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Application of dynamic
enhanced scanning with GD-
EOB-DTPA MRI based on deep
learning algorithm for lesion
diagnosis in liver cancer patients
Bo Liu*, Jinhua Yang, Yifei Wu, Xi Chen and Xueru Wu

Department of Radiology, Ordos Central Hospital, Ordos, Inner Mongolia, China
Background: Improvements in the clinical diagnostic use of magnetic resonance

imaging (MRI) for the identification of liver disorders have been made possible by

gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA).

Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) technology is in

high demand.

Objectives: The purpose of the study is to segment the liver using an enhanced

multi-gradient deep convolution neural network (EMGDCNN) and to identify and

categorize a localized liver lesion using a Gd-EOB-DTPA-enhanced MRI.

Methods: We provided the classifier images of the liver in five states

(unenhanced, arterial, portal venous, equilibrium, and hepatobiliary) and

labeled them with localized liver diseases (hepatocellular carcinoma,

metastasis, hemangiomas, cysts, and scarring). The Shanghai Public Health

Clinical Center ethics committee recruited 132 participants between August

2021 and February 2022. Fisher’s exact test analyses liver lesion Gd-EOB-

DTPA-enhanced MRI data.

Results:Our method could identify and classify liver lesions at the same time. On

average, 25 false positives and 0.6 real positives were found in the test instances.

The percentage of correct answers was 0.790. AUC, sensitivity, and specificity

evaluate the procedure. Our technique outperforms others in extensive testing.

Conclusion: EMGDCNNmay identify and categorize a localized hepatic lesion in

Gd-EOB-DTPA-enhanced MRI. We found that one network can detect and

classify. Radiologists need higher detection capability.
KEYWORDS

liver lesion, detection, and classification, Gd-EOB-DTPA, deep learning,
magnetic resonance
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1 Introduction

To create an MRI contrast agent that is specific to the bile and

liver, Gd-DTPA has its molecular structure adjusted by including

the fat-soluble ethoxybenzyl group (EOB). Gd-EOB-DTPA has

exceptional dynamic boosting powers of MRI contrast agents and

also has unique biological features (1). Tissue responses to a

reduced T1 relaxation time may be compared to the dynamic

augmentation produced by Gd-multi-phase DTPA. Because of the

presence of natural anion shipping polypeptide 1B3 (OATP1B3) on

the cell layer of the hepatic dissemination sinus, the majority of the

difference that is given intravenously with Gd-EOB-DTPA is

absorbed by normal liver cells within ten to twenty minutes.

Subsequently, the drug is eliminated by MRP2 in the biliary

membrane of the liver. In (2), this era is called the hepatobiliary

epoch. As an example, the contrast agent Gd-DTPA may be

excreted on a trip to the restroom. When the kidneys and liver

aren’t cutting it, this freedom feature might take over (3). In

contrast, hypointensity signal is seen in T1WI images from the

hepatobiliary explicit period because Hepatocellular Carcinoma

(HCC) cells cannot explicitly take in Gd-EOB-DTPA due to their

low OATP1B3 articulation. The weakened signal of cirrhotic

nodules makes them stand out in contrast to the healthy liver

tissue around them. The rate of intrahepatic retention of Gd-EOB-

DTPA is a measure of liver cell health (4). Gd-EOB-DTPA is

administered intravenously and fully eliminated the next day.

These features allow for the evaluation of liver cell movement via

attractive reverberation imaging (X-ray) with the hepatobiliary-

explicit differentiation specialist Gd-EOB-DTPA, specifically by

observing the sign shifts of injuries over the direction of the

hepatobiliary stage (5) and the blood supply example of HCC

wounds with dynamic improved filtering.

Multiple phases of dynamic amplification, manifesting as

“quick in and wash out,” describe the vast majority of tiny HCC

lesions. We refer to tumors like this one as “tiny HCC with a strong

blood supply.” To make a quick diagnosis, all you need to do is

show a weak signal during the liver-gallbladder-specific phase (6). It

may be challenging to establish the standard qualitative diagnosis

using enhanced MRI in cases of inadequate blood flow due to

atypical symptoms and intrahepatic localized perfusion anomalies.

Based on the most recent version of the Liver Imaging Report and

Information Framework (7), hepatic hypovascular sores are defined

as hepatic lesions with blood vessel improvement that is not

precisely or comparable to that of normal liver parenchyma (LI-

RADS). Preoperative diagnosis of these ulcers is challenging. In this

case, the use of Gd-EOB-DTPA in conjunction with X-ray might

lend credence to anecdotal evidence and perhaps establish the

presence of a minimal HCC. Throughout the hepatobiliary phase,

MRI that has been enhanced with Gd-EOB-DTPA is quite useful.

The unique nature of hepatocytes results in poor absorption, hence

hepatocellular carcinomas often have a modest signal (8). American

and international researchers have recently focused on developing

better methods for detecting and diagnosing liver cancer at an early

stage (9). Gd(EOB)- DTPA-enhanced X-ray was shown to be the

most reliable in a head-to-head comparison with plain X-ray,

dynamic improvement multi-cut winding CT, and the gold
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standard extracellular space contrast specialist Gd (DTPA). In

Europe (2004), the United States (2008), and Japan (2015), Gd-

EOB-DTPA-enhanced attractive reverberation imaging (X-ray) is

the gold standard for identifying and organizing liver illness (2010).

