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Background: Ensuring accurate polyp detection during colonoscopy is essential

for preventing colorectal cancer (CRC). Recent advances in deep learning-based

computer-aided detection (CADe) systems have shown promise in enhancing

endoscopists’ performances. Effective CADe systems must achieve high polyp

detection rates from the initial seconds of polyp appearance while maintaining

low false positive (FP) detection rates throughout the procedure.

Method: We integrated four open-access datasets into a unified platform

containing over 340,000 images from various centers, including 380

annotated polyps, with distinct data splits for comprehensive model

development and benchmarking. The REAL-Colon dataset, comprising 60 full-

procedure colonoscopy videos from six centers, is used as the fifth dataset of the

platform to simulate clinical conditions for model evaluation on unseen center

data. Performance assessment includes traditional object detection metrics and

new metrics that better meet clinical needs. Specifically, by defining detection

events as sequences of consecutive detections, we compute per-polyp recall at

early detection stages and average per-patient FPs, enabling the generation of

Free-Response Receiver Operating Characteristic (FROC) curves.

Results: Using YOLOv7, we trained and tested several models across the

proposed data splits, showcasing the robustness of our open-access platform

for CADe system development and benchmarking. The introduction of new

metrics allows for the optimization of CADe operational parameters based on

clinically relevant criteria, such as per-patient FPs and early polyp detection. Our

findings also reveal that omitting full-procedure videos leads to non-realistic

assessments and that detecting small polyp bounding boxes poses the

greatest challenge.

Conclusion: This study demonstrates how newly available open-access data

supports ongoing research progress in environments that closely mimic clinical

settings. The introduced metrics and FROC curves illustrate CADe clinical

efficacy and can aid in tuning CADe hyperparameters.
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1 Introduction

CRC originates from adenomas or serrated polyps, which can

progress to cancer over time. CRC ranks third in cancer-related

deaths and second in mortality worldwide (1, 2). Colonoscopy,

recognized as the gold-standard method for diagnosing and

preventing CRC, owes its effectiveness primarily to its capability

to detect and then remove these polyps. However, endoscopists’

proficiency and vigilance significantly influence polyp detection (3).

Population-based studies have shown miss rates of up to 26% for

adenomas and 27% for serrated polyps, with missed polyps

accounting for 57.8% of interval CRCs (4, 5). Numerous

randomized trials have demonstrated the substantial benefits of

CADe-assisted colonoscopy compared to standard practices,

consistently showing higher adenoma detection rates (ADR).

These rates are elevated regardless of polyp size, location, and

morphology, as confirmed by several meta-analyses (6, 7). This

advancement promises not only to improve diagnostic performance

but also to ensure more uniform screening outcomes (8–11).

The primary challenge for CADe systems is to achieve high

polyp detection rates (recall), typically assessed in clinical literature

as the proportion of polyps detected in at least one frame (12), while

also maintaining a low rate of FPs, which are commonly reported as

the average number per patient throughout an entire video (13).

The occurrence of FPs, often triggered by polyp-like structures and

artifacts within the complex colon environment, can prolong

examination times and increase endoscopists’ workload and

fatigue. Generally, efforts to reduce FP alerts may compromise

detection accuracy, especially at the initial moment of polyp

discovery when polyps are often poorly framed or characterized

by small bounding boxes (14, 15). Increasing sensitivity to detect

these small or ambiguously shaped polyps raises the risk that the

polyp detection algorithm may be deceived by similar non-polyp

structures (16, 17). Additionally, CADe systems for polyp detection

must operate in real-time, constraining the use of larger, more

computationally demanding learning-based architectures and

necessitating the use of images at a downsampled resolution,

which ultimately may reduce detection accuracy.

The definition of CADe FPs varies widely in clinical literature,

complicating the assessment of clinical utility and comparison

across trials (12, 14, 18). Recent studies suggest that over 95% of

per-frame FPs are disregarded by endoscopists without affecting

withdrawal time, indicating that consecutive detection events

lasting 1 or 2 seconds could be a more effective measure of FPs

per video (19). Furthermore, beyond mere detection, the true value

of CADe systems lies in their ability to quickly identify polyps as

they first appear, facilitating early alerts for endoscopists and

reducing the likelihood of missed diagnoses. This underscores the

importance of developing metrics that capture CADe system

performance during these critical moments of detection and,

more broadly, that better align with clinical needs (3, 20).

