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Hospital of Qingdao University, Qingdao, Shandong, China
Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC)

affects the prognosis and treatment options of patients. Our study developed and

validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-

67 expression levels in nasopharyngeal carcinoma (NPC).

Methods: In all, 133 patients with pathologically-confirmed (post-operatively)

NPC who underwent MRI examination in one of two medical centers. Data from

one medical center (n=105; Ki-67: ≥50% [n=57], <50% [n=48]) formed the

training set, while data from another medical center (n=28; Ki-67: ≥50%

[n=15], <50% [n=13]) formed the test set. Clinical data and routine MRI results

were reviewed to determine significant predictive factors. Theminimum absolute

shrinkage and selection operator method was used to select key radiomics

features to form a radiomics signatures from resonance imaging (MRI), and a

radiomics score (Rad-score) was calculated. Subsequently, a radiomics

nomogram was established using a logistic regression (LR) algorithm. The

predictive performance of the nomogram was evaluated using operating

characteristics curve (ROC), decision curve analysis (DCA), and the area under

the curve (AUC).

Results: Five radiomics features were selected to build the radiomics signature.

The radiomics nomogram incorporating the clinical factors and radiomics

signature showed favorable predictive value for expression level of Ki-67, with

AUC 0.841 (95% confidence intervals: 0.654 –0.951) for the test set. Decision

curve analysis showed that the nomogram outperformed a clinical model in

terms of clinical usefulness.

Conclusions: The radiomics nomogram based on MRI effectively predicted the

pre-surgical expression level of Ki-67.
KEYWORDS

nasopharyngeal carcinoma, magnetic resonance imaging, Ki-67, radiomics, head and
neck cancer
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Introduction

Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma

arising from the nasopharyngeal mucosal lining, and is the most

common head and neck cancer. NPC is highly prevalent in

southeast Asia and southern China (1–3). Of the 87 000 NPC

cases newly diagnosed annually, over 70% are classified as advanced

disease (4). 30%–40% of patients develop distant metastases within

4 years, and the response rate to radiotherapy for recurrent NPC is

low, with 30%–50% of patients experiencing disease relapse after

radical radio-chemotherapy (5, 6).

Ki-67 is a nuclear marker expressed in actively proliferating cells

that is present in almost all phases of the cell cycle, except for the G0

phase, and accurately reflects the proliferative activity of cells. It is often

used as a marker to assess the aggressiveness of tumors (7, 8). Previous

studies reported that Ki-67 overexpression is an important marker of a

poor prognosis in patients with NPC. Ki-67 expression levels can be

used to plan radiotherapy and improve the patient prognosis with

radiosensitizers (9, 10). Furthermore, previous research reports suggest

that tumors with high levels of Ki-67 expression are more sensitive to

radiation and exhibit a more pronounced response to radiation therapy

(11). Comprehensive assessment of tumor aggressiveness facilitates

individualized treatment and improves prognostic accuracy for patients

with malignant tumors (12). Therefore, knowing the Ki-67 expression

level is essential for planning radiotherapy and improving the patient

prognosis. In nasopharyngeal carcinoma, Ki-67 expression can only be

determined by immunohistochemistry through biopsy or surgical

histopathology. However, this conventional test is invasive and

requires the removal of tissue samples from the patient (11, 13),

which involves a level of risk. Therefore, a non-invasive and accurate

tool is urgently needed tomore comprehensively and accurately predict

Ki-67 expression in patients with NPC before they undergo surgery.

Radiomics is a new research methodology that allows the

extraction of a large amount of imaging features in a high

throughput manner (14). Radiomics can capture tissue and lesion

characteristics, as well as heterogeneity across the entire tumor

volume. Research has shown that radiomics features are closely

related to the invasiveness of tumors and heterogeneity indices at

the cellular level (15–17). Genomic analysis has shown that the

degree of tumor heterogeneity is a prognostic factor for survival and

a barrier to cancer control (18). Radiomics approaches have been

successfully used to predict the Ki-67 index in various types of solid

tumors, including breast cancer, non-small cell lung cancer,

intrahepatic cholangiocarcinoma, glioma subtypes, and gastric

cancer (19–23). However, to the best of our knowledge, radiomics

analysis has not been used to predict the Ki-67 index in patients
Abbreviations: 3D, Three-dimensional; AUC, Area under the curve; MRI,