(2015). (2010). This method has been shown to increase diagnosis

accuracy for HBV-related small liver carcinoma.

Hepatic X-ray imaging using Gd-EOB-enhanced DTPA is

anticipated. When it comes to differentiating between HCCs with

a rich or lacking blood supply, the Gd-EOB-DTPA-improved X-ray

has a more noticeable identification responsiveness than dynamic

differentiation improved CT and Gd-DTPA-improved X-ray (10).

Compared to other imaging modalities, X-ray improved with Gd-

EOB-DTPA has been proven to have much higher detection rates

and analytical accuracy for early stage liver disease. Although

standard enhanced X-ray has shown to be an effective tool for

identifying HCC in growths narrower than 2.0 cm (11), it is not yet

at pace with other methods in terms of accuracy and subtlety. The

study discovered that Gd-EOB-DTPA-enhanced X-ray may detect

liver tumors 2 cm in size with a sensitivity of 0.92 and an

explicitness of 0.95 (12). When comparing X-ray enhancement

techniques for the detection of small HCCs, Gd-EOB-DTPAmay be

more sensitive than MSCT multi-stage dynamic upgraded filter, X-

ray plain output, and dynamic regular difference (width 2.0 cm).

With its benefits over competing methods, Gd-EOB-DTPA may

identify liver cancer at its early stages (13). Because of this, several

scientists have proposed that integrating hepatobiliary stage

imaging with other approaches might improve the diagnostic

accuracy and sensitivity of HCC (2 cm). Gd-EOB-enhancement

DTPAs not only mimic the action of regular contrast agents but also

boost the visibility of cirrotic nodules and tiny hepatocellular

carcinoma (HCC) present during the hepatobiliary stage.

Some forms of early liver tumors have been demonstrated in

similar trials to exhibit an unusual vascular enhancement pattern,

with either no strengthening at all or very little strengthening. These

tumors may be evolving from high-grade dysplastic nodules

(HGDN) into a more aggressive type of hepatocellular carcinoma.

This decrease in portal venous blood flow in early-stage liver cancer

suggests that the arterial blood supply is not the primary source of

oxygen and nutrients. Consequently, the MRI lesion may seem

abnormal when enhanced with Gd-EOB-DTPA. The decreased

recurrence of sores communicating natural anion shipping

polypeptide 8 (OATP8) (14) demonstrates hepatobiliary

hypersensitivity due to the specialized uptake of differentiation

specialists by liver cells. It is an attempt to tell high-risk knobs,

which may develop into rich blood supply sores on imaging, apart

from early HCC. Six percent to fifteen percent of small HCCs had a

distinctive boosting mechanism during the hepatobiliary-specific

phase. Not only did it include focal nodular hyperplasia (FNH) and

FNH-like nodules, but it also covered the phases of small-cell liver

cancer that are unique to the liver. Distinguishing is difficult using

standard imaging methods. Specifically, Gd-EOB-DTPA-enhanced

X-rays may aid in the detection of incredible, tiny knobs of HCC

and the differentiation of these from FNH-like lesions. Introspective

research was conducted on twenty patients with abnormal nodular

HCC and twenty-one patients with FNH-like knobs; during the

hepatobiliary stage, the scientists observed an improvement
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grouping of HCC knobs similar to that of FNH-like knobs;

however, a significant wash impact was seen during the entry

venous step and the momentary stage (P 0.0001). Distinguishing

aberrant HCC knobs has a 90% responsiveness and a 100%

explicitness. Time wasting was the most important variable

substantially linked to HCC in a multivariate strategic relapse

analysis (odds ratio, 7.019; P = 0.042). This study found that

patients with aberrant knobs benefit more from Gd-EOB-DTPA-

enhanced X-ray for the diagnosis of HCC than those who received

regular Gd-DTPA-enhanced X-ray (15).

Although there is a strong correlation between a high AFP level

and a bad prognosis, the pace at which AFP levels rise varies widely

from person to person. In certain HCC patients with elevated AFP,

enhanced CT and normal MRI may overlook microtumor lesions.

