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Understanding the impact of
radiotherapy fractionation on
overall survival in a large head
and neck squamous cell
carcinoma dataset: a
comprehensive approach
combining mechanistic and
machine learning models
Igor Shuryak*, Eric Wang and David J. Brenner

Center for Radiological Research, Columbia University Irving Medical Center, New York City, NY,
United States
Introduction: Treating head and neck squamous cell carcinomas (HNSCC),

especially human papillomavirus negative (HPV-) and locally advanced cases,

remains difficult. Our previous analyses of radiotherapy-only HNSCC clinical

trials data using mechanistically-motivated models of tumor repopulation and

killing by radiotherapy predicted that hyperfractionation with twice-daily

fractions, or hypofractionation involving increased doses/fraction and reduced

treatment durations, both improve tumor control and reduce late normal tissue

toxicity, compared with standard protocols using 35×2 Gy. Here we further

investigated the validity of these conclusions by analyzing a large modern dataset

on 3,346 HNSCC radiotherapy patients from the University Health Network in

Toronto, Canada, where 42.5% of patients were also treated with chemotherapy.

Methods: We used a two-step approach that combines mechanistic modeling

concepts with state-of-the-art machine learning, beginning with Random

Survival Forests (RSF) for an exploratory analysis and followed by Causal

Survival Forests (CSF) for a focused causal analysis. The mechanistic concept

of biologically effective dose (BED) was implemented for the standard dose-

independent (DI) tumor repopulation model, our alternative dose-dependent

(DD) repopulation model, and a simple model with no repopulation (BEDsimp).

These BED variants were included in the RSF model, along with age, stage, HPV

status and other relevant variables, to predict patient overall survival (OS) and

cause-specific mortality (deaths from the index cancer, other cancers or

other causes).

Results: Model interpretation using Shapley Additive Explanations (SHAP) values

and correlation matrices showed that high values of BEDDD or BEDDI, but not

BEDsimp, were associated with decreased patient mortality. Targeted causal

inference analyses were then performed using CSF to estimate the causal
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effect of each BED variant on OS. They revealed that high BEDDD (>61.8 Gy) or

BEDDI (>57.6 Gy), but not BEDsimp, increased patient restricted mean survival time

(RMST) by 0.5-1.0 years and increased survival probability (SP) by 5-15% several

years after treatment. In addition to population-level averages, CSF generated

individual-level causal effect estimates for each patient, facilitating

personalized medicine.

Discussion: These findings are generally consistent with those of our previous

mechanistic modeling, implying the potential benefits of altered radiotherapy

fractionation schemes (e.g. 25×2.4 Gy, 20×2.75 Gy, 18×3.0 Gy) which increase

BEDDD and BEDDI and counteract tumor repopulation more effectively than

standard fractionation. Such regimens may represent potentially useful

hypofractionated options for treating HNSCC.
KEYWORDS

radiotherapy, head and neck squamous cell carcinoma, causal survival forests, survival,
fractionation, biostatistics
1 Introduction

Head and neck squamous cell carcinoma (HNSCC) poses a

significant global health challenge, ranking as the seventh most

prevalent cancer worldwide. It originates in the mucous membranes

of the mouth, nose, and throat (1). HNSCC is classified based on its

location, encompassing areas like the oral cavity, oropharynx, nasal

cavity, paranasal sinuses, nasopharynx, larynx, and hypopharynx.

Depending on the site of origin, it may present as abnormal patches,

open sores, bleeding, pain, sinus congestion, sore throat, earache,

difficulty swallowing, hoarse voice, breathing difficulties, or lymph

node enlargement. HNSCC has the potential to metastasize to other

parts of the body, contributing to over 800,000 new cancer

diagnoses annually (2, 3).

Radiotherapy is integral to HNSCC treatment. The

conventional approach involves administering 2 Gy doses daily

on weekdays, accumulating to a total of 70 Gy, with a focus on the

primary tumor and affected lymph nodes. Recent decades have seen

significant technological advancements, especially with the

adoption of intensity-modulated radiotherapy (IMRT). This

innovation enables precise delivery of high-dose radiation to the

tumor, minimizing exposure to surrounding healthy tissues. The

evolution in technology significantly reduces both immediate and

delayed toxicity associated with the treatment.

However, treating HNSCC with radiotherapy is still challenging

due to several factors (4–7). The intricate anatomy of the head and

neck, coupled with its proximity to critical structures, poses

challenges in delivering high doses of radiation without

significant side effects. Radiation-induced side effects can

substantially impact a patient’s quality of life, and adherence to

conventional fractionation schedules can be challenging,
02
particularly for those with limited resources. Factors such as

comorbidities, substance use, and underinsurance further

complicate the treatment landscape. Timely completion is crucial,

but obstacles like transportation, lack of caregiver support, and

financial strain may hinder adherence. The aging HNSCC

population faces additional challenges, given their increased

susceptibility to severe toxicity. Addressing these challenges

could offer benefits by reducing the burden and duration of

radiation therapy, making it more logistically feasible without

compromising efficacy.

HNSCC tumors testing negative for Human Papillomavirus

(HPV) can demonstrate rapid growth and resistance to radiation

therapy. HPV is a group of more than 200 related viruses, with

several types linked to cancer development, particularly in the

genital and oropharyngeal regions (8). HPV-negative cancers,

often associated with tobacco and alcohol use, tend to be more

aggressive and less responsive to treatment, with recurrence rates

exceeding 35% for advanced stages (9). Despite treatment

advancements, cancer recurrence remains a major issue, with a

locoregional recurrence rate of 15–50%. While salvage surgery may

offer a curative option for patients with resectable locoregional

recurrence, it is often not feasible or only possible with severe

complications and limited success rates. Furthermore, advanced

and recurrent cancers often develop resistance to treatment, making

them more challenging to manage (10).

These factors necessitate ongoing research for more effective,

less toxic, and logistically simplified HNSCC radiotherapy strategies

(11). Radiobiological modeling is important for achieving these

goals (12). The clinical utility of the linear-quadratic (LQ) model

lies in its ability to compare fractionation schedules and predict

radiation responses. In this model, tumor sensitivity to dose per
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fraction is governed by the a/b ratio. For HNSCC the a/b ratio is

relatively high (around 10 Gy), suggesting that its sensitivity to large

doses per fraction is not as large as for some cancers (e.g. breast and

prostate) with smaller a/b ratios. For this reason, hypofractionation

involving doses per fraction >2 Gy was not as thoroughly

investigated for HNSCC as for these other cancers, and was

mainly used with palliative rather than curative intent for

HNSCC. Instead, many HNSCC clinical trials have investigated

the opposite approach of hyperfractionation with smaller fractions

twice or three times daily to exploit the radiobiological distinction

between tumor and normal tissue (13). The administration of small

fractions twice per day decreases the incidence of late toxicity,

enabling the delivery of higher total radiation doses compared to

conventional dosing. Another alternative - accelerated radiotherapy

- addresses tumor repopulation concerns by delivering doses of 1.8–

2 Gy twice daily or more than five fractions per week, thereby

reducing the overall treatment time (12). The reduction in overall

treatment time serves to mitigate tumor repopulation. Both

strategies have the potential to enhance tumor control.

