liver tumor

images contain uncertain factors such as cysts and calcifications.

These factors increase the difficulty of liver tumor auto-segmentation

in clinical practice. This study employed the nnU-Net (19, 20) model

for liver tumor auto-segmentation and utilized Gaussian filter to

analyze the HU distribution for post-processing. The segmentation

results, with and without Gaussian filtering analysis, were compared

and analyzed against manual delineations to verify the feasibility of our

proposed method.
2 Materials and methods

2.1 Datasets

The Liver Tumor Segmentation Benchmark (LiTS) is a multi-

center dataset (8), which contains 201 CT images of the abdomen,

only 130 CT scans are made publicly available along with labels of

liver tumor. Thus, the 130 cases of LiTS dataset are used for model

training (110 cases) and validation (20 cases). For the model

testing, 2 datasets are used to evaluate the accuracy of auto-

segmentation model, including (1) 14 cases of the 3D-IRCADb

dataset; (2) 25 clinical liver cancer cases retrospectively collected

in our hospital.

There are 20 liver cases with ground truth in the 3D-IRCADb

dataset (21), of which 14 cases have delineations of liver tumors, so 14

cases of the 3D-IRCADb dataset are used as the first testing dataset.

For the second clinical testing datasets, 25 clinical cases were scanned

on Philips Brilliance CT Big Bore large diameter CT machine for

radiation therapy positioning at the First Hospital of Hebei Medical

University. The scanning conditions were supine position with head

first, with each layer having 512×512 pixels and layer thickness of

1.5 mm. The liver tumor target contours (Gross Tumor Volume,

GTV) were delineated by experienced physicians using the

Accuray PrecisionTM Treatment Planning System (Version 1.1.1.1)

combined with magnetic resonance imaging (MRI) and positron

emission tomography computed tomography (PET-CT).
2.2 Auto-segmentation model

The 3D nnU-Net auto-segmentation model architecture used in

this study is shown in Figure 1. The network is based on the U-Net

network with minor improvements, combining an encoder-decoder

structure with skip connections. The network outputs result at four

different scales and incorporates losses at different scales during

backpropagation to improve the perception ability. Additionally, we

found in actual clinical cases that many patients with liver cancer

also have a large number of cysts. Since the HU values of liver

tumors and cysts in CT images are very similar, the model cannot

distinguish well between liver tumors and cysts. Therefore, we

proposed a post-processing with Gaussian filter based on the HU

values of cysts to screen out cysts and further improve accuracy of

liver tumor segmentation.
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2.3 Training strategy and improvements

The difficulty in liver cancer segmentation lies in the

uncertainty of the tumor location, most tumors are on top of the

liver. To improve accuracy and effectiveness, we use the 3D nnU-

Net network to segment two structures, the liver tumor and the

whole liver. This processing approach can restrict the tumor area

within the liver rather than other parts of the body. Then, since the

label of liver tumor is within the liver, the traditional Softmax

activation layer can only output one probability distribution in the

end, which can easily lead to problems with the segmentation

accuracy of the overlapping areas for the tumor and the liver. To

solve this problem, we use the Sigmoid activation method to obtain

a probability distribution for liver tumor and the whole liver,

which not only avoids the decreased accuracy in the overlapping

areas but also limits the prediction range of the liver tumor

area. Data preprocessing follows the nnU-Net framework, z-

score normalization is used for data standardization, Gamma

transformation and rotation is used for data augmentation.

The entire experimental process is implemented on Python 3.8,

TensorFlow 2.6 and Windows 10, with an NVIDIA A10 graphics

card. The specific parameter details are as follows: Dropout is set to

0.3, the number of epochs is set as 1000, the learning rate is 0.0002,

and the optimizer is Adam.
2.4 Loss function design

Based on the training strategy designed above, the actual size of

the whole liver differs significantly from the size of the liver tumor,

so the losses should be calculated according to different scales. The

liver tumor with small size is more sensitive to scale information, so

multiscale outputs at different scales are used for backpropagation.