On conventional MRI, lesions of early-stage small HCC appeared

isointense and hypointense on the T1WI, and somewhat

hyperintense on the T2WI, although the arterial phase

enhancement was not easily discernible. The field has not seen a

large output of research from either domestic or international

scholars. Therefore, this has to be confirmed by other research. It

has been shown that the levels of AFP in some individuals with

hepatocellular carcinoma are minimal, whereas in others they are

quite high (16). Slightly hyper-focused arterial perfusion problems

can only be seen by enhanced CT or ordinary enhanced MRI. Gd-

EOB-DTPA-enhanced MRI, on the other hand, has the potential to

improve the identification rate of minor lesions by displaying the

typical imaging characteristic of hypointensity in the hepatobiliary

phase. Unfortunately, many people don’t discover they have

hepatocellular carcinoma (HCC), a particularly deadly form of

liver cancer, until it’s too late. Surgical removal of the liver is the

most common therapy. The prognosis for most persons with HCC

is dismal even after extensive surgery due to the resiliency of the

illness. Some individuals may develop intra-hepatic metastases

before surgery, which are notoriously hard to identify and are

often overlooked. “Preoperative detection of intra-hepatic

metastases is strongly connected with the Barcelona staging of

HCC, the development of surgical methods, and patient outcome

(17). The patient’s Barcelona staging before to surgery might be

affected by this. As a result, minimizing tumor recurrence and

increasing overall survival may depend on the ability to identify tiny

intra-hepatic lesions before to surgery and to precisely locate small

lesions to be excised after surgery. Despite enhanced CT being the

standard for radiologic diagnosis of HCC, it is frequently unable to

identify even the smallest liver lesions. When it comes to identifying

subtle tumors within the liver, DCE-MRI outperforms improved

CT. The use of liver-specific contrast agents has been linked to an

improvement in the presentation of localized liver lesions, especially

those with a width of less than 1 cm (18). This class of drugs is

effective throughout the hepato-biliary phase because they increase

signs of hepatic parenchymal enhancement. The study’s author

showed that individuals with malignant liver cirrhosis have low

diagnostic signals in the delayed phase, while patients with benign

lesions have signals that are uniformly distributed or are strong.

When it comes to detecting liver abnormalities, differential

contrast-enhanced MRI (DCE-MRI) may be more effective than

enhanced multi-detector computed tomography (MDCT).
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Researchers have shown that DCE-MRI outperforms MDCT in

terms of sensitivity, specificity, and diagnostic accuracy when it

comes to detecting HCC and metastasized malignancies. DCE-X-

ray (which incorporates further filtering of hepatocyte stages) has

been demonstrated to detect aberrant high-grade dysplastic knobs

(HGDN) and early stage HCC with more sensitivity than

conventionally enhanced X-ray (19). A brand-new liver-specific

expert in the art of differentiating Gd-EOB-DTPA has several

particularly appealing properties for experts in the field of

extracellular difference (dynamic stage) (static stage). Gd-EOB-

DTPA is excreted through the biliary and renal systems, and it

has been reported to enhance both the detection and

characterization of wounds. When comparing X-ray with Gd-

EOB-DTPA to MDCT and X-ray to other difference experts, X-

ray with Gd-EOB-DTPA is the plausible winner in identifying and

diagnosing liver abnormalities. When a liver abnormality cannot be

consistently identified by CT, enhanced MRI is the recommended

diagnostic method. It’s unclear (20) whether those who have been

diagnosed with HCC using updated CT also need detection by

upgraded X-ray. To determine whether X-ray is necessary for

patients with HCC authorized by MDCT, we compared the

symptomatic performance of Gd-EOB-DTPA dynamic

differentiation upgraded X-ray and enhanced 64-cut CT in

detecting intrahepatic sores in HCC patients.
2 Method and methodology

2.1 Proposed methodology

To evaluate the liver lesion, the Gd-EOB-DTPA-enhanced MRI

findings are analyzed using Fisher’s exact test.

SPSS was used to perform statistical analysis. To illustrate the

radiomic signature’s capacity for prediction, receiver operator

characteristic curves were built. Fisher’s exact probability

approach was used to evaluate its importance. Prognostic

evaluations were made using Kaplan-Meier analyses. The cutoff

for significance was P < 0.05. In statistical hypothesis testing, the p-

value quantifies evidence against the null hypothesis, representing

the likelihood of observing the test statistic or more extreme values

assuming the null is true. If the p-value falls below a predetermined

significance level, usually a=0.05, the null hypothesis is rejected in

favor of the alternative, indicating statistical significance. For

instance, a p-value of 0.0001 suggests strong evidence against the

null hypothesis at the 0.05 significance level.

To clarify, the p-value is a measure that helps researchers

determine whether the results of their study are statistically

significant. When conducting a statistical test, a p-value less than

0.05 is typically considered the threshold for statistical significance.

This means that if the p-value is less than 0.05, there is less than a

5% probability that the observed data (or something more extreme)

would occur by random chance alone, assuming the null hypothesis

is true. Consequently, a p-value below this threshold provides

sufficient evidence to reject the null hypothesis and conclude that

the observed effect or difference is statistically significant.

Conversely, if the p-value is 0.05 or higher, the result is not
frontiersin.org
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deemed statistically significant, and the null hypothesis cannot be

rejected based on the data.

A liver-specific T1 contrast agent for magnetic resonance

imaging is gadolinium ethoxybenzyl diethylenetriamine Penta

acetic acid (Gd-EOB-DTPA) (MRI). Gd-EOB-DTPA-enhanced

MRI has been shown in several studies to have superior

diagnostic accuracy than other imaging modalities. When it

comes to detecting tiny colorectal liver metastases in individuals

that have medium to severe inflammatory infiltration of the liver,

Gd-EOB-DTPA-enhanced MRI performs significantly better than

second-generation MDCT. Gd (EOB)-DTPA-enhanced MRI

creates a high quantity of images using a technique that consists

of five steps. Radiologists have a time-consuming process to go

through to discover and diagnose lesions in Gd-EOB-DTPA-

enhanced MR images. The suggested procedure’s flowchart is

shown in Figure 1.
2.2 Dataset

2.2.1 Research objects
The study was authorized by the ethics committee of the

Shanghai Public Health Clinical Center (21). Between August

2021 and February 2022, a total of 132 individuals were recruited,

with the majority having chronic hepatitis B and a Child-Pugh score

of less than 7. These participants were categorized into four groups

based on their Scheuer-Ludwig score (L): L1 (n = 30), L2 (n = 28),

L3 (n = 32), and L4 (n = 42) for liver aspiration biopsies (shown as

Table 1). The clinical diagnosis of liver lesions using gadolinium

ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-

DTPA)-enhanced MRI demonstrated high efficacy. For the

analysis, labeled images of localized liver lesions were used as

output, with a five-phase series serving as input.
Frontiers in Oncology 04
Inclusion criteria
1. Diagnostic evaluation of severe hepatitis B.