Magnetic resonance imaging,; CI, Confidence interval; DCA, Decision curve

analysis; GLCM, Gray level co-occurrence matrix; GLDM, Gray level dependence

matrix; GLRLM, Gray level run length matrix; GLSZM, Gray level size zone

matrix; NPC, Nasopharyngeal carcinoma; ICC, Inter-/intra- class correlation

coefficient; LASSO, Least absolute shrinkage and selection operator; NGTDM,

Neighboring gray tone difference matrix; ROC, Operating characteristics curve;

ROI, Region of interest; ANOVA, Analysis of variance; LR, Logistic regression;

FS-T2WI, Fat-suppressed T2-weighted images; IHC, Immunohistochemistry.
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with NPC. The aims of this study were therefore to develop and

validate an MRI-based radiomics nomogram that combines a

radiomics signature with clinical factors for the preoperative

prediction of Ki-67 index in patients with NPC.
Methods

Patients

This retrospective study included data from consecutive

patients who received a histological diagnosis of NPC at one of

two clinical centers between October 2015 and June 2023. This

research only included patient image information. No other

personal information about the patients was disclosed. Patients’

private information was adequately protected. The research was

authorized by the ethical committees of the two medical centers and

the requirement for informed consent was waived. The inclusion

criteria for this study were as follows: (1) nasopharyngeal carcinoma

confirmed by biopsy or surgery; (2) standard MRI scan within 14

days prior to treatment or biopsy; (3) detection of Ki-67 level by

immunohistochemistry after surgery.

The exclusion criteria were as follows: (1) patients who underwent

biopsy or surgery prior to MRI; (2) patients receiving preoperative

chemoradiotherapeutic treatment; and (3) poor image quality.

In total, 133 patients met the requirements of the study. 105

patients with NPC (74 men and 31 women; mean age, 51.29 ± 15.06

years; 57 high Ki-67 index and 48 low Ki-67 index) from one center

were enrolled into a training set, and another cohort of 28 patients

with NPC (18 men and 10 women; mean age, 49.54 ± 15.07 years;

15 high Ki-67 index, and 13 low Ki-67 index) from the second

center were enrolled into an external test set. Figure 1 illustrates the

patient recruitment pathway.
Ki-67 index measurement

In this study, Ki-67 indices were determined for all 217 patients

through immunohistochemistry (IHC) performed on surgical

histopathology samples. The IHC staining was carried out using a

Ki-67 protein antibody (Santa Cruz Biotechnology). Cells exhibiting

brown-stained nuclei were considered positive for Ki-67 expression.

The Ki-67 index was calculated as the percentage of Ki-67-positive cells

among 1,000 randomly selected cells, which were visualized at 200×

magnification. According to previous studies, if the Ki-67 index was ≥

50%, we considered the Ki-67 level to be high expression, whereas if the

index was < 50%, we considered the Ki-67 level to be low expression

(11, 23). Indeed, the median Ki-67 index for our training set was found

to be 50%. Two pathologists (with 4 and 8 years of experience)

interpreted the Ki-67 indices in consensus.
MR image acquisition

For all patients, the preoperative MRI included axial T1-

weighted imaging (T1WI) and fat-suppressed T2-weighted
frontiersin.org

https://doi.org/10.3389/fonc.2024.1423304
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1423304
imaging (FS-T2WI) acquired using a General electric Signa HDX

3.0-T MRI scanner. The repetition time (TR) and echo time (TE)

for the 3.0-T MRI scans were 600/15 ms, respectively, for T1WI,

and 300085/100 ms for FS-T2WI. For both sequences, the slice

thickness was 4 mm, the interlayer spacing was 1.0 mm, the matrix

was 256 × 512, and the field of view was 200 × 200 mm.
Analysis of conventional MRI findings