The final loss function we designed is as Formula (1):
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lossk =
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1
2 DiceLoss
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C
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yclog(ŷ c)
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C
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2 yc ∩ ŷ cj j
ycj j + ŷ cj j

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(1)

where C is the number of classes (C=3 in this study: background,

liver tumor and the whole liver), K is the total number of scales (K = 4),

and the output scale is determined by the depth of the model. yc is the

ground truth and ŷ c is the prediction. The single-scale loss function

uses a weighted loss of cross-entropy and Dice loss, and the total loss

function is the weighted sum of losses at different scales.
2.5 Gaussian filter

As shown in Figure 2, the HU values of cysts and liver cancer

tumors are quite similar in CT images, it is difficult to distinguish them

using CNN-based auto-segmentation model. In clinic, physicians

manually delineated the contours of cysts and liver tumors based on

the slight difference in HU values, with the help of functional images if

necessary. To solve the problem automatically, we conducted statistical

and analytical studies on the actual HU distributions of cysts and

tumors, using their respective distribution characteristics for post-

processing to distinguish cysts from liver tumors.

Gaussian filter is applied to fit the HU distributions of tumors

and cysts, the goal of Gaussian fitting is to find the mean, standard

deviation, and amplitude of the HU distribution data for tumors

and cysts. The general form of the Gaussian distribution function

can be described as Formula (2):

f (HU) =
Affiffiffiffiffiffiffiffiffiffiffiffiffi
2p(S)2

p e
−(HU−M)2

2(S)2 (2)
FIGURE 1

The architecture of 3D nnU-Net network.
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where HU is the independent variable; M is the mean of the

Gaussian distribution; S is the standard deviation of the Gaussian

distribution, representing the degree of dispersion; A is the amplitude.

There are noise points in the HU distributions, so the data have

been smoothed before Gaussian filter to ensure the accuracy of the

fitting. Figure 3 shows the fitted Gaussian curves of HU values for

tumors and cysts of a random case, the fitted Gaussian function

basically describes the data distributions. Figures 3A, C shows the

fitted Gaussian curves without data smoothing, Figures 3B, D shows

the fitted Gaussian curves with data smoothing. The Gaussian

parameters are A=799, M=91, and S=23 for liver tumors in

Figure 3B, A=802, M=17, and S=22 for cysts in Figure 3D. Although

Figure 3 only shows a random patient, it reflects the difference in HU
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distributions between tumors and cysts, which provides a potential

solution for removing cyst areas in auto-segmentation of liver tumors.

In summary, the HU distributions of cysts and tumors areas

(GTV) both exhibit Gaussian-like distributions, which can be fitted

with Gaussian distribution formulas. The amplitude, mean, and

standard deviation can easily distinguish between cysts and GTV. As

shown in Figure 3, the HU values of cysts are mainly distributed in

the internal of [-20 HU, 80 HU], while the HU of tumors (GTV) is

mainly distributed in the internal of [30 HU, 150 HU]. Based on this

situation, we designed a post-processing process of liver tumor auto-

segmentation. Firstly, the predicted auto-segmentation contours are

divided into several independent regions, which may be tumors or

cysts. Then, the Gaussian filter is used to fit the HU distribution of each
A B

FIGURE 2

Visual display of liver tumors and cysts on slice 1 (A) and slice 2 (B). Red lines: contours of liver tumors; Green lines: contours of cysts.
A B

DC

FIGURE 3

Fitted Gaussian curves of HU values for one random case. (A) Liver tumors without data smoothing, (B) Liver tumors with data smoothing, (C) cysts
without data smoothing and (D) cysts with data smoothing.
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independent region. Finally, the mean value of fitted Gaussian curve is

used to distinguish between cysts and GTV. If the mean value is less

than 45 HU, the region is considered as a cyst. On the contrary, it is the

tumor area.
2.6 Evaluation metrics

The DSC and 95% Hausdorff distance (HD95) values were used

to evaluate the accuracy of the auto-segmentation model. The DSC

is defined as Formula (3):

DSC =
2 A ∩ Bj j
Aj j + Bj j (3)

where A denotes the auto-segmentation contours and B denotes

the ground truth contours delineated by the physicians in our study.