2. No history of claustrophobia, chronic renal disease, or

conditions contraindicating MRI.

3. Age of 18 years or older.

4. Daily alcohol intake of no more than 20 grams.

5. Signed consent forms indicating informed participation.
Exclusion criteria
1. The presence of other liver diseases.

2. Child-Pugh score greater than or equal to 7 (indicating

moderate to severe liver dysfunction).

3. Prior treatment with antiviral, antifibrotic, or anti-

inflammatory medications affecting MRI results.

4. Positional heterogeneity in the liver that could affect

imaging quality.

5. History of liver resection or treatment.

6. Inability to coordinate respiration during the MRI scan.
2.2.2 Detecting and classifying focal liver lesions
First, we employed multi-group enrollment to fix the shake in

every single image for the whole of our detection and classification

procedure. The motion correction method we employed required a

parameter file to determine the best possible parameters for

registration. Second, we used deep learning to separate the liver

tissue. Then, we classified the voxels within each window and

looked for signs of a localized liver lesion using our deep

learning-based approach. The results from each window were

then added together, and the probabilities associated with each
FIGURE 1

Flowchart of the methodology.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1423549
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2024.1423549
voxel’s possible pathologies were determined using a 6-valued

probability scale. As a last step, we analyzed how well our

algorithm could identify and classify various objects. The new

design differed from the old one in that its last layer, instead of

being a sigmoid function for classification, was a softmax function.

The procedure for identifying and categorizing localized liver

lesions is depicted in Figure 2.

Using the following formula, we calculated the intermediary

field sizes used in (1).

rintermediate =
rout
n ,m ≤ rout

1, rout < m

(
(1)

where rout is the output kernels length of the convolution layer

and m is a fixed numeric value. m is a threshold value. Depending

on whether rout is greater than or equal to m, different rules apply

for calculating rintermediate. n as a normalizing factor, this variable

serves as a divisor or scaling factor when m ≤ rout . Its purpose is to

scale down rout by a factor of n when the condition m ≤ rout is met.

The choice of n can depend on various factors such as the desired

scale of rintermediate, the nature of the data, or the requirements of

subsequent computations.

A liver lesion that had already been segmented slid over the

diagnostic window. Input patches used a five-phase configuration of

Gd-EOB-DTPA-enhanced MRI. Predicted probability that a given

sample was not HCC, a metastasis, a hemangioma, a cyst, a scar, or

a negative (normal liver tissue) sample were the network’s outputs.

For each voxel in the patch, our network calculates the probability

of six different diseases (HCC, metastasis, hemangiomas, cysts,

scars, and normal), with the total of these probabilities always

equaling 1. In this investigation, a logarithm of the Dice loss
Frontiers in Oncology 05
suggested in an earlier paper was employed as the loss function.

We used a modified Dice loss (FDice) (as Equation 2) that is

calculated per patch to train our model.

FDice = −o
f

In
2oj(xj,f : sj,f + e)

oj(xj,f : sj,f + e)

 !
(2)

The correlating surface label, sj,f [0, 1] is a small constant value,

and xj,f [0, 1] is the output of the lth communication in the last

network level. As a starting point, setting FDice   to 0 is suggested.

xj,f : This represents the predicted probability of voxel jj

belonging to class ff. It is the output of the model for a specific

voxel and class.

sj,f : This is the ground truth label for voxel jj and class ff. It is a

binary value (0 or 1) indicating whether the voxel belongs to

the class.

e : A small constant (e.g., 10−8) added to the numerator and

denominator to avoid division by zero and to ensure numerical stability.

of : The summation over all classes f.

In: The natural logarithm function.

2.2.3 Deep learning based on enhanced multi
gradient deep convolution neural network

EMGDCNN model is influenced by biology and has great

results in medical image analysis. There are various fundamental

components included. The convolutional layer is the most

important part of the CNN model. The steps of its operation are

as follows Equation 3:

Z(e, p) = L oT
t=1or

p=1or
e=1ye,p,c � uje,p + xj

� �
(3)
TABLE 1 Patient characteristics upon enrollment (Dataset).