Open-access datasets have significantly contributed to the

research and development of deep learning-based models for polyp

detection (17, 21–24). This process typically involves developing

these models and fine-tuning their hyperparameters using

traditional computer vision metrics such as precision and recall,
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computed at the bounding box or frame level (24). However, these

metrics often fail to accurately inform about the models’ performance

in clinical settings, where assessments are usually conducted at the

polyp or video/patient level. This introduction of more nuanced

metrics for whole-procedure evaluations, such as per-polyp recall and

per-patient FP rates as previously discussed, is emphasized in Table 1.

In this direction, the recent introduction of the REAL-Colon dataset

(17), consisting of 60 annotated whole-procedure videos from

multiple centers, provides a new opportunity to extend evaluations

beyond traditional per-bounding box and per-frame assessments.

In this study, we consolidate five open-access polyp detection

datasets into a unified, multi-center database, establishing data

splits for model training and validation. We introduce clinically

relevant metrics—such as per-polyp recall at early detection stages

and per-patient FP rates—that complement traditional polyp

detection metrics, thereby enhancing the characterization of

model clinical behavior. Our primary goal is to develop an open-

access platform that encompasses both data and metrics for CADe

system development and benchmarking under conditions that

closely mimic clinical environments. To this end, we leverage full-

procedure multi-center videos from the REAL-Colon dataset as the

testing component of this platform, which aids in assessing the

generalization of CADe systems across unseen centers. Our

secondary aim is to demonstrate the clinical relevance of our

newly proposed metrics by refining and evaluating the clinical

behavior of CADe systems. Through the state-of-the-art YOLOv7

detection model, chosen for its real-time effectiveness, ease of use,

and widespread adoption within the polyp detection and broader

object detection communities (20, 25), we aim at showcasing how

this platform supports clinical efficacy evaluations of CADe systems

and their refinement.
2 Materials and methods

2.1 Datasets

For this study, we assembled a collection of five open-access

datasets, SUN, KUMC, LDPolypVideo, PolypGen and REAL-Colon

databases. A comprehensive summary of each dataset is provided in

Table 2, detailing dataset contributions to this research in terms of

frames (positives and negatives) and distinct polyps. Each database

includes both frames depicting polyps annotated with bounding
TABLE 1 The clinical deployment of deep polyp detection algorithms
requires additional data, metrics, and parameters to accurately quantify
the model’s clinical efficacy and fine-tune its operational parameters.

Detection
Algorithm

Deployed
Application

Data Video Frames Whole-Procedure Video

Metrics Recall Per-Box/Per-Frame Recall Per-Polyp

Precision Per-Box/Per-Frame False Positives Per-Patient

Parameters Model Hyperparameters Event Duration t

(Detection Threshold d, etc.) Detection Window s
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boxes (positive frames), as well as additional frames depicting non-

polyp scenes (negative frames). The SUN database, collected at

Showa University Northern Yokohama Hospital, comprises 158,690

frames including 100 polyps (23). The KUMC dataset comprises 80

polyp video-clips sourced from the University of Kansas Medical

Center, totaling 37,899 frames (21). The LDPolypVideo dataset

contains 40,266 frames and an additional 103 videos with

unannotated frames. From these unannotated videos, we extracted

for this work every fifth frame using ffmpeg software to add 99,374

additional negative frames (22). The PolypGen dataset, contributed

by six centers across Europe and Africa, offers a compilation of 8,037

frames, encompassing various endoscopic systems and expert

evaluations (24). The REAL-Colon dataset comprises 60 annotated

videos, each originating from one of four distinct video acquisition

cohorts across six centers (cohort 001 - three centers in the United

States, 002 - Italy, 003 - Austria, 004 - Japan), utilizing various

endoscopes, and totaling 2,757,723 frames (17). Participants included

in the dataset are all aged 40 or older, undergoing colonoscopy for

primary CRC screening, post-polypectomy surveillance, positive fecal

immunochemical tests, or diagnosis based on symptoms/signs. The

exclusion criteria for this dataset include a history of CRC or

inflammatory bowel disease, previous colonic resection, emergency

colonoscopy procedures, or ongoing antithrombotic therapy.