A larger DSC corresponds to a higher accuracy of auto-

segmentation model. The DSC ranges from 0 to 1, with the latter

value indicating perfect performance.

The HD is defined as Formulas (4, 5):

HD(A,B) = max (h(A,B), h(B,A)) (4)

h(A,B) = max
b∈B

(min
a∈A

a − bk k) (5)

where h(A,B) is the greatest of all the distances from a point in A

to the closest point in B. A smaller value usually represents better

segmentation accuracy. The HD95 value represents the largest surface

to surface separation among the closest 95% of surface points.
3 Results

Table 1 shows the results of nnU-Net used in this study for liver

tumor auto-segmentation on publicly available datasets, the average

DSC values are 0.86 and 0.82 for 20 LiTS cases and 14 3D-IRCADb

cases, respectively. The min DSC value are both over 0.7, which is

superior than some previous studies. The average HD95 values are

4.95 mm and 5.61 mm, some individual data have poor HD95

values, but overall the HD95 values are excellent. The boxplots
Frontiers in Oncology 05
obtained for DSC and HD95 analyses on publicly available datasets

are displayed in Figure 4.

Clinical liver cancer cases may have liver cysts, which will be

confused with tumors. Physician oncologists rely on functional

images (MRI or PET-CT) to accurately distinguish tumors and

cysts manually. The public dataset only has labeled data for liver

and liver tumors, without specifically labeling cysts. Therefore,

directly applying the trained auto-segmentation model for clinical

data can lead to cysts being mistaken for tumors, Gaussian filtering is

used for post-processing in this study. As shown in Table 2, the DSC

value of tumor contours directly predicted by the auto-segmentation

model (Tumor_Pred) is 0.75 ± 0.07, and the HD95 value is 7.21 mm±

2.43 mm. After the post-processing with Gaussian filtering

(Tumor_Filtering), the DSC value could be increased to 0.81 ± 0.04

(P<0.05), and HD95 value is 5.25 mm ± 2.35 mm. According to the

student t-test, the Tumor_Filtering contours are more accurate than

the Tumor_Pred contours significantly (P<0.05).

Figure 5 shows three cases with Tumor_Pred contours (green

lines) and Tumor_Filtering contours (blue lines), where the manual

contours delineated by physician oncologists (red lines) are considered

as ground truth. Overall, Gaussian filtering can effectively remove cysts

and improve the efficiency of tumor identification and the accuracy of

tumor auto-segmentation. For case 1 in Figure 5, there are two cyst

regions around the tumor. Even though the HU value of the cyst

visually appears to be significantly lower than that of the tumor, the

auto-segmentation model still recognizes the cyst as the tumor, and the

Gaussian filtering can effectively identify the cyst, increasing the DSC

value from 0.75 to 0.81. The effectiveness of the Gaussian filtering

method for identifying cysts is even more evident in case 2 (Figure 5),

where tumors and cysts coexist in the liver, and the HU values of the

tumor are like that of cyst, which is a significant challenge for liver

tumor auto-segmentation. Gaussian filtering is still able to achieve

excellent performance on the basis of auto-segmentation contours by

nnU-Net, the DSC value can be improved from 0.80 to 0.83. The case 3

in Figure 5 achieves the best performance among 25 testing cases in this

study, the DSC values of Tumor_Pred contours and Tumor_Filtering

contours are 0.82 and 0.87 respectively. The Tumor_Filtering contours

can not only remove cysts, but also have a very high consistency with

manually delineated contours, physician oncologists only need minor

modifications to use it directly in clinic.