To address these challenges comprehensively, we adopt a

sequential machine learning approach. Initially, we employ

Random Survival Forests (RSF) to broadly analyze survival data

and identify significant predictors of outcomes. This is followed by a

targeted causal investigation using Causal Survival Forests (CSF),

which allows us to delve deeper into the causal relationships

between treatment variables and patient survival. This pipeline

approach ensures a thorough exploration of the data, starting

with general pattern identification and leading to specific

causal inferences.

Several randomized trials have investigated various radiotherapy

schedules for head and neck cancer, but conflicting results regarding

tumor control and survival have emerged. The inconsistency is

mainly attributed to trial heterogeneity and small sample sizes.

Despite these challenges, the trials suggest that modifications in

fractionation are often linked to more frequent acute side effects,

while late toxicity rates are similar or less frequent compared to

conventional fractionation radiotherapy.

The Meta-Analysis of Radiotherapy in Carcinomas of Head and

Neck (MARCH) revealed that altered fractionation radiotherapy is

associated with improved overall survival and progression-free

survival when compared to conventional fractionation

radiotherapy (13). The analyzed trials were categorized based on

specific altered fractionation techniques. These categories included

hyperfractionation, involving a higher total dose administered

through twice-daily fractions within the same overall treatment

time; moderate acceleration, maintaining an unchanged total dose

but delivered more expeditiously (typically about 1 week faster); and

very accelerated radiotherapy with dose reduction, reducing the

duration by 50% or more, accompanied by a total dose decrease of

approximately 15%. The meta-analysis notably excluded trials

investigating hypofractionated radiotherapy, primarily used in

palliative cases with doses per fraction >2.5 Gy. This

comprehensive analysis affirmed the effectiveness of altered

fractionation radiotherapy, especially hyperfractionation, over

conventional fractionation radiotherapy.
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However, hyperfractionation imposes a logistical challenge

which can result in reduced compliance with the therapy.

Hypofractionation using fewer larger fractions delivered over a

shorter overall time alleviates this issue, and the shortened

treatment time is useful to counteract repopulation of quickly

growing HNSCC tumors. Navigating the radiobiological

complexities of hypofractionation, where the delicate balance

between tumor control and toxicity is crucial, represents a key

consideration (7). The adoption of accelerated regimens hinges on

mucosal tolerance, with hypofractionation demonstrating feasibility

when considering mucosal tolerance, resulting in shorter acute side

effects and improved tolerability. Initiatives transitioning from

conventional to hypofractionation must carefully weigh the

impact on late toxicity. While shorter regimens may mitigate late

effects, the heightened radiosensitivity of tissues during prolonged

radiation courses poses challenges. Studies comparing 3 and 5

weeks of radiation therapy for HNSCC show varied outcomes in

tumor control and late toxicity. Successful implementation of

hypofractionation in HNSCC treatment requires a comprehensive

approach incorporating modern techniques, systemic therapy, and

vigilant monitoring.

Importantly, there has been little progress for HPV-negative

HNSCCs in the past two decades (7). Despite efforts to explore

systemic therapies beyond cisplatin, achieving better disease control

remains challenging. However, potential advancements are anticipated

with emerging agents and adjuvant therapies. Hypofractionation,

endorsed through noninferiority trials across various cancers, has

become a preferred practice in multiple disease sites, enhancing

treatment efficiency and reducing costs. The ongoing investigation

into ultrahypofractionation (≤5 fractions) represents a second wave of

studies aiming to further optimize treatment approaches.

Amidst ongoing HNSCC clinical trials, such as HEADLIGHT

(Mayo Clinic), NCT05075980; NCT04284540 (Mount Sinai);

HYPORT (NCT04403620), HYHOPE (NCT04580446) at the

University of Texas Southwestern; and DEHART (NCT04477759),

HART-HN (NCT 05120947), HyPR-HN (NCT05538533) at the

Medical College of Wisconsin, there is a discernible interest in

adopting hypofractionation for head and neck cancer. While

hypofractionation is already applied in specific cases, such as early-

stage glottic cancer, stereotactic body radiation therapy for

reirradiation, palliation, and heavy ion therapy, it is not universally

applicable for all head and neck cancers. Existing uncertainties, such

as the absence of late toxicity assessments beyond 5 years in ongoing

studies and limited randomized comparisons with conventional

fractionation, underscore the need for a cautious approach. Some

trials employ a time-to-event continuous reassessment methodology

(TiTE-CRM), an adaptive statistical approach, to assess delayed

toxicity. Key considerations include the safety of delivering

radiosensitizing cisplatin with hypofractionation, economic

implications, and the generalizability of findings beyond specialty

centers. The ongoing exploration of conformal hypofractionation

should prompt a comprehensive evaluation of its potential benefits

for patients with HNSCCs.

Our previous analyses (14, 15) of classic radiotherapy-only

HNSCC clinical trials data using mechanistically-motivated
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quantitative models of tumor repopulation and killing by

radiotherapy predicted that hypofractionation involving increased

doses/fraction and reduced overall treatment durations, or

hyperfractionation with twice-daily fractions, improve tumor

control and reduces late normal tissue toxicity, compared with

protocols using 35x2 Gy fractions spread over 7 weeks. Specifically,

in the first study (16) we explored an alternative dose-dependent

(DD) model of accelerated tumor repopulation (AR), where the

onset time and rate of AR depend on the number of tumor

clonogens killed, thus on radiation dose and dose-fractionation.

This model produced better fits to a wide range of clinical data from

HNSCC clinical trials, compared to the standard dose-independent

(DI) repopulation model, where the onset time and rate of AR do

not depend on radiotherapy details. This model, which assumes that

repopulation occurs when a threshold survival fraction is reached, is

detailed in the paper by Shuryak et al. (2018) (14). In the second

study (17), we performed systematic radiobiological optimization

using both DD and DI repopulation models to identify

fractionation schemes that improve the balance between tumor

control probability (TCP) and long-term normal tissue

complication probability (LNTCP).