Notably, each video in this dataset captures an entire colonoscopy

procedure from start to finish at maximum resolution, without any

pauses or interruptions, closely mimicking the actual clinical

environment in which CADe systems are used.
2.2 Experimental setup

Using the available data, we have constructed six different

training sets as reported in Table 3. We combined KUMC, SUN,

and LDPolypVideo (including both the annotated and additional
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negative frames sampled) to create a training dataset named the

Unified Colonoscopy Dataset (UCD). To this dataset, either the first

five videos from each of the four dataset cohorts (001, 002, 003, 004)

in the REAL-Colon (RC) dataset can be added, or all these videos

can be included (001–004). For the validation set, we use the

PolypGen dataset, valued for its diversity of images sourced from

multiple centers and its rigorous frame-by-frame quality control,

making it the best dataset to check models for generalization

performance. Finally, we define three testing sets from the RC

dataset Table 4: the first encompasses all its videos (RC); the second

excludes the first five videos from each study (RCMT, REAL-Colon

minus train) to assess the performance of models trained on these

videos; and the third comprises only frames captured between the

initial and final appearance of each polyp (RCSSP, REAL-Colon

start-stop polyp). This third set is designed to mimic datasets that

consist only of polyp clips, thereby discarding a large portion of the

negative frames typically encountered during a full procedure.

These distinct training, validation, and testing datasets provide a

platform for developing polyp detection algorithms and

benchmarking them in a scenario closely mimicking the actual

clinical environment in which CADe systems would operate.

YOLO (You Only Look Once) v7 is a one-stage object detection

model chosen for this study due to its exceptional speed and

accuracy among other real-time object detectors (25). It uses a

Cross Stage Partial Network (CSPNet), specifically CSPDarknet53,

as its backbone, which is complemented by an Efficient Layer

Aggregation Network (ELAN) for enhanced feature aggregation.

The model incorporates a neck network based on the PANet

architecture, employing a bidirectional fusion approach that

integrates both top-down and bottom-up pathways for efficient

feature integration. The architecture is finalized with a head

network that consists of three detection heads, facilitating precise

object detection across a variety of sizes (25).
TABLE 2 Summary of open-access datasets used for polyp detection in this study, detailing frame counts, resolution, and distribution between
positive (polyp) and negative (non-polyp) frames.

Dataset Frames Positive Negative Polyps Resolution

KUMC (21) 37,899 35,981 1,918 80 various

SUN (23) 158,690 49,136 109,554 100 1240×1080

LDPolypVideo (22) 139,640 33,875 105,765 200 560×480

PolypGen (24) 8,037 3,121 4,916 unclear various

REAL-Colon (17) 2,757,723 342,109 2,415,614 131 1920×1080
TABLE 3 Frame and polyp counts for training dataset splits proposed by this work including UCD and the first five videos from each clinical study in RC.

Train Sets UCD UCD + 001 UCD + 002 UCD + 003 UCD + 004 UCD + 001–004

Polyps 380 388 398 399 386 431

Positives 118,992 139,020 152,275 178,288 138,925 251,532

Negatives 217,237 383,273 355,564 565,601 347,372 1,000,099

Frames 336,229 522,293 507,839 743,889 486,297 1,251,631
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All models trained in this work are YOLOv7 models targeting a

single class (polyp) and were trained and tested with input images

rescaled to a resolution of 640×640. Extensive data augmentation

techniques were applied to enhance dataset variability and improve

model generalization, in accordance with methodologies documented

in related polyp detection research (26). The best data augmentation

technique, adopted for all the model training in this work, employed

HSV color jittering with adjustments in hue (0.1), saturation (0.5), and

value (0.5), image rotation (90 degrees), translation (0.2 of image size)