The implementation of Gaussian filtering is realized using Python

scripts after obtaining the predicted auto-segmentation contours,

which takes between 3 and 5 seconds, with an average time of 3.52

seconds. Because the auto-segmentation contours of the liver tumors

are composed of multiple independent regions, it is necessary to

process all regions and extract the HU values of the corresponding

CT images for smoothing and Gaussian curve fitting when removing

the cyst. Therefore, the cost time for Gaussian filtering depends on the

number of regions in the auto-segmentation contours. The entire

process is automated and does not require manual participation.
4 Discussion

CNN-based medical image segmentation method (22–24) has

shown higher speed and accuracy compared to traditional medical
TABLE 1 Accuracy of nnU-Net for liver tumor auto-segmentation on
publicly available datasets.

Datasets
Validation set
(20 LiTS cases)

Testing set
(14 3D-

IRCADb cases)

Evaluation matrix DSC HD95 (mm) DSC HD95 (mm)

Average value 0.86 4.95 0.82 5.61

Standard deviation 0.05 2.03 0.06 2.38

Min value 0.77 2.23 0.73 3.21

Middle value 0.86 4.51 0.84 4.84

Max value 0.93 10.85 0.92 12.74
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A B

FIGURE 4

Boxplots obtained for DSC and HD95 analyses on publicly available datasets. (A) DSC; (B) HD95.
TABLE 2 Clinical results of nnU-Net architecture using Gaussian filtering.

DSC HD95 (mm)

cases Tumor_Pred Tumor_Filtering Tumor_Pred Tumor_Filtering

case 1 0.69 0.76 4.62 3.68

case 2 0.73 0.85 7.42 6.21

case 3 0.83 0.86 7.16 4.62

case 4 0.74 0.81 6.11 5.06

case 5 0.78 0.83 4.99 3.00

case 6 0.81 0.86 4.50 4.50

case 7 0.83 0.84 15.42 14.74

case 8 0.74 0.76 7.86 4.71

case 9 0.74 0.75 6.55 3.22

case 10 0.80 0.77 4.04 4.62

case 11 0.80 0.83 5.86 3.22

case 12 0.82 0.78 8.56 6.06

case 13 0.75 0.81 9.26 6.00

case 14 0.81 0.82 7.50 4.50

case 15 0.82 0.87 6.82 6.00

case 16 0.64 0.81 7.82 7.45

case 17 0.56 0.79 9.32 8.48

case 18 0.76 0.84 4.65 3.81

case 19 0.62 0.74 3.87 3.22

case 20 0.84 0.87 8.71 5.52

case 21 0.77 0.81 6.32 3.56

case 22 0.79 0.83 8.35 4.23

case 23 0.74 0.84 7.23 4.65

case 24 0.81 0.83 6.56 4.24

case 25 0.61 0.80 10.88 5.95

Ave ± Std 0.75 ± 0.07 0.81 ± 0.04 7.21 ± 2.43 5.25 ± 2.35

P* value 0.001 0.0006
F
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P was calculated by comparing the results of Tumor_Pred and Tumor_Filtering.
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image segmentation methods, such as Atlas-based auto-

segmentation (25–27). This study implemented liver tumor auto-

segmentation based on the nnU-Net architecture using Gaussian

filtering, whose accuracy was validated on publicly available

datasets and clinical datasets in our hospital. The auto-

segmentation model achieved an average DSC value of 0.86 on 20

LiTS cases and 0.82 on 14 3D-IRCADb cases, the results proved that

nnU-Net is excellent in the task of liver tumor auto-segmentation.

To solve the problem of distinguishing between cysts and tumors in

clinic, this study employed Gaussian filtering to effectively remove

cysts from tumors, increasing average DSC value from 0.75 to 0.81.

Effective identification of cysts can improve the quality of clinical

planning. If cysts cannot be effectively removed, it will limit the

realization of the maximum dose prescription and lead to the

overdose of organs at risk. Take case 2 in Figure 5 for example, if

the larger cyst is mistaken for a tumor, high dose radiation will be

given on this fake tumor during the planning process, which will

increase the complexity of the radiotherapy plan and reduce the

dose to the true tumors. This study combines the characteristics of

clinical cases to achieve high precision liver tumor auto-

segmentation, which is of great significance for improving the

accuracy of clinical radiotherapy.