Axial T1WI and axial FS-T2WI extracted from an image

archiving and communication system were used for feature

extraction. Retrospective independent assessment was performed

by two radiologists (radiologist A with 8 years of experience in

diagnosing NPC and radiologist B with 16 years of experience) who

were unaware of the pathological diagnosis. The evaluated MRI

features included maximum tumor length (the maximum diameter

of the largest cross-section of the tumor), tumor necrosis (a
Frontiers in Oncology 03
significant hyperintense area on FS-T2WI), surrounding tissue

spread (involvement of tissues other than nasopharynx),

lymphatic spread (short axial diameter cervical lymph nodes of >

10 mm), and lymphatic necrosis (a significant hyperintense area on

FS-T2WI).
Construction of the clinical model

Differences in clinical factors (including clinical data and

conventional MRI findings) between high and low Ki-67

expression groups in the training set were compared using chi-

square and independent samples t-test analyses. Specific clinical

factors of concern include gender, age, maximum tumor length (the

maximum diameter of the largest cross-section of the tumor),

tumor necrosis (a significant hyperintense area on FS-T2WI),

surrounding tissue spread (involvement of tissues other than

nasopharynx), lymphatic spread (short axial diameter cervical
FIGURE 1

Flow chart of the patient recruitment pathway. NPC, nasopharyngeal carcinoma; IHC, immunohistochemistry; MRI, magnetic resonance imaging.
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lymph nodes of > 10 mm), and lymphatic necrosis (a significant

hyperintense area on FS-T2WI), as shown in Table 1. Multiple

logistic regression analysis was used to build a clinical model based

on significant variables identified in the univariate analysis.
Image segmentation and radiomics
feature extraction

After obtaining the MRI data, the two radiologists used 3D

Slicer software (version 4.10.2, https://www.slicer.org/) to perform

3D segmentation of the lesion region of interest (ROI) for extraction

of radiomics features. The radiologists manually traced the ROI

within the tumor boundary on each tumor plane of the axial T1WI,

using the axial fat-suppressed T2WI as an aid. The two radiologists

were blinded to the patients’ clinical results while performing this

segmentation procedure. Adjacent normal tissue and vessels were

not included in the ROI. Considering the different protocol

parameters of the different MRI scanners that would be used in

clinical practice, a series of preprocessing procedures were applied.

The “m ± 3s”method was used to correct for the influences of MRI

scanners and acquisition protocols, and the image intensity was

normalized (24). At the same time, N4ITK bias correction was used

to correct for intensity non-uniformity caused by non-uniformity of

the scanner magnetic field during image acquisition (25).

To guarantee the repeatability of the results, resampling and z-

score normalization were performed as preprocessing steps for

images and data, respectively. In the first step, the MR images

were resampled to a voxel size of 1 × 1 × 1 mm to ensure scale

conservation when deriving 3D features. Feature extraction was

performed using the Slicerradiomics model in the 3D Slicer

radiomics Extension Pack (v.4.10.2 https://www.slicer.org/). The
Frontiers in Oncology 04
radiomics features were then extracted using the lesion ROI

delineated on the original MR images (Figure 2). The radiomic

features extracted from T1WI and FS-T2WI respectively include

the following: shape (n=14), gray level dependence matrix (GLDM,

n=14), gray level co-occurrence matrix (GLCM, n=24), first-order

statistics (n=18), gray level run length matrix (GLRLM, n=16), gray

level size zone matrix (GLSZM, n=16), neighboring gray tone

difference matrix (NGTDM, n=5), and wavelet (n=744) features.

In total, 1702 radiomics features were extracted from each patient’s

tumor (Supplementary Material).
Intraobserver and interobserver reliability
of the radiomics features

23 cases in the training set were randomly selected to calculate the

interclass and intraclass correlation coefficients (ICC) for the radiomics

features. ROI segmentation was conducted independently by

Radiologists A and B during the same period to allow assessment of

inter-observer agreement in the extracted radiomics features.

Radiologist A again segmented these cases at 7-day intervals to assess

intraobserver reliability. Features with good agreement were defined as

those with an ICC > 0.75, and were forwarded to a further feature

selection process. Radiologist A then performed the radiomics

extraction of these features on the remaining samples.
Feature selection and development of the
radiomics signature

A two-step method was used to perform the further feature

selection on the training set data. First, features with interobserver
TABLE 1 Clinical factors of the training and test sets.