and flipping both vertically and horizontally, each applied with a

probability of 0.5. Additionally, images were rescaled by a factor of 0.4

and mosaic data augmentation was used with a probability of 0.3 to

further enhance dataset variability and model generalization. Models

were trained using the SGD optimizer for 50 epochs with a batch size of

64, starting with an initial learning rate of 10−3. A linear scheduler was

employed to adjust the learning rate to a final value of 10−4, with a

momentum setting of 0.937. Each training epoch included all the

positive frames from the training dataset, along with 50% of the total

number of positive frames selected at random from the pool of negative

frames. This approach was necessary to maintain a 2:1 ratio of positive

to negative frames, which yielded the best results. All the models were

trainined on an NVIDIA A100 GPU, with all code developed in

PyTorch. At the end of the training, the model that achieved the

highest mean average precision on the validation (PolypGen) set was

selected for testing on RC data.
2.3 Per-bounding box metrics

In computer vision and medical image analysis, the evaluation

of deep polyp detection models often relies on per-bounding box

metrics using the Intersection over Union (IoU) criterion. A model

typically outputs several bounding boxes per frame, each with a

different detection score. Given a detection threshold d, only
predicted bounding boxes B with scores exceeding d are

considered. A bounding box B is classified as a true positive (TP)

when it meets or exceeds an IoU threshold, defined as in Equation 1

by:

IoU(B,GT) =
B ∩  GTj j
B ∪  GTj j (1)

A (FP) occurs when B does not meet this IoU threshold,

indicating an inaccurate or misplaced detection. Conversely, a

false negative (FN) occurs when a ground truth box GT does not
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have a corresponding predicted box B that meets the IoU threshold.

Precision (P) and Recall (R) can be computed as shown in

Equations 2 and 3:

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

Detection thresholds d may vary. Average Precision (AP), used

to summarize and rank the performance of a model, is derived from

the area under the Precision-Recall curve:

AP =o
n
(Rn − Rn−1) � Pinterp(Rn) (4)

where Rn and Rn−1 in Equation 4 represent consecutive recall levels,

and Pinterp(Rn) is the interpolated precision at each recall level Rn. AP

is typically computed at a single IoU threshold, such as AP0.5, and

averaged over IoU thresholds ranging from 0.50 to 0.95 in increments

of 0.05 (AP0.5:0.95), to reflect various levels of detection stringency and

model localization accuracy. In this work, we use AP0.5:0.95 as the

metric for evaluating and ranking the performance of polyp detection

models at a per-bounding box level.
2.4 Per-frame metrics

Transitioning to frame-level evaluations, a frame is classified as a TP

when all polyps within the image are detected by the CADe system with

an IoU exceeding a threshold, typically set at 0.2. A frame is classified as

a FP when the model incorrectly predicts a polyp in a frame where none

are present. Conversely, a FN occurs when a frame containing one or

more polyps fails to have all polyps detected with the required IoU

threshold. A true negative (TN) is defined when no polyps are present

and none are incorrectly detected. The True Positive Rate (TPR) and the

False Positive Rate (FPR) can be defined as in Equations 5 and 6.

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + TN
(6)

A ROC curve, plotting TPR against FPR, varies with the detection

threshold d, serving as a function of the detection confidence score and
aiding in evaluating model performance or selecting optimal

operational parameters for the model. In this work, we use the area

under the ROC curve (AUC) as the metric for evaluating and ranking

the performance of polyp detection models at the frame level.
2.5 Per-polyp and per-patient metrics

The Per-Box Precision-Recall curve and the Per-Frame ROC,

alongside metrics such as AP0.5:0.95 and ROC area under the curve

(AUC), provide limited insight into a model’s clinical performance

and only partially capture its practical utility. In the clinical literature

on CADe systems, measures such as recall per-polyp and FP events
TABLE 4 Frame and polyp counts for testing and validation dataset
splits proposed by this work for deep polyp detection model evaluation.