Overall significant Advanced Cirrhosis

Sex

Men 92(70.5%) 79 (77.5%) 62 (82.4%) 37 (85.7%)

women 39(29.6%) 24 (22.6%) 14 (17.6%) 6 (14.3%)

Age(years) 45.8 ± 13.2 47.7 ± 13.3 51.8 ± 12.6 52.6 ± 11.1

Fibrosis score

L1 30 (22.7%) 0 (0%) 0 (0%) 0 (0%)

L2 28 (21.2%) 29 (27.45%) 0 (0%) 0 (0%)

L3 32(24.2%) 33 (31.4%) 34 (43.2%) 0 (0%)

L4 42 (31.8%) 43 (41.2%) 44 (56.8%) 44 (100%)

Group + – + – + –

Test 31 9 22 18 13 27

Training 71 21 52 40 29 63
frontier
Overall: This column represents the total dataset characteristics without stratification. Significant: Data for patients categorized as having significant liver fibrosis but not yet classified as advanced
or cirrhosis. Advanced: Data for patients with advanced liver disease, characterized by more severe fibrosis but not necessarily cirrhosis. Cirrhosis: Data for patients diagnosed with cirrhosis,
representing the most advanced stage of liver disease. Sex: Distribution of male and female participants within each category. Men: Number and percentage of male participants. Women: Number
and percentage of female participants. Age (years): Mean age ± standard deviation of participants within each category. Fibrosis score: Distribution of participants according to their Scheuer-
Ludwig fibrosis scores (L1, L2, L3, L4), where respectively indicates: Mild fibrosis; Moderate fibrosis; Severe fibrosis; Cirrhosis. Group: Indicates how the dataset was divided into test and training
sets for model evaluation. Test: Number of cases allocated to the test set. Training: Number of cases allocated to the training set.
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The inputs   ye,p,c the bias term xj on j, and the convolution

kernel rj T are all shown in Equation 3.

Z(e, p): This is the final output function, which depends on the

voxel ee and the class pp.

L: This is an external function that transforms the result of the

inner summation. It could be an activation function (e.g., Sigmoid,

ReLU) or a loss function (e.g., Cross-Entropy Loss).

oT
t=1: This summation is over time steps t from 1 to T. This

suggests that the formula may be considering temporal data.
Frontiers in Oncology 06
or
p=1: This summation is over classes pp from 1 to r. This

indicates that the formula is aggregating information across

different classes.

or
e=1: This summation is over voxels e from 1 to r. This

suggests that the formula is aggregating information across

different voxels.

ye,p,c: This represents the label or ground truth for voxel e, class

p, and possibly another dimension cc (which could be a channel

or feature).
FIGURE 2

Focal liver lesion.
frontiersin.org
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uje,p: This represents a weight or coefficient associated with voxel

e and class pp for the j-th feature or channel.

xj: This represents the input feature or channel jj.

The Sigmoid functional is the most popular choice for the

activating layer’s L input signal:

L(y) = 1 +
1
ay

� �−1

(4)

The following steps lead to Equation 4:

L0(y) = L(y)½1 − L(y)� (5)

With a bigger relative value of y in Equation 5, the gradients of

the function tend to flatten. The ReLU function is as follows:

eLu(y) =
y, y > 0,

0, y ≤ 0:

(
(6)

Besides drastically cutting down on computation time,

Equation 4 is also sparse. It is extensively employed in deep

convolutional neural networks since it helps prevent performance

drops in the network. As a straightforward downsampling process,

the pooling layer can help cut down on computation and

parameters. Two of the most popular pooling layers are the

average pooling layer and the maximum pooling layer. On the

other hand, deploying occurs at an upsampling layer. The location

of the activation value is recorded if the pooling is at its maximum

throughout the network forwarding operation; otherwise, it is set to

0. Figure 3 depicts the maximum possible pooling and deploying.

The randomized inactivation layer’s purpose is to stop the

classifier, which is described as follows:

Kn
m = Bernoulli   (B) (7)

~Xm = Km � Xm (8)

K is the probability value, ~Xm is the initial output, Xm is the output

following random inactivation, and m is the number of layers in

Equations 7 and 8. In this layer, the probability is assigned to an integer

between 0 and 1, and each training creates a binary distribution vector.

The output is the original integer unless the result is zero, in which case

it is 0. This can help to reduce overeating and overfitting. The following

is how the Learning algorithm is defined in this study:
Frontiers in Oncology 07
soft  max(aj) =
aaj

oE
r=1a

ar
(9)

In Equation 9, E is the integral gain with pass loss is determined

as follows, in which aj is the quantity of the specific problem

domain.

F(O,B) = −oU�Z
j=1 oE

r=1Bj,r � log(oj,e) (10)

In Equation 10, it is assumed that o is the final output result, B is

the programmed label of the screening test, and Bj,r and oj,e,

respectively, stand for the gold standard’s label and the first

point’s category on the prediction result. These variables only

have results of 0 or 1, so they are not included in the equation.
2.3 Network architecture and
implementation details

2.3.1 Enhanced multi-gradient deep
convolutional neural network architecture

The EMGDCNNmodel was designed to leverage the strengths of

deep learning for the detection and classification of localized liver

lesions in Gd-EOB-DTPA-enhanced MRI. The architecture consists

of multiple convolutional layers, each followed by activation

functions, pooling layers, and dropout layers to prevent overfitting.

Specifically, the model employs a series of 3x3 convolution kernels,

which are effective at capturing spatial features while maintaining a

manageable computational cost.
2.3.1.1 Convolutional layers

The input to the network is a 5-phase series of Gd-EOB-DTPA-

enhanced MRI images. Each convolutional layer applies a set of

filters to the input, generating a feature map. The convolution

operation is defined as follows Equation 11:

Output = f (Input ∗T + b) (11)

where ∗ denotes the convolution operation, T is the convolution

kernel, b is the bias term, and f is the activation function, typically

ReLU (Rectified Linear Unit), which introduces non-linearity into

the model.
FIGURE 3

Maximum pooling and deploying.
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2.3.1.2 Pooling layers

To reduce the spatial dimensions of the feature maps and thus

decrease the number of parameters, max-pooling layers are used.