Clinical factors Training set (n=105) Test set (n=28)

Low Ki-67 index
(Ki-67 <

50%, n=48)

High Ki-67 index
(Ki-67 ≥

50%, n=57)

P1 Low Ki-67 index
(Ki-67 <

50%,n=13)

High Ki-67 index
(Ki-67 ≥

50%,n=15)

P2

Gender (M/F) 32/16 42/15 0.128 8/5 10/5 0.787

Age, year 53.02 ± 14.24 49.82 ± 15.68 0.133 51.46 ± 13.99 47.87 ± 16.24 0.539

Maximum tumor
length(mm)

31.29 ± 12.83 31.04 ± 11.98 0.595 32.00 ± 11.61 31.67 ± 11.81 0.941

Tumor Necrosis
(Absent/Present)

22/26 19/38 0.191 7/6 13/2 0.096*

Surrounding tissue spread
(Absent/Present)

24/24 36/21 0.175 8/5 11/4 0.689*

Lymphatic spread
(Absent/Present)

25/23 11/46 <0.001 7/6 4/11 0.142

Lymphatic Necrosis
(Absent/Present)

33/15 20/37 0.001 8/5 11/4 0.689*
frontie
Numerical data are presented as mean± standard deviation, categorical data as numbers (n).
F: female; M: male.
P1: the P value of comparison between low Ki-67 index group and high Ki-67 index group in training set; P2: the P value of comparison between low Ki-67 index group and high Ki-67 index
group in test set.
*: Fisher’s exact test.
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and intraobserver ICCs >0.75 were tested by one-way analysis of

variance (ANOVA) to identify those showing significant differences

between the high and low Ki-67 index. The selected features that

showed significant differences were then entered into a least absolute

shrinkage and selection operator (LASSO) regression model to obtain

the features (non-zero coefficients) that were most valuable for

predicting the Ki-67 index in the training set. The radiomics

features selected in this procedure were those with non-zero

coefficients in a 10-fold cross-validation where the regularization

parameter (l) was adjusted to control the regularization strength

through the minimum criterion for a simple model. A radiomics
Frontiers in Oncology 05
score (Rad-score) was then calculated for each patient (in both the

training and test sets) via the logistic regression product of the

features weighted by their respective coefficients.
Development of the radiomics nomogram
and assessment of the performance of the
different models

The independent clinical factors were combined with the rad-

score using multiple logistic regression to construct a radiomics

nomogram. In this manner, a radiomics nomogram score (Nomo-

score) was calculated for each patient in the training and test sets.

Calibration curves were used to show the performance of the

nomogram graphically (evaluating the agreement between the

predicted and actual Ki-67 probabilities), and the data from

the test set were used to verify the nomogram’s validity.

The area under the curve (AUC) was used to evaluate the

performance of the three models (clinical model, radiomics

signature, and radiomics nomogram) on the training and test

sets, and the DeLong test was used to compare prediction

performance between them. For both training and test sets,

accuracy, sensitivity, specificity, and their 95% confidence

intervals (CI) were calculated for each model. Decision curve

analysis (DCA) was used to assess the usability and efficiency of

the three models.
FIGURE 2

(A) Case 1: nasopharyngeal carcinoma in a 52-year-old man, with Ki-67 expression measured at 30% by immunohistochemistry. A mass can be seen
in the nasopharynx (arrow). (B, C) Manual segmentation of the mass. Conventional magnetic resonance imaging of the patient showed no signs of
cervical lymphatic metastases and lymphatic necrosis. The values of radiomics features (A to E, presented in Table 2) were 0.092, 1.099, 0.384,
-0.026, and-0.244, respectively. The Rad-score was -1.413, the Nomo-score was -2.431 (D) Case 2: nasopharyngeal carcinoma in a 49-year-old
man, with Ki-67 expression measured at 65% by immunohistochemistry. A mass can be seen in the nasopharynx (arrow). (E, F) Manual segmentation
of the mass. The patient’s conventional MRI showed cervical lymphatic metastases with no evidence of lymphatic necrosis. The values of radiomics
features (A to E, presented in Table 2) were 1.665, 0.861, 1.345, -0.015, and 0.790, respectively. The Rad-score was 1.796, the Nomo-score
was 1.772.
TABLE 2 Radiomics feature selection results.