Public datasets provide a great platform for studying and

comparing algorithm performance, but models trained on public

datasets may suffer from accuracy loss when directly applied to

clinical data. The average DSC of 20 LiTS cases and 14 3D-

IRCADb cases are 0.86 and 0.82, which are slightly higher than the
Frontiers in Oncology 07
accuracy of the 25 clinical cases (0.81). This indicates that differences

in cases, variations in conditions, and imaging of actual tumors under

various modalities can all affect the delineation results of oncologists.

As shown in Figure 5, the contours of auto-segmentation are strictly

based on the HU distributions, while the manual contours are often

experiential and preventive, so the manual contours will be slightly

larger than the contours of auto-segmentation. This study

incorporated expansion and corrosion to address this situation, in

order to mimic the delineation habits of clinical oncologists as much

as possible. In addition, the more prominent problem is that the

shape of liver tumors is relatively regular, the tumor boundary density

is relatively clear, and there is no distinction between liver tumors and

liver cysts. This study provides a solution for new problems in liver

tumor auto-segmentation, thereby improving the accuracy of

auto-segmentation.

The generalization of deep learning models on different datasets

is an inevitable issue. The cost of retraining the model is too high,

and sufficient data is needed to achieve the expected accuracy. In

this study, Gaussian filtering is a post-processing method based on

image features, which effectively distinguishes tumors and cysts

through Gaussian curve fitting. This is a processing method that

does not require retraining of the model and is suitable for

situations where the datasets to be applied are small. Previous

researcher (28) has also proposed transfer learning methods based

on pretrained models, which can achieve high accuracy with a small

amount of training data. On the other hand, the consistency within

the datasets is also an important factor limiting the accuracy of the
FIGURE 5

Liver tumor contour results of 3 clinical cases. Red lines: manual contours; Green lines: Tumor_Pred contours; Blue lines: Tumor_Filtering contours.
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auto-segmentation model. This study provides a preliminary proof

of evaluating liver tumor auto-segmentation model trained on

public datasets clinically, using Gaussian filtering with nnU-Net

architecture could obtain excellent performance.

The auto-segmentation contours may have deviations, and the

cyst area is relatively small. If only the average HU value within each

independent region is simply counted, the deviation of the auto-

segmentation contours will greatly affect the statistical results,

which cannot effectively distinguish between tumors and cysts. In

this study, the HU distributions of each region were smoothed and

fitted by Gaussian filtering, which could avoid the influence of noise

points. The HU values of cysts are mainly distributed lower

than those of tumors, and they are all approximately convex

distributions. Fortunately, the HU distributions of the tumors and

cysts hardly overlap above 1% Percentage (99% points counted). As

shown in Figure 3, 99% points of cysts fall into the interval of [9

HU, 50 HU], and 99% points of tumors fall into the interval of [67

HU, 112 HU]. Therefore, the HU distributions of cysts and tumors

can be approximated and fitted with Gaussian curves, which can

filter out cysts based on the actual HU distribution differences, thus

improving the accuracy of auto-segmentation model.

Several limitations should be noted in this study. The

boundaries of the tumors cannot be accurately identified in CT

images, we will explore a multi-channel segmentation network

combined with MRI or PET-CT images to improve the accuracy

of liver tumor auto-segmentation. Additionally, we will collect more

high-quality data and combine multiple methods to further

improve the accuracy of the liver auto-segmentation model.
5 Conclusion

Liver tumor segmentation is a prerequisite step for diagnosis and

treatment of liver cancer. However, clinical manual delineation of

tumors is time-consuming and tedious. This study adopted the nnU-

Net deep learning framework for liver tumor auto-segmentation and

used Gaussian filtering to screen out false-positive cysts by the HU

value distribution of cysts and tumors. This method eliminated the

impact of liver cysts on the auto-segmentation of liver tumors,

resulting in significant improvements in the evaluation of Dice

index. To sum up, we proposed a new approach in the field of

auto-segmentation of liver tumors, which could provide an effective

reference for radiation oncologists to delineate liver tumors.
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