Max-pooling retains themost significant features while downsampling

the image.

2.3.1.3 Dropout layers

Dropout is a regularization technique where neurons are

randomly “dropped out” during training to prevent co-adaptation

and improve generalization. The dropout rate is set to 0.5, meaning

50% of the neurons are dropped during each training iteration.

2.3.1.4 Fully connected layers

After several convolutional and pooling operations, the feature

maps are flattened and passed through fully connected layers. These

layers are responsible for the final classification. The last layer uses a

softmax activation function to output the probabilities for each class

(HCC, metastasis, hemangioma, cyst, scar, and normal tissue).

2.3.2 Training parameters and implementation
The EMGDCNN was implemented using TensorFlow, a

popular open-source machine learning framework. The model

was trained on a high-performance computing cluster with

NVIDIA GPUs to accelerate the training process.

2.3.2.1 Training data

A total of 132 cases were collected from the Shanghai Public

Health Clinical Center. The data were split into training (70%) and

testing (30%) sets. Data augmentation techniques such as random

rotations, translations, and flips were applied to the training set to

increase the diversity of the training samples and improve the

model’s robustness.
2.3.2.2 Loss function

The loss function used for training was a modified Dice loss,

which is particularly suitable for segmentation tasks. The Dice loss

is calculated as follows Equation 12:

Dice   Loss = 1 −
2�oN

i=1pi � gi

oN
i=1p

2
i +oN

i=1g
2
i

(12)

where pi and gi represent the predicted and ground truth labels,

respectively, and N is the number of voxels.

2.3.2.3 Optimization algorithm

The Adam optimizer was used for training, with a learning rate

of 1e-4. The learning rate was reduced by a factor of 0.1 if the

validation loss did not improve for 5 consecutive epochs, a strategy

known as learning rate decay.
2.3.2.4 Batch size and epochs

The batch size was set to 16, and the model was trained for 100

epochs. Early stopping was employed, and the training was halted if

the validation loss did not improve for 10 consecutive epochs.
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2.3.2.5 Regularization

L2 regularization was applied to the weights of the fully

connected layers to penalize large weights and prevent overfitting.

The regularization parameter was set to 1e-4.
3 Result analysis and discussion

SPSS was used to perform statistical analysis. To illustrate the

radiomic signature’s capacity for prediction, receiver operator

characteristic curves were built. Fisher’s exact probability

approach was used to evaluate its importance. Prognostic

evaluations were made using Kaplan-Meier analyses. The cutoff

for significance was P 0.05. In statistical hypothesis testing, the p-

value quantifies evidence against the null hypothesis, representing

the likelihood of observing the test statistic or more extreme values

assuming the null is true. If the p-value falls below a predetermined

significance level, usually a=0.05, the null hypothesis is rejected in

favor of the alternative, indicating statistical significance. For

instance, a p-value of 0.0001 suggests strong evidence against the

null hypothesis at the 0.05 significance level.
3.1 Fisher’s exact tests

Any sample size may be utilized using Fisher’s exact method,

while small samples are where it is most usually applied. Since the

importance of departure from an anthropocentric principle may be

determined exactly rather than depending on an estimate it became

exact in the ending as the sample group expands to infinity, this

exact testing method is named after its creator, Ronald Friedman.

B =
s1 !

r11 !r12 !
s2 !

r21 !r22 !
n !

d1 !d2 !

  (11)

There are equation model factors in the numerator and one in

the denominator respectively. It takes a computer program to

accurately calculate an equation coefficient. The computation of

the equation coefficient may allow us to avoid computing three

interests for every coefficient.

Q !
Z ! (Q − Z) !

(12)

(N)(N − 1)(N − 2)… (Z + 1)
(N − Z) !

(13)

Feldman and Kluge showed that the possibility of each more

severe table could be computed using a simple technique that

needed no factorials at all after estimating the likelihood of the

projected data table. If the lowest frequency in the table is labeled Q

and the remaining three frequencies are Z, N, and in clockwise

order from Q, then

�B =
rarb
r
0
er

0
f

B (14)
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However, if alternating each frequency is required for the

hypothesis under consideration, it may be calculated as follows:

B =
r
0
er

0
f

rarb
�B (15)

The B of the additional tail is then added to �B, the possibility

that was previously provided for each test.
3.2 Results

The proposed model is activated in CAD software for Gd-EOB-

DTPA-enhanced MRI, and its efficacy is compared to that of

current models like Convolutional Neural Networks (CNN) (22),

Support vector machines (SVM) (23), and K-Nearest Neighbors

(KNN) (24). We evaluated AUC, specificity, and sensitivity by

utilizing all experimental and established methods.

Figure 4 displays the FROC line for all 40 cases of localized liver

lesions found by EMGCNN. The TPR was 0.6 with an average of 25

FPs per case. To measure how accurately lesions were identified, the

true-positive ratio (TPR) was computed across all test cases.

TPR =
TP

TP + FN
(16)

True positive (TP) and false negative (FN) is abbreviated here.

To determine how successfully our proposed technique categorized

different types of localized liver lesions, we computed the FROC

curve for each output and analyzed the data distribution.