This research suggested that both hypofractionated schedules

with doses >2 Gy/fraction, and twice-daily treatments with <2 Gy/

fraction, with reduced overall treatment times, can substantially

increase TCP while decreasing LNTCP, compared to a standard

35x2 Gy protocol. This general conclusion applied to both the DI

and DD models, although the numerical predictions differed

somewhat between models. Hypofractionation and twice-daily

hyperfractionation are related in their radiobiological effects

because both approaches increase the “intensity” of tumor cell

killing per day, and this pattern applies regardless of the details of

the repopulation model. Consequently, hypofractionation or its

close variant, accelerated hyperfractionation, prove to be efficient

strategies in overcoming tumor repopulation, especially in fast-

growing tumors like HNSCC.

The main limitations of these modeling studies were: (1) Only

classic radiotherapy-alone (no chemotherapy) HNSCC clinical

trials were analyzed because the DD and DI models were not

developed to handle chemotherapy effects. The treatment

approaches and technology implemented in those trials are by

now largely outdated. (2) The data were available only in

summary form: group averages for different arms of the clinical

trials, instead of individual-level patient data. (3) Some important

clinical variables such as HPV status were not available.

The objective of the current paper is to scrutinize the validity of

the main conclusions of these previous modeling studies about the

usefulness of altered radiotherapy fractionation through the lens of

contemporary HNSCC patient treatment data, evaluating patients

who have undergone modern treatment techniques. To achieve this,

we used a comprehensive dataset from the RADCURE project,

encompassing records of 3,346 patients treated for head and neck

cancer at the University Health Network in Toronto, Canada, from

2005 to 2017 (18, 19). This dataset is particularly valuable due to its

extensive coverage of relevant parameters, including radiotherapy

dose and fractionation, chemotherapy, various clinical variables,

and patient survival outcomes.
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We used a two-step analysis approach on the RADCURE data

set, which combines mechanistic modeling concepts with state-of-

the-art machine learning techniques, beginning with Random

Survival Forests (RSF) for an exploratory analysis and followed

by Causal Survival Forests (CSF) for a focused causal analysis.

This approach is informed by previous work where RSF and

Shapley Additive Explanations were effectively employed to

model nonlinear relationships in radiation exposure studies.

This study aims to thoroughly investigate the effects of

radiotherapy fractionation on overall patient survival (OS) and

cause-specific mortality (deaths from the index cancer, other

cancers or other non-cancer causes), contributing valuable

insights to the ongoing discourse on optimizing head and neck

cancer treatment strategies.

Importantly, conventional statistical and machine learning

approaches primarily emphasize prediction based on variable

correlations (20). These methods produce associations rather than

causation regarding the influence of individual features (e.g.,

radiation dose). In contrast, Causal Machine Learning (CML), such

as causal survival forests (CSF), can be used for establishing causal

relationships between variables, facilitating the generalization of

results across various scenarios and enabling targeted interventions

(20–23).

Predictive and causal modeling approaches are fundamentally

distinct (20, 24–26). In predictive tasks, the objective is to

accurately predict an outcome variable, such as patient survival

time, based on predictor variables (features). The accuracy of these

predictions for new datasets depends on the resemblance of data

distributions and correlation structures to the initial training data.

In contrast, causal analysis involves modeling how changes in a

specific feature, such as radiation exposure, influence the outcome.

Causal modeling’s utility extends beyond the distributions of

training data, making it adaptable to various datasets, even with

disparate variable correlations. This distinction highlights that

predictive modeling is an unreliable approach for causal inference,

especially in observational data. Predictive models tackle

associations, while causal models explore interventions and

counterfactuals, assessing the effects of modifying causal

variables (20). Maximizing prediction accuracy during training

may introduce biases, such as collider bias and overcontrol bias,

which can potentially lead to errors in causal inference (27–30).

Common techniques used in predictive modeling, like

regularization and feature selection, may also yield inaccurate

causal inferences. Predictive models can only be causally

interpreted when the feature of interest is independent not only

of other features but also of unobserved confounders.

In contrast, CML methods are explicitly designed to model

cause-and-effect relationships, even within complex data featuring

confounders. CML is not constrained by strict assumptions about

the shapes of causal relationships. Its main assumptions include the

stability of cause-and-effect relationships, the absence of reverse

causation, ignorability, and positivity. The ignorability assumption

posits the absence of unmeasured confounding variables affecting

both the treatment variable (the focal variable for causal

investigation) and the outcome variable (the variable under causal

scrutiny). Essentially, it presumes that all relevant confounding
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variables are both measured and considered in the analysis. While

ignorability is not directly assessable, refutation methods can

indirectly evaluate it. Positivity assumes that the likelihood of

receiving a particular treatment level (exposure) exceeds zero for

all strata of covariates (confounding variables). This implies that

every subgroup within the population has a nonzero chance of

being exposed to the treatment of interest. Failing to meet the

positivity assumption can make estimating causal effects

challenging, as there may be groups where the treatment is never

observed, rendering it impossible to assess its impact within

those groups.

Another very important capability of several CML methods is

the doubly robust estimator property. A doubly robust estimator

(DRE) remains unbiased even if either the treatment or outcome

model is correctly specified, but not necessarily both. This flexibility

enhances the robustness of causal inferences, as it allows for some

degree of model misspecification without compromising the

reliability of the estimated treatment effects. For example, suppose

we are investigating the causal effect of a specific radiotherapy

protocol on the survival time of cancer patients. In this scenario,

there will be two models: (1) The treatment model, which estimates

the effect of radiotherapy on survival time and accounts for various

factors, including dose, duration, age, stage of cancer, comorbidities

and other patient characteristics. (2) The outcome model, which

predicts patient survival time and considers the same relevant

variables as the first model. The DRE property implies that even

if only one of these two models (but not both) is correctly specified,

the estimated causal effect of the radiotherapy remains unbiased.

This robustness is valuable because, in practice, it is very

challenging to perfectly specify both models due to the

complexity of medical scenarios and the presence of unobserved

variables. Thus, the DRE property ensures that causal inferences

remain reliable and unbiased even when there is some degree of

uncertainty or misspecification in the models used to estimate

treatment effects and predict outcomes.

While CML methods have been gaining recognition in a range

of disciplines (22, 23, 31, 32), their adoption in radiation oncology

so far remains limited. CML offers a more thorough and accurate

comprehension of these relationships, with the capacity to estimate

effects at both population and individual levels, holding substantial

potential for informing radiation oncology decision-making.