Variables Radiomics feature name Sequence

A wavelet-LHL. glcm. Correlation FS-T2WI

B wavelet-LHH. glcm. InverseVariance FS-T2WI

C wavelet-HLH. gldm. LowGrayLevelEmphasis FS-T2WI

D wavelet-HHH.firstorder. Median FS-T2WI

E wavelet-LLL. firstorder. Skewness FS-T2WI

Rad-score = -4.388+(1.202 × A) + (2.451 × B) + (1.202 × C) + (4.884× D) +(0.67
× E)
GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix.
Rad-score: radiomics score.
frontiersin.org
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Statistical analysis

SPSS software (version 25.0), MedCalc software (version

11.4.2.) and R software (version 3.3.3) were used for statistical

analysis. Continuous variables are expressed as mean ± standard

deviation and were compared between patient groups using

independent samples t-tests. P < 0.05 was regarded as statistically

significant. Qualitative data were compared using the chi-square

test or Fisher’s exact test. One-way ANOVA was used to compare

the values of different radiomics characteristics between the high

and low Ki-67 groups. DCA quantifies the “net benefit” of the three

models when applied to the test set at different threshold

probabilities, with this analysis including the ability to graphically

display the net benefit of the radiomics models. ROC analysis was

performed using Medcalc. Nomogram, calibration curve, decision

curve, and LASSO logistic regression analyses were performed using

the R “rmc”, “rmda” and “glmnet” software packages.
Results

Clinical model construction

Table 1 provides details of the clinical data and MRI features in

the training and test sets. Lymphatic necrosis and lymphatic spread

showed significant differences between the high and low Ki-67

index groups in the training set. The other clinical factors (including

clinical data and conventional MRI findings) did not show

statistically significant differences between the high and low Ki-67

index groups (P > 0.05). After multivariate logistic regression

analysis, lymphatic necrosis (p = 0.035, OR = 2.860, CI, 1.075–

7.613) and lymphatic spread (p = 0.048, OR = 2.549, CI, 1.009–

6.440) were identified as independent predictors of Ki-67 and were

used to construct the clinical model. A high Ki-67 index was more

common in patients with NPC with lymphatic necrosis or

lymphatic spread.
Frontiers in Oncology 06
Feature selection and development of the
radiomics signature

A total of 1526 radiological features with an ICC > 0.75 were

considered in the one-way ANOVA for further selection. In this one-

way ANOVA, 572 features showed statistically significant differences

between the high and low Ki-67 index groups in the training set. Finally,

the LASSO regression with l of 0.078 identified five features with non-

zero coefficients that were used to develop the Rad-score (Figure 3).

Using these features, the Rad-score was calculated as follows:

Rad-score = -4.388+(1.202 × A) + (2.451 × B) + (1.202 × C) + (4.884×

D) +(0.67 × E). The variables A to E represent the selected radiomics

features, as shown in Table 2. An independent samples t-test showed

a significant difference in Rad-score between the high Ki-67 index

group and the low Ki-67 index group in the training set (Table 3).
Development of the radiomics nomogram

We used multifactorial logistic regression to construct a

radiomics nomogram combining rad-score, lymphatic necrosis,

and lymphatic metastasis (Figure 4A). The calibration curves for

this are shown in Figures 4B, C. The calibration curve showed a

good calibration effect in the training set. The Nomo-score for this

nomogram was then calculated using the formula: Nomo-score =

−0.922 + (1.067 × lymphatic necrosis) + (0.776 × lymphatic spread)