Figure 5 depicts the FROC output lines for each corresponding

lesion type. The direct and obvious revealed an average TPR of 0.56

for HCC, with 8.71 FPs per instance. Overall, the TPR for metastasis

was 0.72, with cases averaging 5.00 FPs. The metastatic output

channel outperforms the other lines in terms of detectability.

Hemangiomas could not be detected by the hemangioma output

channel. Table 2 displays the categorization outcomes for the
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various lesion types. The accuracy of the categorization was 0.790.

The outcome suggests that our suggested strategy might recognize

and categorize a localized hepatic lesion.

The area under the curve is shown in Figure 6. Calculating the

area under the curve to assess the selectivity and measure learning

(AUC). It just specifies the distance between things or the scale used

to measure them. AUC offers a cumulative evaluation of

performance over a wide variety of classifiers because it is

independent of size and criterion. The AUC rate shows how well

the model distinguishes between positive and negative categories. A

higher AUC rate indicates the improved performance of the model.

Comparing the [EMGANN] methodology to current methods like

CNN, SVM, and KNN reveals a greater level of AUC. The

performance of AUC is shown in Table 3.

The percentage of test samples that are predicted to yield

favorable findings from an experiment is referred to as

“sensitivity.” It is an accurate portrayal of the case with promising

results. The value of sensitivity is calculated using the following

equation:

Sensitivity =
TP

TP + FP
(17)

The comparison of the sensitivity is shown in Figure 7.

Comparing the [EMGANN] methodology to current techniques

like CNN, SVM, and KNN reveals a better degree of sensitivity. The

performance of sensitivity is shown in Table 4.

The term “specificity” refers to a classifier’s capacity to properly

predict the true negatives. This method stands out because it is so

accurate at locating Normal instances. This may be stated

mathematically as,

Specificity =
TN

TP + FP
(18)

Figure 8 illustrates the specificity’s difference. Compared to

currently utilized networks like CNN, SVM, and KNN, the

suggested EMGCNN is more efficient. The performance of

specificity is shown in Table 5.
FIGURE 4

FROC line for all diagnosed localized liver lesions by EMGCNN.
FIGURE 5

FROC output lines for each type of lesion.
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3.3 Discussion

3.3.1 Limitation and future work
The article acknowledges the relatively high false positive rate of

25-26 per case, which can lead to unnecessary follow-up tests and

increased patient anxiety. However, the research justifies the
Frontiers in Oncology 10
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(EMGDCNN) model based on its overall strong performance in

detecting and classifying liver lesions. The model achieves a true-

positive ratio (TPR) for full focal liver lesion detection, with an

AUC of 90%, sensitivity of 95%, and specificity of 96%. These

metrics indicate that the EMGDCNN is highly effective at

distinguishing between different types of localized liver lesions,

which is crucial for accurate diagnosis. Specifically, the TPR for

metastasis is 0.72, highlighting the model’s strength in detecting this

type of lesion. The high AUC, sensitivity, and specificity suggest

that the model outperforms other methods like CNN, SVM, and

KNN. While the high false positive rate is a limitation, the model’s

ability to both detect and classify lesions simultaneously, along with

its overall diagnostic accuracy, makes it a valuable tool for

radiologists. Future work could focus on refining the model to

reduce false positives while maintaining its high detection and

classification capabilities.

Additionally, the research does not discuss the model’s robustness

across different clinical settings. This is an important consideration, as

the performance of the model may vary depending on the specific

characteristics of the patient population, imaging equipment, and

clinical protocols. To address this, future studies should evaluate the

EMGDCNN in diverse clinical environments, including different

hospitals, with varying levels of equipment, and among patients with
FIGURE 6

Comparison of AUC.
TABLE 2 FROC output lines for each type of lesion.

Predicted label

Methods HCC Cyst Scar Hemangioma Metastasis

Actual label HCC 27 4 0 0 13

Scar 0 1 7 0 1

Cyst 2 135 5 0 3

Metastasis 13 10 1 0 49

Hemangioma 0 4 1 0 0
Methods: This column lists the different machine learning or classification methods used to predict the type of liver lesion. HCC (Hepatocellular Carcinoma): The number of cases where the
method predicted the lesion as hepatocellular carcinoma. Cyst: The number of cases where the method predicted the lesion as a cyst. Scar: The number of cases where the method predicted the
lesion as a scar. Hemangioma: The number of cases where the method predicted the lesion as a hemangioma. Metastasis: The number of cases where the method predicted the lesion as metastasis.
TABLE 3 AUC performance analysis.

AUC (%)

CNN 41

SVM 62

KNN 81

EMGDCNN [Proposed] 90
AUC (Area Under the Curve): A metric used to evaluate the performance of binary
classification models. It represents the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. The value ranges from 0
to 100%, where a higher AUC indicates better model performance. CNN (Convolutional
Neural Network): A type of deep learning model commonly used for image recognition and
classification tasks. SVM (Support Vector Machine): A supervised machine learning
algorithm used for classification and regression analysis. KNN (K-Nearest Neighbors): A
non-parametric method used for classification and regression, which classifies data points
based on their proximity to other points in the feature space. EMGDCNN [Proposed]: The
Enhanced Multi-Gradient Deep Convolutional Neural Network proposed in this study,
designed specifically for detecting and classifying focal liver lesions in Gd-EOB-DTPA-
enhanced MRI images.
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a wide range of liver conditions. This would help to ensure that the

model remains effective and reliable in real-world clinical practice.