In this study, we combined the strengths of three types of

radiobiological modeling joined into a coherent analysis pipeline:

(1) The mechanistic concept of biologically effective dose (BED)

was implemented for the standard dose-independent (DI) tumor

repopulation model, for our alternative dose-dependent (DD)

repopulation model, and for a simple model with no

repopulation (BEDsimp). (2) A powerful predictive machine

learning algorithm - random survival forests (RSF) – was

employed as an initial step to model patient overall survival

(OS) and cause-specific mortality (deaths from the index cancer,

other cancers or other non-cancer causes) using the BED variants

together with clinical variables. (3) Targeted causal inference

analyses were then performed using the CSF algorithm to

estimate the causal effect of each BED variant separately on OS.
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We believe that the results of these analyses deepen the current

insights into how radiotherapy fractionation affects the

effectiveness of HNSCC treatment.
2 Materials and methods

A detailed description of the data processing and machine

learning analyses is provided in Supplementary Methods in the

Supplementary Materials. The main aspects are provided below.
2.1 Data collection

The dataset was obtained from the RADCURE project,

consisting of 3,346 head and neck cancer patients treated with

definitive radiotherapy (RT) at the University Health Network in

Toronto, Canada (18, 19). This dataset is very useful for

investigating the effects of different radiotherapy fractionation

schemes on HNSCC patient survival because it includes a variety

of total doses and doses per fraction. To provide a comprehensive

overview of the treatment regimens used in the dataset, we analyzed

the distribution of different fractionation schedules. Table 1

summarizes the number of patients treated with various numbers

of fractions and doses per fraction. It shows that while most patients

were (expectedly) treated with the standard 35 fraction/70 Gy

regimen, 4 other regimens were represented by >50 patients each,

indicating the diversity of the RADCURE data set.
2.2 Data preprocessing and
feature selection

The RADCURE data set contained numerous clinical variables,

and for analysis we selected the following most relevant ones, trying to

avoid redundancy: Age (patient age, years), Sex (0=female, 1=male),

SmokingPY (number of packs smoked in a year), Stagenumeric (AJCC

7th edition staging categories, converted into integers of 0–4), HPV

(tumor HPV status determined by p16 IHC ;+/- HPV DNA by PCR),

Chemo (1=received concurrent chemoradiotherapy, 0=did not receive

concurrent chemoradiotherapy), RTyear (calendar year of the

radiotherapy treatment), Status (binary indicator of vital status at last

contact date), LengthFU (duration of follow up from diagnosis to last

contact date in years). The HPV status was categorical, indicating

positive, negative, or unknown (missing). To incorporate this

information into our analysis, we applied one-hot encoding,

representing HPV- as the default, while creating separate binary

columns for HPVPositive and HPVUnknown. The Status and LengthFU
variables were the outcome variables, indicating overall survival (OS).

The data were imported and analyzed using the R and Python

programming languages.

In addition to studying OS, we performed a targeted analysis of

cause-specific mortality in HNSCC patients, distinguishing deaths

from the index cancer, other cancers or other (non-cancer) causes. In

this analysis we also assessed the contributions of head and neck
frontiersin.org

https://doi.org/10.3389/fonc.2024.1422211
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shuryak et al. 10.3389/fonc.2024.1422211
cancer diagnosis site to each cause of death. We selected only those

sites which contained data for ≥20 patients each (Esophagus,

Hypopharynx, Larynx, Lip Oral Cavity, Nasal Cavity, Oropharynx),

and discarded sites with smaller numbers of patients and entries with

unknown diagnosis site. This data subset contained 2,651 patients.

These selection criteria were designed to exclude those diagnosis sites

for which too few samples were available to be informative. The

different diagnoses sites were coded as separate columns of binary (0

or 1) variables, with 1 indicating that the given sample had the tumor

at the given site.
Frontiers in Oncology 06
2.3 Calculation of biologically effective
dose for different tumor killing and
repopulation models

To compare the effects of various radiotherapy regimens

present in the RADCURE data set, we employed the well-

established Biologically Effective Dose (BED) concept (33). If

tumor repopulation is neglected, a simplistic BED can be

calculated as follows, where m is the number of fractions, d is

dose per fraction, and r is the a/b ratio (assumed to be 10 Gy for

HNSCC):

BEDsimp = m   d   (1 +
d
r
)

A more advanced BED version which includes accelerated

tumor repopulation (AR) which is assumed to begin at a fixed

onset time Tk is based on the work of Withers et al (34). Since Tk is

assumed to be independent of radiotherapy details such as dose or

dose/fraction, we called this the “dose independent” (DI) model,

and the consequent BED is labeled BEDDI. Based on our previous

publication (14), the equation for BEDDI is as follows, where l =

accelerated tumor repopulation rate, g = background slow

repopulation rate (not accelerated), Tk = onset time for

accelerated repopulation, T = total radiotherapy treatment time:

BEDDI = ½m a d
d  +  r
r

−  g T  −  l max(0,  T  −  Tk)�=a

As another alternative, we considered our proposed “dose

dependent” (DD) tumor repopulation model, where both the

onset time and rate of AR are assumed to depend on the average

fraction of tumor cells killed by radiotherapy each day (14). In other

words, in this model the tumor responds to a higher “intensity” of

tumor cell killing by radiotherapy by starting AR earlier and

increasing its rate. AR is assumed to begin when the natural

logarithm of the tumor cell surviving fraction drops below a

certain value –C. The equation describing BEDDD from this

model is below:

BEDDD =
½r l(exp( −m a d d + r

T r ) −  1)max (0,   − T −m a d (d + r)+ C r
m a d (d + r) ) +  (a d m  −  T g) r  +  m a d2�

r a

Details of the derivations of BEDDI and BEDDD are described in

the Supplementary Methods. The parameters were taken from

reference (14). They were as follows: BEDDI: a = 0.069 Gy-1, l =

0.035 days-1, Tk = 28.6 days; BEDDD: a = 0.224 Gy-1, l = 1.17 days-1,

C = 14.5. The default a/b ratio r was 10 Gy for both models (14).

The resulting BEDsimp, BEDDI and BEDDD variables were included

in the RADCURE data set as predictors of OS. These parameter

values were derived from fitting the DD and DI models to a

collection of classical HNSCC clinical trials involving different

radiotherapy fractionation schemes.

Since it is known that the a/b ratio for HNSCC can vary

considerably among different studies and data sets (35), in the

subset analysis described above for cause-specific mortality we also

assessed sensitivity of model predictions to this parameter by

including in the model different versions of BEDsimp, BEDDI and
TABLE 1 Detailed breakdown of radiotherapy fractionation schedules in
the RADCURE data set.