+ (1.068 × Rad-score). In the training set, the Nomo-score showed a

statistically significant difference between the high and low Ki-67

index groups (Table 3).
Assessment of the performance of the
different models

Calibration curves for the different models are shown in

Figures 4B, C. Table 4 presents the AUC, sensitivity, specificity,
FIGURE 3

Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. (A) Tuning parameter (l) selection
in LASSO model used a 10-fold cross-validation via minimum criterion. The optimal values of the LASSO tuning parameter (l) are indicated by the
dotted vertical lines, and a value l of 0.078 was chosen. (B) LASSO coefficient profiles of the 572 radiomics features. A coefficient profile plot was
generated versus the selected log l value using 10-fold cross-validation. Five radiomics features with non-zero coefficients were selected.
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and accuracy of each model. Figure 5 shows the ROC curves of each

model for the training and test sets. The radiomics nomogram

achieved AUC values of 0.828 (0.742–0.895) and 0.841 (0.654 –

0.951) in the training and test sets, respectively. The Delong test

indicated that the radiomics nomogram predicted Ki-67 expression

better than the clinical factors in the training set (AUC: 0.828 vs

0.663, p = 0.0002) and the test set (AUC: 0.841 vs 0.603, p = 0.0257).

According to the DCA results, within a reasonable threshold

probability range, the radiomics nomogram for predicting Ki-67

expression in patients with NPC had higher net benefits than the

clinical factor model (Figure 6).
Frontiers in Oncology 07
Discussion

In this study, we developed and validated a non-invasive MRI

radiomics nomogram composed of radiomics features combined

with clinical parameters to predict the Ki-67 index in individual

patients with NPC. Our radiomics nomogram performed well in the

prediction of Ki-67 index (AUC: test set, 0.841). Calibration curves

and decision curve analysis (DCA) showed good fitness and high

clinical utility. At the time of the patient’s visit, an MRI scan was

performed, lymphatic necrosis and lymphatic spread were recorded.

The selected radiomic features (as shown in Table 2) were extracted
FIGURE 4

The radiomics nomogram and calibration curves for the radiomics nomogram. (A) The radiomics nomogram developed using the training set,
combining lymphatic necrosis, lymphatic spread, and radiomics score. Calibration curves for the radiomics nomogram in the training (B) and test (C)
sets. Calibration curves indicate the goodness-of-fit of the nomogram. The 45° straight line represents the perfect match between the actual (Y-
axis) and nomogram-predicted (X-axis) probabilities. A closer distance between two curves indicates higher accuracy.
TABLE 3 The results of Rad-score and Nomo-score in the training and test sets.

Training set (n = 105) Test set (n =28)

Low Ki-67 index
(Ki-67 < 50%, n=48)

High Ki-67 index
(Ki-67 ≥ 50%, n=57)

P1 Low Ki-67 index
(Ki-67 < 50%,n=13)

High Ki-67 index
(Ki-67 ≥ 50%,n=15)

P2

Rad-score -1.142 ± 3.701 1.552 ± 5.221 0.003 -0.586 ± 0.921 0.689 ± 0.819 0.001

Nomo-score -1.364 ± 2.842 1.887 ± 5.392 < 0.001 -0.790 ± 0.993 0.598 ± 1.312 0.004
frontier
Numerical data are presented as mean ± standard deviation, categorical data as numbers (n).
Rad-score, radiomics score; Nomo-score, nomogram score.
P1: the p value of comparison between high Ki-67 index group and low Ki-67 index group in training set; P2: the p value of comparison between high Ki-67 index group and low Ki-67 index
group in test set.
sin.org

https://doi.org/10.3389/fonc.2024.1423304
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2024.1423304
from the lesion ROI delineated on the original MRI images to

calculate the Rad-score. The Nomo-score was then derived using

the following formula: Nomo-score = -0.922 + (1.067 × lymphatic

necrosis) + (0.776 × lymphatic spread) + (1.068 × Rad score), which

predicts Ki-67 expression levels in NPC patients. Therefore, subject

to further validation, our model could be used as a non-invasive,

preoperative, and effective diagnostic method for treatment

planning and prognosis assessment in patients with NPC. Our

research is important for finding new methods to treat NPC.