Test Sets Validation Set

Set Name RC RCMT RCSSP PolypGen

Polyps 131 80 131 Unclear

Positives 342,109 209,569 342,109 3,121

Negatives 2,415,614 1,632,752 240,888 4,916

Frames 2,757,723 1,842,321 582,997 8,037
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per patient are frequently used (15, 19). However, merely defining

recall per-polyp as the proportion of polyps detected in at least one

frame, and FP events per-patient as the rate of FP frames per total

frames, does not adequately address the key colonoscopy challenges.

A more effective approach would be to assess recall at the earliest

moments of detection and to identify FPs that significantly disrupt an

endoscopist’s workflow. This leads to the development of metrics

based on event frequency (as schematized in Table 1), which consider

consecutive detections over a specified time length, providing a more

nuanced assessment of a CADe system’s operational effectiveness.

Given a detection event length threshold, t, we define a

detection event as a sequence of consecutive bounding box

detections spanning t seconds. A FP event occurs when each

bounding box within this sequence fails to sufficiently overlap

with any GT bounding box, defined by an IoU of at least 0.2. We

compute the average number of FP events per patient (or per full

colonoscopy procedure) and denote this metric as “Average FP

Events Per-Patient,” which offers a more clinically relevant

assessment of FPs during a procedure. A TP event is defined

when every bounding box within a detection event overlaps with

a GT bounding box, achieving an IoU of 0.2 or greater within the

detection window of the first s seconds of a polyp’s appearance. We

define the percentage of polyps that are correctly identified within s
seconds of their appearance as the “Per-Polyp Recall”.

A FROC curve can be constructed by graphing the per-polyp

recall within s seconds against the average number of FP events per

patient, events defined as a function of length threshold t. This is
achieved by fixing two out of three parameters—detection event

length threshold (t), detection window (s), and the polyp detection

model hyperparameters (in the case of YOLOv7, d)—and varying

the remaining parameter. This FROC provides a visual

representation of the trade-off between polyp detection

effectiveness at the earliest stages of polyp appearance and the

frequency of false alarms. In this work, we utilize the FROC to

evaluate polyp detection models and to provide insights into each

model’s clinical behavior on full-procedure videos.
3 Results

All code required to download, format, and prepare the five

open-access datasets used in this study within the proposed

platform, as well as to generate the ROC and FROC plots

reported in this section, is fully available at https://github.com/

cosmoimd/polyp_detection_platform. Additionally, the code to

reproduce all YOLOv7 experiments described in this section is

available at https://github.com/cosmoimd/yolov7.
3.1 Per-bounding box results

In Table 5, we present the results on RCMT dataset in terms of

AP0.5:0.95 for the six models trained in this study. The results

indicate that the four RC dataset cohorts vary significantly in

terms of difficulty, with cohort 003 proving to be the most

challenging. When analyzing the test results, we divided RCMT
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into four subsets, each corresponding to a different cohort. As

anticipated, models trained on data specific to a particular cohort

generally performed better on test data from that same cohort, with

the model trained on the largest dataset yielding the best results.

For the model trained solely on the UCD dataset, we report the

test results on the entire RC dataset in Table 6. The model achieves a

precision of 0.51 and a recall of 0.38 per-box at its optimal working

point of d = 0.6 (the point achieving the best F1 score). We also

present results for this model under different formulations of the

RC dataset: RCSSP and two subsets of RC, one containing only 100

positive frames per polyp without negatives (RC100,0), and another

with 100 positive frames per polyp and 10% random negatives

RC100,0.1. Additionally, we categorize results based on box sizes—

small (less than 100 px), medium (less than 200 px), and large (the

rest)—as defined in previous research (24). It is notable that the

model struggles with small bounding boxes and how different test

set formulation provide different results.
3.2 Per-frame results

In Figure 1, we present ROC curves for the six models trained in

this study tested on RCMT varying YOLOv7 model confidence score

threshold d, along with the AUC for each model. The trend

observed aligns with the findings from the AP0.5:0.95 evaluation,

indicating that the model trained on the most comprehensive
TABLE 5 Average Precision (AP0.5:0.95) results on RCMT and its splits
corresponding to one of the four cohorts.