Number
of Fractions

Total
dose (Gy)

Number
of Patients

35 70.00 2289

25 60.00 386

40 64.00 263

20 51.00 227

33 66.00 91

30 60.00 28

25 50.00 19

20 50.00 9

34 68.00 6

32 64.00 4

40 60.00 3

31 62.00 2

33 69.96 2

60 66.00 2

20 52.00 1

20 55.00 1

21 53.55 1

22 52.80 1

27 60.00 1

30 66.00 1

33 59.40 1

34 70.00 1

36 54.40 1

37 69.60 1

39 74.00 1

40 62.40 1

40 50.80 1

41 67.60 1

45 66.00 1
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BEDDD which differed from each other by using different a/b
values, 7, 10 or 13 Gy. These variables were labeled with extra

subscripts, e.g. BEDDD 7, BEDDD 10 and BEDDD 13.
2.4 Machine learning pipeline for predictive
and causal analysis

Our study utilizes a unified two-step machine learning pipeline

to analyze the effects of radiotherapy fractionation on overall

survival. In the first step, we employ Random Survival Forests

(RSF) to conduct a general analysis of the dataset, leveraging RSF’s

capability to handle censored data and capture complex interactions

between features. This exploratory phase helps in identifying

significant predictors of patient outcomes and sets the stage for a

more detailed investigation. The second step involves deploying

Causal Survival Forests (CSF) to specifically explore the causal

impact of identified variables on survival. This targeted approach

allows us to substantiate the patterns observed in the RSF analysis

with a causal perspective, providing insights into how changes in

treatment variables could potentially affect patient survival. This

sequential utilization of RSF and CSF underscores our

comprehensive strategy to not only predict survival outcomes but

to understand the underlying causal mechanisms. In each analysis,

the data set was randomly divided (70:30) into training and testing

portions, with all model fitting and optimization being performed

on the training portion and the testing portion being withheld for

evaluation. The two steps of this approach are described below.

Step 1: Predictive Machine Learning Analysis using Random

Survival Forests (RSF).

We utilized Random Survival Forest (RSF), a predictive

machine learning method, to model OS using all the other

available variables (features) in the data set. The goals of this

analysis were to identify: (1) How accurately can OS be predicted

using the available variables? (2) Which variables are most

important contributors to these predictions? (3) How does

radiotherapy, represented by the BEDDD, BEDDI and BEDsimp

variables, contribute to predicting OS or cause-specific mortality?

Separate RSF analyses were performed for all patients in the data

set, and separately for the HPV- patients only. SHapley Additive

exPlanations (SHAP) values are a state of the art method for

interpreting complex machine learning models, such as those

used here. We calculated SHAP values for all features in the RSF

model and visualized them. These calculations were implemented

using the scikit-survival Python library.

As mentioned above, we also conducted a subset analysis focused

on cause-specific mortality, distinguishing deaths from the index

cancer, other cancers or other (non-cancer) causes, and evaluating

the contribution of diagnosis site and a/b ratio. Since multiple

competing causes of death were modeled in this scenario, we used

the RSF variant for competing risks, implemented in the

randomForestSRC R package (36). The RSF model handles

competing risks by simultaneously considering multiple mortality

causes. At each node, the model uses a modified log-rank test to

choose splits that best separate causes of death. Each terminal node

represents data subsets with similar characteristics and predicted
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outcomes. These competing risk modeling results were visualized

using the Cause-Specific Cumulative Hazard Function (CSCHF) and

Cumulative Incidence Function (CIF) plots. The CSCHF illustrates

the rate of death from a specific event type while considering the

presence of other competing events. In contrast, the CIF estimates the

marginal probability of death based on its cause-specific probability

and overall survival probability. These metrics are vital for

comprehending the survival experience involving multiple

competing events and offer more interpretable estimates than

traditional survival analysis methods. Variable Importance (VIMP)

scores, which assess the significance of each feature in predicting

outcomes (different mortality causes), were also generated. VIMP is

determined by the increase in prediction error when the feature’s

values are randomly permuted. A larger increase in prediction error

indicates greater importance of the feature. High positive VIMP

values signify strong predictive importance.

Step 2: Causal Machine Learning Analysis Using Causal Survival

Forest (CSF).

The CSF algorithm, implemented using the causal_survival_forest

function of the grf R package (23, 37), was employed to quantify the

causal effects of each BED variant (BEDDD, BEDDI or BEDsimp) on OS.

The CSF algorithm uses a binary (0 or 1) causal/treatment variable as

the input. Consequently, we converted continuous BEDDD, BEDDI or

BEDsimp into binary variables by using manually defined cut-points

guided by the SHAP analysis results from the RSF model described

above. For example, the examination of RSF-generated SHAP values

for BEDDD suggested a nonlinear response, where a clear reduction in

patient mortality was associated with BEDDD values >61.8 Gy.

Consequently, a causal variable for CSF analysis was created where

BEDDD values ≤61.8 Gy were mapped to 0, and BEDDD values >61.8

Gy were mapped to 1. The same approach was used to binarize BEDDI

and BEDsimp, but with different cutoff values.

Consequently, three separate CSF analyses were performed,

using binarized versions of either BEDDD, BEDDI or BEDsimp as

the causal/treatment variable. In each case, the other two BED

versions were not included in the data set. For example, if binarized

BEDDD was the causal variable, BEDDI and BEDsimp were not

included. The set of covariates/potential confounders was the

same in each analysis: Sex, SmokingPY, Stagenumeric, HPVPositive,

HPVUnknown, Chemo, RTyear, Age.

Two estimands (metrics) were selected to describe the causal

effect of each BED variant. They were RMST (Restricted Mean

Survival Time) and survival probability (SP). RMST represents the

average survival time up to a specific time point (e.g., a fixed follow-

up time or a certain event occurrence). Notably, it offers a

straightforward and easily communicable representation of the

average survival duration up to a specified time point. Its

significance is particularly pronounced in clinical research, as it

provides a clinically comprehensible summary of time-to-event

data, facilitating the evaluation of intervention effectiveness and

therapeutic outcomes. Additionally, RMST exhibits robustness in

the face of violations of the proportional hazards assumption,

rendering it well-suited for diverse study scenarios where

alternative methods may prove less effective. In comparison, SP

refers to the likelihood of an event (death in this case) occurring

beyond a given time point. In causal survival forests, SP provides
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insights into the probability of survival (or event-free survival) at

specific time intervals. Both RMST and SP were calculated for

various times after treatment. Various sensitivity analyses and

refutation tests, described in more detail in Supplementary

Methods, were performed to evaluate the robustness of CSF results.
3 Results

3.1 Predictive RSF analysis

In the first step of our analysis pipeline, we utilized RSF to

explore and predict overall survival (OS) or cause-specific mortality

(distinguishing deaths from the index cancer, other cancers or other

non-cancer causes) in the RADCCURE patients using the BED

variants and clinical variables as features (predictors). Visually, RSF

predictions for OS agreed quite well with the observed data: a

comparison of mean RSF-predicted and observed Kaplan-Meier

survival curves for patients in different age ranges is shown in

Figure 1. As expected, OS was reduced for patients of older ages

compared with those in younger age groups, and the RSF model

captured these patterns adequately. The effects of all other variables

were lumped together within each age group, so the plots in Figure 1

are intended only as an overall visualization of model agreement

with the data.