For this study, we selected axial T1WI and axial FS-T2WI as

MRI sequences. MRI provides better soft tissue resolution than CT,

allowing for improved differentiation between lymph nodes and

adjacent primary tumors. It is common for NPC to invade the skull

base during diagnosis, and the apexes of the slope, wing, sphenoid

body, and petrous temporal bone are often affected. In this respect,

axial T1WI allows effective assessment of the degree of skull base

invasion (26). FS-T2WI is a valuable tool for evaluating tumors, it
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helps to assess their location, size, shape, growth pattern, and extent,

and is particularly effective for detecting necrotic cystic changes

within tumors (27).

NPC has various biomarkers, among which the expression of

Ki-67 is associated with the aggressiveness and prognosis of NPC.

Zhang et al. (28) reported that Ki-67 expression level was

significantly correlated with progression-free survival, and Chang

et al. (29) found that Ki-67 expression was related to the survival

rate of patients with NPC. Furthermore, it is reported that Ki-67

overexpression was associated with poor overall survival in Asian

NPC patients, with cutoff values ≥50% (30). Notably, there are

currently no standardized criteria for classifying Ki-67 expression

levels in NPC patients. Previous studies have used the median as a

cutoff point (9, 11, 31). In this study, since the median Ki-67 index

in the training set is 50%, we defined a high Ki-67 index as that of

patients with a Ki-67 index of 50% or higher. Our research results

indicate that the radiomics nomogram can effectively predict the
FIGURE 5

Receiver operating characteristics curves of the three models in the (A) training and (B) test sets, respectively.
TABLE 4 Diagnostic performance of the clinical factor model, the radiomics signature, and the radiomics nomogram.

Model AUC (95%CI) Sensitivity %(95%CI) Specificity %(95%CI) Accuracy %(95%CI)

Training set (n=105)

Clinical model 0.663
(0.565 to 0.753)

78.95
(66.1 to 88.6, 45/57)

52.08
(37.2 to 66.7, 25/48)

66.67
(57.6 to75.7, 70/105)

Radiomics signature 0.783
(0.692 to 0.857)

73.68
(60.3 to 84.5, 42/57)

70.83
(55.9 to 83.0, 34/48)

72.38
(63.8 to 80.9, 76/105)

Radiomics nomogram 0.828
(0.742 to 0.895)

82.46
(70.1 to 91.3, 47/57)

70.83
(55.9 to 83.0, 34/48)

77.14
(69.1 to 85.2, 81/105)

Test set (n=28)

Clinical model 0.603
(0.401 to 0.781)

73.33
(44.9 to 92.2, 11/15)

53.85
(25.1 to 80.8, 7/13)

64.29
(46.5 to 82.0, 18/28)

Radiomics signature 0.831
(0.642 to 0.945)

80.00
(51.9 - 95.7, 12/15)

84.62
(54.6 - 98.1, 11/13)

82.14
(68.0 to 96.3, 23/28)

Radiomics nomogram 0.841
(0.654 to 0.951)

80.00
(51.9 - 95.7, 12/15)

84.62
(54.6 - 98.1, 11/13)

82.14
(68.0 to 96.3, 23/28)
CI, Confidence interval. Data in the parentheses are raw data.
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expression of Ki-67. Moreover, the radiomics nomogram could

potentially be a valuable tool for evaluating the patient prognosis

and formulating personalized treatment plans.

In this study, we assessed the value of clinical data (age and sex)

and imaging data (maximum tumor length, tumor necrosis,

surrounding tissue spread, lymphatic metastasis and lymphatic

necrosis) for predicting Ki-67 index. Our study of NPC revealed a

strong association between the expression of Ki-67 and cervical

lymphatic metastasis, and also between Ki-67 and lymphatic

necrosis (p < 0.05). Lymphatic necrosis is a significant imaging

feature of malignant lymph nodes; because of the rich lymphatic

network in the nasopharynx, NPC often metastasizes to the lymph

nodes. Tang et al (32) reported that retropharyngeal lymphatic

metastasis affects the survival of NPC patients. Huang et al (33)

reported that the maximum axial diameter of metastatic lymph

nodes (4 cm) is a significant adverse prognostic factor for overall

survival. According to Ying et al., patients with larger areas of

lymph node necrosis have a higher risk of death, local recurrence,

and local and distant metastasis after radiotherapy than those

without lymph node necrosis (34). The Ki-67 index reflects the

heterogeneity and invasiveness of the tumor (12), and as noted

previously, those patients with NPC who have a high Ki-67 index

have a worse prognosis. Our research results also indicate that

patients with NPC with lymphatic necrosis and lymphatic

metastasis are more likely to exhibit a high Ki-67 index.