To ensure the generalizability and robustness of the EMGDCNN

model, it is crucial to validate its performance on an external dataset. An

external validation dataset would consist of Gd-EOB-DTPA-enhanced

MRI scans from a different source or population, providing a more

rigorous evaluation of the model’s performance in real-world clinical

scenarios. Future studies should aim to include an external validation

step, ideally frommultiple centers, to assess the model’s reliability across

various imaging conditions and patient demographics.

Including an external validation dataset will help to confirm

that the EMGDCNN remains effective and reliable when applied to

diverse patient populations and imaging environments. This will be

a critical step in establishing the model’s utility as a diagnostic tool

for radiologists.

3.3.2 Comparison with State-of-the-Art Methods
and Recent Relevant Works

In this study, compared the performance of our Enhanced Multi-

Gradient Deep Convolutional Neural Network (EMGDCNN) with

several established methods, including Convolutional Neural

Networks (CNNs), Support Vector Machines (SVMs), and K-

Nearest Neighbors (KNN). The results showed that the EMGDCNN

outperformed these methods, achieving an AUC of 90%, sensitivity of

95%, and specificity of 96%.

However, to further validate the effectiveness of the

EMGDCNN, it is essential to compare it with more state-of-the-
Frontiers in Oncology 11
art approaches. For instance, recent studies have explored the use of

advanced deep learning architectures such as U-Net (25), DenseNet

(26), and Residual Networks (ResNets) (27) for medical image

analysis, which have shown promising results in various imaging

modalities, including MRI. These networks incorporate
FIGURE 7

Comparison of the sensitivity.
FIGURE 8

Comparison of the specificity.
TABLE 4 Sensitivity performance analysis.

Sensitivity (%)

CNN 52

SVM 61

KNN 83

EMGDCNN [Proposed] 95
Sensitivity (%): Sensitivity measures the proportion of actual positive cases that are correctly
identified by the model. A higher sensitivity indicates that the model is better at identifying
true positive cases, reducing the number of false negatives.
TABLE 5 Specificity performance analysis.

Specificity (%)

CNN 61

SVM 53

KNN 81

EMGDCNN [Proposed] 96
Specificity (%): Specificity measures the proportion of actual negative cases that are correctly
identified by the model. A higher specificity indicates that the model is better at identifying
true negative cases, reducing the number of false positives.
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sophisticated features like skip connections, dense blocks, and

residual blocks, which can potentially improve the model’s ability

to capture complex patterns and features in medical images.

Additionally, there has been significant progress in the

development of ensemble methods, where multiple models are

combined to improve overall performance. Techniques such as

bagging, boosting, and stacking have been applied to medical image

analysis, often leading to improved accuracy and robustness (28).

Incorporating such ensemble methods could be a valuable future

direction for enhancing the EMGDCNN.

Furthermore, recent work has focused on integrating attention

mechanisms into deep learning models, which allow the network to

focus on the most relevant parts of the image. Attention-based models,

such as those using self-attention or transformer architectures, have

demonstrated superior performance in various computer vision tasks,

including medical image segmentation and classification (29).

Another emerging trend is the use of generative adversarial

networks (GANs) for data augmentation and synthetic data

generation, which can help address the issue of limited training

data in medical imaging (30). GANs can generate realistic synthetic

images that can be used to augment the training dataset, potentially

improving the generalization capabilities of the model.

Recent relevant works also highlight the importance of

incorporating multi-modal information and temporal dynamics in

the analysis of liver lesions. For example, studies have shown that

combining MRI with other imaging modalities, such as ultrasound or

CT, can lead to better diagnostic outcomes (31). Additionally, the

analysis of dynamic contrast-enhanced (DCE) MRI sequences, which

capture the temporal changes in tissue enhancement, has been shown

to improve the detection and characterization of liver lesions (32, 33).

In conclusion, while the EMGDCNN has demonstrated strong

performance in detecting and classifying focal liver lesions, it is

important to benchmark it against more state-of-the-art methods

and to consider the integration of recent advancements in deep

learning. Future work should explore the potential benefits of

incorporating advanced architectures, ensemble methods,

attention mechanisms, and multi-modal data. By doing so, we

can further enhance the model’s performance and ensure its

relevance in the rapidly evolving field of medical image analysis.
4 Conclusion

In this research, we proposed using an EMGDCNN to detect and

categorize a focal liver lesion on Gd-EOB-DTPA-enhanced MR

scans. One hundred thirty-two cases were collected from the

Shanghai Public Health Clinical Center in China. As expected, our

method was able to identify and categorize specific liver lesions. Test

cases showed a true-positive ratio of 0.5 for detecting full focal liver

lesions, with a total of 26 false positives per case. AUC, sensitivity, and

specificity were some of the metrics tested in this experiment. An

EMGDCNN was proposed, and its results were 90% of AUC, 95% of

sensitivity, and 96% specificity. The suggested method performs

better than the existing methods. According to the findings of our

research, it is conceivable to use a single network for both detection
Frontiers in Oncology 12
and classification at the same time. To be of assistance to radiologists,

it is required to significantly increase detection capability.
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