Train Sets Test Sets

001 002 003 004 001–004

UCD 0.267 0.242 0.171 0.269 0.229

UCD + 001 0.323 0.261 0.192 0.230 0.239

UCD + 002 0.292 0.289 0.201 0.265 0.253

UCD + 003 0.284 0.265 0.228 0.285 0.260

UCD + 004 0.273 0.258 0.187 0.301 0.247

UCD +
001–004

0.377 0.359 0.275 0.343 0.331
Models trained with data from specific cohorts showed improved performance on test sets
from those same cohorts (underlined results). Training with data from all centers resulted in
the best overall performance (bolded).
TABLE 6 Average precision (AP) metrics for a YOLOv7 model trained on
the UCD dataset, tested across different picks of the complete
RC dataset.

Metric Polyp Size RC RC100,0 RC100,0.1 RCSSP

AP0.5:0.95 all 0.24 0.325 0.163 0.315

AP0.5 all 0.372 0.539 0.253 0.507

AP0.50:0.95 small 0.017 0.046 0.014 0.035

AP0.50:0.95 medium 0.163 0.262 0.125 0.231

AP0.50:0.95 large 0.333 0.482 0.265 0.42
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dataset, which includes all RC study data (UCD+001–004) and thus

uses the largest volume of data, achieves the best performance. For

the model trained exclusively on the UCD dataset, we report a True

Positive Rate (TPR) and FP Rate (FPR) of 0.40 and 0.04 per-frame

on the whole RC dataset, respectively, at its optimal working point

(0.6, selected during the per-box evaluation phase).
3.3 Per-polyp and per-patient results

In Figure 2, we display the FROC curves for the six models

evaluated on RCMT. The top section of the figure shows curves

calculated at various confidence score thresholds (d) for the

YOLOv7 models, with a detection event length t = 2s and a

detection window s = 3s. Each point on these curves represents

the percentage of polyps detected within 3 seconds of their

appearance by an event where consecutive bounding box

predictions span 2 seconds, and at least one detection overlaps

with at least one ground truth (GT) polyp bounding box by an IoU

of 0.2. The confidence score threshold d ranges from 0.1 to 0.9, with

the point at 0.1 positioned in the top right of the plot, indicating an

average of more than 20 FP events per patient and a per-polyp recall

greater than 50%. Increasing d leads to a decrease in both the

number of FP events per patient and the recall per-polyp. The x-

marked points correspond to d = 0.6 - the optimal model working

point as determined in the per-box analysis for maximizing the

F1 score.

The bottom plot of Figure 2 illustrates the curves calculated at

various t thresholds for the YOLOv7 models, maintaining a

detection window of s = 3s. This analysis was performed by

setting the confidence score d at 0.6 and varying t from 0.2

(resulting in the top right of the plot with a high average number

of FP events per patient and high recall per-polyp) to 3, in

increments of 0.2. The x-marked points correspond to t = 1s.

At the top of Figure 3, we present the FROC curves for the

model trained exclusively on the UCD dataset, tested on the whole

RC dataset. Each curve represents different detection event length

thresholds s on the complete RC dataset, with t varying from 0.2 to
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3 seconds and d set at 0.6. It is evident that increasing s, i.e., the
maximum detection time window in which an event can capture at

least one GT polyp bounding box from its first appearance, leads to

higher recall per-polyp rates. At the bottom of Figure 3, we display

the same curves computed on the RCSSP data split, which only

considers frames between the first and last appearances of each

polyp. Although the trends in RCSSP are similar, there are

significantly fewer FP events per patient. This reduction is

attributed to the model being tested on a significantly larger

number of negative frames, as detailed in Table 4.

Overall, as observed in the bottom plot of Figure 3, the new

metrics preserve similar model ranking as seen in the per-frame

ROC plot of Figure 1 and in Table 5 in the per-box analysis.