Radiomics is a recent imaging method that involves extracting

detailed radiomic features frommedical images (35). Radiomics can be

used to capture the characteristics of tissues and lesions, characteristics

that may be associated with the invasiveness of tumors. Radiomics

approaches have also been used to predict clinical endpoints such as

survival and treatment response and were shown to be directly related

to proteomic features (15, 18). Radiomics analysis has shown good

diagnostic performance when used to predict the Ki-67 expression level

in various tumors. Qian et al (21) developed a radiomics model with

preoperative enhanced MR images to predict the expression status of

Ki-67 in intrahepatic cholangiocarcinoma (AUC = 0.815). Liang et al
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(35) developed a radiomics classifier based on T2WI (AUC = 0.740) to

predict high Ki-67 status in breast cancer patients. Another study

successfully developed a radiomics signature for predicting the Ki-67

index of meningiomas (AUC = 0.819) (36). The study of Fan et al.

demonstrated that an MRI-based radiomics model was useful for

predicting Ki-67 expression level in hepatocellular carcinoma

(AUC = 0.863) (37). These previous studies suggest that MRI-based

radiomics features have the potential to predict Ki-67 expression levels

in NPC, and our results indicate that the MRI-based radiomics

nomogram developed in this study showed good performance in

predicting the Ki-67 index in patients with NPC, with an AUC of

0.841 in the test set. In our study, we used LASSO logistic regression to

identify five radiomics features that we then used to develop a

radiomics signature model. These features were wavelet-filtered

features from FS-T2WI images. MRI FS-T2WI sequences not only

clearly show the morphology of the lesions, but also reflect the

pathological features of the lesion tissue (38). The addition of inter-

tissue contrast may allows the images to contain radiomics features that

are more reflective of tissue heterogeneity. The wavelet transformed

features are obtained through wavelet decomposition of the first-order

and texture features, and can extract intratumor heterogeneity

information from the original images. The wavelet features selected

by our radiomics model were GLCM, GLDM, and first-order statistical

features, which can reflect texture heterogeneity and tend to be

correlated with tumor heterogeneity (39). Research demonstrated

that radiomic features are significantly associated with heterogeneity

indices at the cellular level, and the extent of tumor heterogeneity is a

key factor in determining prognosis (18). The Ki-67 index is linked to

the prognosis of patients with NPC, which may explain why radiomic

features reflecting tumor heterogeneity can predict the Ki-67

expression level in patients with NPC.

This study had certain limitations. First, selection bias in

retrospective studies, even with strict inclusion and exclusion criteria,

was impossible to completely eliminate. Second, manual segmentation

was used to determine the ROI of all tumors, which may introduce

bias. To more accurately represent the ROI, a time-consuming but
FIGURE 6

Decision curve analysis for the three models. The y-axis indicates the net benefit and the x-axis indicates threshold probability. Both the radiomics
signature and radiomics nomogram had a higher overall net benefit for differentiating high Ki-67 index from low Ki-67 index than the clinical factor
model and simple diagnoses such as all high Ki-67 patients (gray line) or all low Ki-67 patients (black line). This was the case across the full range of
threshold probabilities at which a patient with NPC would have a high Ki-67 index.
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reliable automatic segmentation method should be developed in future

studies. In addition, further prospective studies are needed to more

accurately predict the prognosis of nasopharyngeal carcinoma patients.

Finally, only 133 patients were included in this study, which constitutes

a relatively small study population.
Conclusions

Our MRI-based radiomics nomogram performed well in the

prediction of Ki-67 index (≥ 50% vs < 50%) in patients with NPC. It

may be useful for prognostication and clinical decision-making in

patients with NPC.
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