Quantitatively, predictive performance of the RSF algorithm

with tuned hyperparameters (min_samples_leaf = 30,
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min_samples_split = 2, n_estimators = 52) was assessed on

training data using 10-fold cross validation (CV), and separately

on testing data. On training data (70% of the data set), it generated a

mean concordance score (c-index) of 0.759 on training folds and

0.730 on testing folds. On separate testing data (30% of the data set)

this model had a c-index of 0.718. Very similar performance was

achieved if only BEDDD, rather than all three BED variants (BEDDD,

BEDDI and BEDsimp) were included in the model. These results

suggest that RSF performance was good, and the model was not

overfitting the training data much and was able to generalize well to

testing data.

SHAP value summary plots for the RSF model on testing data,

which show how different features contributed to the model’s

predictions, are displayed in Figures 2A, B. Panels A and B

display results for the model variant which included BEDDD,

BEDDI and BEDsimp, whereas panels C and D represent the

model variant which included only BEDDD (not BEDDI or

BEDsimp). In both models, the most important predictors of

mortality in this patient population were age, HPV, stage,

smoking and calendar year. Chemotherapy was the next most

important predictor of mortality. Radiotherapy (BED variants)

contributed less than chemotherapy, but still had non-negligible

effects. Sex contributed very little to model predictions. These

findings suggest that the SHAP contributions of BEDDD and

BEDDI are likely to be largely redundant to each other, and it is

not necessary to include both of them in the model. BEDsimp

contributed less than either BEDDD or BEDDI.
FIGURE 1

Visualization of predictive performance of the RSF model for OS on testing data. Mean predicted Kaplan-Meier survival curves for patients in different
age ranges (red dashed curves) are compared with observed patterns (blue solid curves), as function of time after treatment. Blue shaded regions
represent 95% confidence intervals for observed survival.
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Figures 2A, C show the mean absolute SHAP values for each

feature, whereas Figures 2B, D provide more detail by displaying

SHAP values for each individual patient in the testing data set and

color coding them by feature value. For example, higher values of

age (red points for the Age feature in Figures 2C, D) are associated

with high positive SHAP values for Age, indicating that mortality

risk is increased at old ages. Conversely, high red values of the

HPVPositive feature (which indicate HPV+ patients) were associated

with negative SHAP values, indicating that HPV+ status decreased

mortality risk. High values of BEDDI or BEDDD were associated

with reduced mortality risk, whereas this was not obvious

for BEDsimp.

Pearson correlation coefficients between all features and SHAP

values in the testing data set are shown in Supplementary Figure 1.

BEDDD and BEDDI are strongly correlated with each other and with

their SHAP values, whereas the strength of correlation between

them and BEDsimp is somewhat weaker. Several other features are

also strongly correlated with their own SHAP values, e.g.

SmokingPY, Stagenumeric, HPVPositive, Chemo, RTyear, Age.

A more detailed visualization of how the SHAP values of some

features of interest are related to the feature values is provided in

Figure 3. The y axis in each panel displays normalized SHAP values

on a “relative risk” scale, where 1 represents no change from the

population average, 1.1 represents a 10% increase in predicted

mortality risk, and 0.9 represents a 10% decrease in predicted

mortality risk. The SHAP results for BEDDD are shown in
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Figure 3, and those for BEDDI and BEDsimp from the same model

are shown in Supplementary Figure 2.

For BEDDD and BEDDI the patterns are very similar and

nonlinear, suggesting that larger values are associated with

reduced mortality. For BEDsimp, however, there is almost no

change, suggesting that this BED variant which does not include

repopulation is not very useful for predicting mortality. Increasing

age, stage and smoking are associated with increased mortality, as

expected. Notably, the y axis scales in different panels are different,

since age, stage and smoking contributed more to predicting OS in

the patient population, compared with the BED variants.

The competing risks RSF analysis for cause-specific mortality,

using the optimized number of 300 trees, achieved reasonable

concordance scores on both the training (70%) and testing (30%)

portions of the analyzed data subset. Specifically, on training data its

c-index values were 0.888, 0.936 and 0.863 for deaths from the index

cancer, other cancers or other non-cancer causes, respectively. On

testing data, its corresponding c-index values were 0.771, 0.810 and

772, respectively. The decrease in performances from training to

testing was not dramatic, suggesting a relatively stable model with

not much overfitting.

Visualizations of the Cause-Specific Cumulative Hazard

Function (CSCHF) and Cumulative Incidence Function (CIF) for

this competing risks model revealed different temporal patterns for

the different causes of death (Supplementary Figure 3). Most deaths

from index cancer (i.e. HNSCC recurrences) occurred within the
FIGURE 2

SHAP value summary plots for the RSF model for OS. (A, B) represent the model variant which included BEDDD, BEDDI and BEDsimp, whereas (C, D)
represent the model variant which included only BEDDD (not BEDDI or BEDsimp). (A, C) show mean absolute SHAP values for different features,
informing abut which features contributed more or less to RSF model predictions. (B, D) show a detailed view where every point is a patient from
the testing data set. The SHAP value scale indicates the effect on model predictions: a positive SHAP value implies an increased risk of death, while a
negative value implies a reduced risk. The color of the points indicates the value of the feature for that observation, with warm colors representing
higher values and cool colors representing lower values.
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first 5 years after treatment, whereas death hazards from other

cancers and non-cancer diseases continued to increase almost

linearly over the entire period of observation.

Examination of Pearson correlation coefficients between

variables in this data set (Supplementary Figure 4), particularly

between BED variants and CSCHF values for different causes of

death 10 years after treatment (Supplementary Table 1), also

revealed several interesting findings. For example, BEDsimp

variants with different a/b ratios had counterintuitive positive

(rather than negative) correlations with death from index cancer.

BEDDI variants had negative correlations, as expected, but their

values were relatively small, around -0.10. BEDDD variants had

stronger negative correlations with death from index cancer, but

only for a/b ratios of 7 and 10 Gy, whereas for 13 Gy the correlation
switched sign and lost its statistical significance (Supplementary

Table 1). Overall, these results suggest that BEDDD and BEDDI have

some predictive value for deaths from HNSCC recurrences and

perhaps for other causes as well, but (especially for BEDDD) there is

some sensitivity to a/b ratios.