However, the results become more clinically interpretable,

incorporating a definition of FPs that more effectively describes

both the disturbance to the endoscopist and performance at early

polyp discovery. For instance, the top plot of Figure 3 shows that

with a detection event formation threshold (t) of 1 second, the

model trained solely on the UCD dataset achieves a per-polyp recall

of 48.5% within a response time (s) of 3 seconds. This indicates that
the off-the-shelf YOLOv7 model, when trained on UCD data, can

detect half of the polyps in the REAL-Colon dataset within 3

seconds, generating seven FP events per patient. Extending the

response time to s of 15 seconds increases the per-polyp recall to

78%, without affecting the average number of FPs. Using the same

detection threshold (d) of 0.6 previously resulted in a per-box

precision of 0.51 and recall of 0.38 (Table 5), and a per-frame

TPR of 0.4 and FPR of 0.04 (Figure 1, right), which are less

interpretable for clinical use.
4 Discussion

In this study, we demonstrate how the recent release of full-

procedure, unaltered colonoscopy videos from the REAL-Colon

dataset, along with other open-access colonoscopy datasets,

facilitates comprehensive research, development, and clinic-like

evaluation of learning-based models for polyp detection in a fully
FIGURE 1

Left: Per-Frame ROC curves for the six models trained in this study, evaluated on RCMT. Right: Per-Frame ROC for the model trained exclusively on
the UCD dataset, tested on the entire RC dataset.
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open-access environment. To this end, we have developed an open-

access platform that integrates four open-access datasets for model

training and validation, using the REAL-Colon dataset as a fifth

dataset for testing. This platform offers data splits for consistent

model development and benchmarking, and introduces new

application-specific metrics. These metrics, accompanied by

corresponding FROC plots, are tailored to meet clinical needs

more closely than standard object detection metrics. Specifically,

they focus on events of consecutive detections over a specified time

length t and include per-polyp recall within s seconds and FP event

rates per patient.

By setting a detection event formation threshold of t = 1s and

assessing per-polyp recall within s = 3s of polyp appearance, the

model trained on the UCD dataset achieved a per-polyp recall of

48.5% on the REAL-Colon dataset, while generating seven FP

events per patient at the optimal working point d = 0.6. d is

usually set to maximize the F1 score (as in the case of this work)

or other per-box metrics, but it can now be adjusted to better meet

clinical needs by quantifying FP events at a patient/procedure level
Frontiers in Oncology 07
and measuring early polyp detection. Reports from commercially

available CADe systems suggest that an FP rate of two or fewer per

patient is typical for events lasting one to two seconds Cherubini

and Dinh (15)Hassan et al. (19). Consequently, a rate of seven FPs

per patient might be considered excessively high; therefore,

increasing d to lower this rate would make the CADe system less

intrusive (even if reducing per-polyp recall). Such adjustments not

only enhance CADe behavior interpretation in clinical practice but

also enable the effective fine-tuning of system hyperparameters by

providing complementary information to traditional metrics.

Furthermore, they could facilitate model comparisons at identical

clinical working points (such as a given value of FP per-patient).

As demonstrated in Table 6, our findings also emphasize the

importance of using the complete set of video frames from full

procedures in the test set of our proposed platform, rather than a

subsample, to achieve a more accurate assessment of FP events at the

patient level. Analyzing only frames from polyp clips, as shown in

Figure 3 (bottom), results in a nearly eightfold underestimation of FP

events per patient, primarily due to the exclusion of a large number of
FIGURE 2

Top: FROC plots illustrating the variation in detection threshold d for the six models trained in this study, evaluated on RCMT with a detection event
length threshold t = 2s. Bottom: FROC plots showing the impact of different event length thresholds t for the same models on RCMT, with a fixed
detection threshold d = 0.6. In both plots, the detection window is set at s = 3s and the IoU threshold at 0.2.
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negative frames, which make up nearly 90% of a typical colonoscopy

video (16, 17). Moreover, using continuous frames without gaps is

essential for accurately computing per-polyp recall within s seconds,

which would not be possible otherwise. For these reasons, we chose the

REAL-Colon dataset as the testing set for our open-access platform.

Additionally, this dataset enables the derivation of metrics across

various bounding-box sizes of the same polyps. The results

underscore that detecting smaller bounding boxes presents the

greatest challenge but it is crucial for effectively identifying hard-to-

spot polyps, corroborating findings from previous research (27).