Some other variables also had interpretable behavior which

conformed to expectations. For example, age was positively

correlated with deaths from all causes, especially with non-cancer

causes, whereas chemotherapy had expectedly negative correlations
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with all causes of death (Supplementary Figure 4). There was some

variability between correlations among HNSCC diagnosis sites and

cause-specific mortality, e.g. positive correlations for hypopharynx

and negative ones for oropharynx (Supplementary Figure 4). These

findings indicate that hypopharynx tumors were associated with

higher mortality, whereas oropharynx tumors were associated with

lower mortality.
3.2 RSF analysis of HPV negative patients

The evaluation of the RSF model for the subset of patients with

HPV- status was performed as a separate analysis. Predictive

performance of the RSF algorithm with tuned hyperparameters

(min_samples_leaf = 10, min_samples_split = 2, n_estimators =

65) on this data subset was assessed on training data using 10-fold

cross validation (CV), and separately on testing data. On training

data, it generated a mean concordance score (c-index) of 0.755 on

training folds and 0.634 on testing folds. On separate testing data,

this model had a c-index of 0.651. This performance was

somewhat worse than on the full data set likely because of

reduced sample size: there were only 578 HPV- patients, vs.

3,346 patients in the entire data set.
FIGURE 3

Detailed look at the relationship between some features of interest and their normalized SHAP values in the RSF model. (A) = BEDDD, (B) =
SmokingPY, (C) = Age, and (D) = Stagenumeric. The y axis displays normalized SHAP values on a “relative risk” scale, where 1 represents no change
from the population average, 1.1 represents a 10% increase in predicted mortality risk, and 0.9 represents a 10% decrease in predicted mortality risk.
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A more detailed visualization of how the SHAP values of some

features of interest are related to the feature values in the HPV-

patients only is provided in Figure 4, Supplementary Figure 5. The

patterns were generally similar to those found for all patients

(Figure 3, Supplementary Figure 2): there was a clear relationship

between SHAP values and BEDDD and BEDDI, but not for BEDsimp,

and other variables like age, smoking and sex had major

contributions. SHAP value summary plots for the RSF model for

HPV- patients are shown in Supplementary Figure 6, and a

heatmap illustrating the correlation of SHAP values among

various clinical factors in the prediction model for HPV- patients

is provided in Supplementary Figure 7. In both cases, the patterns

were also not very different from those observed for all patients.
3.3 Causal inference CSF analysis

Following the exploratory analysis with RSF, we proceeded to

the second step of our pipeline using Causal Survival Forests (CSF).

This phase was aimed at conducting a targeted causal analysis,

building on the patterns and predictors identified by RSF to delve

deeper into their causal relationships with overall survival. Based on

the RSF modeling and SHAP value analysis (Figure 3,

Supplementary Figure 2), we proceeded to perform targeted

causal survival forest (CSF) analyses to look at the causal effects

of BEDDD, BEDDI and BEDsimp (one at a time) on OS in this patient
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population. To perform these analyses, BEDDD was converted into a

binary variable by using a manual cut-point of 61.8 Gy, and the

same approach was used to binarize BEDDI (with a cut-point of 57.6

Gy) and BEDsimp (70 Gy). The cut-points were selected based on

where a clear change in mortality prediction could be seen in the

RSF SHAP values (Figure 3, Supplementary Figure 2) for BEDDD

and BEDDI. For BEDsimp there was no clear change in the SHAP

values as function of feature values, so the 70 Gy cut-point was

selected using a similar percentile to the one used to binarize

BEDDD and BEDDI.

Figure 5 shows simple univariate comparisons of Kaplan-Meier

survival curves for patient groups split by the binarized BEDDD.

Supplementary Figure 8 contains similar information for BEDDI

and BEDsimp. For the BEDDD and BEDDI variants, the curves were

significantly different from each other: logrank test p-value = 3×10-

12 for BEDDD and p-value = 1×10-10 for BEDDI. In contrast, there

was no significant difference between groups split by BEDsimp

(Supplementary Figure 8, p-value = 0.9). If the analysis was

restricted to HPV- patients only, there was still a significant

difference (p-value 0.01) for BEDDD vs. low BEDDD despite the

reduced sample size of the HPV- patient subset.

CSF-based causal effect (conditional average treatment effect,

CATE) estimates for the effects of binarized BEDDD, BEDDI and

BEDsimp on patient OS are shown in Figure 6, Supplementary

Figure 9, respectively. The boxplots show the distribution of

causal effect estimates for 10-fold cross validations on training
FIGURE 4

Detailed look at the relationship between some features of interest and their normalized SHAP values for the HPV- patients only. (A) = BEDDD,
(B) = SmokingPY, (C) = Age, and (D) = Stagenumeric. The y axis displays normalized SHAP values on a “relative risk” scale, where 1 represents no
change from the population average, 1.1 represents a 10% increase in predicted mortality risk, and 0.9 represents a 10% decrease in predicted
mortality risk.
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data. Both the restricted mean survival time (RMST) and survival

probability (SP) metrics are displayed for each BED variant at

different times after treatment. These results show relatively similar

patterns for BEDDD and BEDDI. SP for these BED variants clearly

rises above 0 starting 2 years after treatment, and reaches values of

roughly 5–15%. RMST also increases steadily with time after

treatment, reaching roughly 0.5–1.0 years. In other words, CSF

analysis suggests that high BEDDI or BEDDD provided a clear

survival advantage. However, high BEDsimp had a different
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pattern: SP fluctuated around zero, and RMST dropped into the

negative range at ≥5 years after treatment.

For comparison, CSF-based causal effect estimates for BEDDD on

the entire training data set (no cross-validation) and on the entire

testing data set are provided in Table 2. The estimates on the testing set

tended to be slightly (but not dramatically) lower than on the training

set. Taken together, these findings suggest that there is relatively good

consistency in these effect estimates across different portions of the

data, meaning that the CSF algorithm is able to generalize adequately.
FIGURE 6

Causal effect estimates of BEDDD from the CSF analyses. The boxplots show the distributions of restricted mean survival time (RMST) (A) or survival
probability (SP) (B) causal effects over 10-fold cross validation folds on the training data.
FIGURE 5

Simple univariate comparisons of Kaplan-Meier survival curves for patient groups based on splitting BEDDD. The splitting cut-points were guided by
the SHAP value analysis in the previous figure. The logrank test revealed statistically significant differences between groups: p-value = 3×10-12.
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Several sensitivity analyses and refutation tests, described in the

Supplementary Methods, supported this general conclusion: CSF

outputs were robust to random perturbations of the data (e.g.

injection of synthetic noise variables into the data set), did not

produce spurious findings when the causal variable and survival

times were randomized, but were sensitive enough to detect non-

random perturbations (e.g. “fake effects” introduced into the data).