Another noteworthy feature of the proposed open-access platform

is its capacity to assess models performance using data from multiple

centers. In the proposed platform, model checkpoints were selected

based on their maximization of AP0.5:0.95 on the PolypGen dataset,

chosen for its diverse representation of polyps from various centers.

The UCD training dataset comprises over 118,000 positive images,

including 380 polyps, and over 217,000 negative images sourced from

multiple sites, distinct from the validation and test sets. This extensive

dataset forms a solid foundation for model training. Additionally, the
Frontiers in Oncology 08
REAL-Colon test set encompasses video data from four diverse

cohorts collected worldwide, facilitating the evaluation of model

generalization across four unseen centers (United States, Italy,

Austria, Japan). Taken together, this platform enables comparison

of various models developed and validated under the same conditions,

thereby ensuring the robustness and reliability of CADe system

development. As anticipated, our results demonstrate that models

trained on specific cohorts exhibited enhanced performance on their

corresponding test sets, with an average 5-point increase in average

precision achieved by incorporating just 5 videos from the same

cohort in the training set (Table 4). An important source of error

arises from the variability in endoscope models and types of

illumination used across different data cohorts, and fine-tuning on

center-specific data helps address this issue. Notably, cohort 003,

characterized by the lowest average Boston Bowel Preparation Scale

(BBPS) score of 7.8 compared to scores of 8.3 or higher in the other

cohorts and featuring the longest video acquisitions, resulted in the

lowest AP0.5:0.95. This is likely due to a higher number of frames

containing debris that resembles polyp-like structures and can
FIGURE 3

Top: FROC plots for the UCD model tested on the RC dataset, varying the detection event length threshold t for multiple detection windows s. This
was executed with detection threshold d = 0.6 and IoU threshold = 0.2. Bottom: FROC plots for the UCD model tested on the RCSSP dataset, using
the same parameters as above.
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confound the model or that complicate the detection of actual polyps.

We believe that future efforts should prioritize the development of

models with robust generalization capabilities across all four cohorts.

Finally, the importance of real-time processing in deploying polyp

detection models in clinical environments is crucial. It ensures the

continuity of clinical procedures without introducing disruptive delays.

All YOLOv7 models trained in this study achieve an inference speed of

85 frames per second with a batch size of one on an NVIDIA RTX

A4000 with 16GB, aligning well with the typical endoscopy video frame

rate of 25–30 frames per second. Moreover, potential enhancements

using acceleration libraries such as TensorRT could further optimize

this efficiency. The ultimate objective of polyp detection research is to

develop models that can achieve real-time processing speeds, maintain

a minimal number of FP events per-procedure, and maximize per-

polyp recall within s seconds. Our proposed platform facilitates the

realization of these goals.

A limitation of this study is the exclusive use of the off-the-shelf

YOLOv7 model, which, while demonstrating adequate sensitivity and

specificity for polyp detection, primarily serves as a baseline. This

approach was intentional, aimed at establishing and validating new

clinical metrics and showcasing the proposed open-access platform.

We have made the YOLOv7 code and processing scripts fully available

to enable easy replication of our experiments and to encourage the

exploration of alternative models in future research.

In conclusion, this research introduced a novel open-access

platform that enhances the development and evaluation of deep polyp

detection models under clinically equivalent conditions. The platform

includes rich training and validation datasets and a testing dataset

comprised of full-procedure videos, enabling clinic-like validation and

model generalization assessment across unseen centers, particularly in

challenging situations such as early detection and small polyp bounding

box sizes. Moreover, we introduced new metrics and corresponding

FROC curves designed to more effectively interpret the efficacy of polyp

detection algorithms and fine-tune their working hyperparameters.

Combined with estimation of real-time processing capabilities, these

tools facilitate a comprehensive evaluation of a model’s clinical efficacy.

By leveraging these innovations, we hope that future research will

significantly enhance patient care by better meeting the clinical demands

of real-time CADe colonoscopy.
Frontiers in Oncology 09
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