These causal modeling results are generally consistent with the

predictive RSF modeling described above. High BEDDD or BEDDI

were advantageous for OS, where BEDDI had a slightly stronger

effect than BEDDD. In contrast, high BEDsimp did not provide any

advantage or even a disadvantage. The likely reason is that both

BEDDI and BEDDD include the important process of tumor

repopulation, which is ignored in the simplistic BEDsimp.

To quantify the effects of covariates (other features) on the CSF

causal effect estimates, we calculated the best linear projection (BLP)

of the conditional average treatment effect. This is done by the grf R

package by regressing doubly robust scores derived from the CSF

against the covariates. The resulting uncertainty estimates are cluster-

and heteroskedasticity-robust. The BLP results for the RSMT and SP

metrics for BEDDD and BEDDI are shown in Supplementary Table 2.

For the RMST metric for both BEDDD and BEDDI, the only covariate

which had a statistically significant effect on the RMST was stage (p-

value = 7.44×10-6 for BEDDD and p-value = 0.024 for BEDDI), and the

sign of the effect was negative. Thus, higher stage of the tumor was

associated with reduced RMST, meaning that the RMST advantage

from high BEDDD or high BEDDI was reduced for more advanced

tumors, compared with less advanced ones. For the SP metric, none

of the covariate effects reached statistical significance (p-values >0.05)

for both BEDDD and BEDDI.

Importantly, large p-values in this analysis do not indicate that

the variables have no effect on patient morality – instead, they
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indicate that the variables do not significantly modulate the causal

effect of radiotherapy (BED) on mortality, i.e. that the causal effect

of radiotherapy does not significantly interact with these other

variables. For example, chemotherapy was clearly shown to be

associated with reduced mortality – both overall (Figure 2) and

cause-specific (Supplementary Figure 4) – but chemotherapy did

not significantly affect the causal effect of radiotherapy

(Supplementary Table 2), suggesting that these treatments did not

detectably interact in this data set.

Importantly, in addition to generating group-averaged causal

effect estimates, CSF provides effect estimates and uncertainties for

each individual patient. This information can be valuable for

clinicians by identifying which specific patients or patient

subgroups would benefit most (or least) from the treatment,

enabling improved precision medicine. A histogram of causal

effect estimates from the CSF model for the effect of BEDDD on

patient SP is shown in Figure 7. The figure shows that all patients

had positive estimates for survival probability 8 years after

treatment, i.e. there is an expected increase in survival for

patients with high BEDDD, vs. low BEDDD. There is considerable

variability between patients, with some expected to benefit much

more than others.
4 Discussion

Our previous analyses using mechanistic models applied to

older radiotherapy-only clinical trials data indicated that both

hypofractionated schedules with doses exceeding 2 Gy/fraction and

twice-daily treatments with less than 2 Gy/fraction, leading to reduced

overall treatment times, significantly enhance tumor control

probability (TCP) while decreasing the risk of late normal tissue
TABLE 2 Causal effect (CATE) estimates from the CSF model for different BEDDD for different times after treatment, on training and testing data, using
the survival probability (SP) and restricted mean survival time (RMST) metrics.

Time (years) SP (%) on training data SP (%) on
testing data

RMST (years) on training data RMST (years) on
testing data

estimate SE estimate estimate SE estimate

1 -1.1 1.3 -2.2 0.00 0.01 -0.01

2 3.4 1.8 2.0 0.00 0.02 -0.01

3 5.1 2.0 3.4 0.19 0.10 0.14

4 6.1 2.1 4.6 0.08 0.05 0.04

5 6.8 2.1 5.6 0.12 0.07 0.07

6 7.8 2.2 6.9 0.12 0.09 0.08

7 7.8 2.1 7.2 0.21 0.10 0.16

8 10.4 2.9 9.6 0.32 0.12 0.26

9 9.9 2.1 9.4 0.37 0.14 0.31

10 8.7 1.9 8.4 0.57 0.16 0.50

11 7.9 1.8 7.7 0.61 0.17 0.56

12 5.5 1.9 5.5 0.62 0.18 0.58
SE represents standard errors.
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complications (LNTCP) when compared to a standard 35x2 Gy

protocol (14, 15). This broad conclusion held true for both the dose-

independent (DI) and dose-dependent (DD) repopulation models,

despite some numerical variations in predictions between the

models. The effectiveness of hypofractionation and twice-daily

hyperfractionation is rooted in their shared radiobiological impact,

intensifying tumor cell killing per day, a pattern consistent irrespective

of the repopulation model details. Thus, hypofractionation and its

accelerated hyperfractionation variant prove to be efficient strategies

for overcoming tumor repopulation, particularly beneficial for fast-

growing tumors like HNSCC. Recent clinical evidence indeed supports

the superiority of hyperfractionation over standard fractionation13,38

and ongoing clinical trials are now exploring hypofractionation,

benefiting from advances in radiation delivery techniques that

mitigate acute toxicity concerns (7).

This paper extends our initial studies (14, 15) by leveraging

contemporary data from the RADCURE project (2005–2017),

encompassing 3,346 HNSCC patients. Through advanced machine

learning methods, we aimed to assess the impact of radiotherapy

fractionation on overall patient survival more comprehensively. This
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research combined three radiobiological modeling approaches: (1)

Implementing the mechanistic concept of biologically effective dose

(BED) for the standard dose-independent (DI) tumor repopulation

model, the alternative dose-dependent (DD) repopulationmodel, and

a simple model with no repopulation (BEDsimp). (2) Employing a

robust predictive machine learning algorithm, random survival

forests (RSF), to model patient overall survival (OS) and cause-

specific mortality using the BED variants alongside clinical variables.

(3) Conducting targeted causal inference analyses using the CSF

algorithm to estimate the causal effect of each BED variant separately

on OS. This cohesive approach allowed us to first identify key

predictors of survival using RSF in a broad analysis and then

employ CSF to rigorously investigate the causal impact of these

variables. By separating the exploratory and causal phases, we were

able to provide a more nuanced understanding of the data,

highlighting not only the importance of certain predictors but also

their causal relationships with survival outcomes. This methodology

underscores the potential of combining predictive and causal

machine learning techniques to enhance the interpretation and

application of clinical data.
FIGURE 7

A histogram of causal effect estimates from the CSF model for individual patients (from the training data) for BEDDD on patient survival probability
(SP). SP here was estimated at 8 years after treatment because it reached maximum values at this time point.
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Moreover, by providing individual-level causal effect estimates, the

research aligns with contemporary movements towards personalized

medicine, offering a valuable framework for customizing radiotherapy

strategies to patient-specific characteristics. However, the study’s

strengths are tempered by certain limitations. Interpretability of

sophisticated machine learning techniques such as RSF and CSF is

generally more difficult, than for simpler models such as Cox

regression, which are more common in the medical literature.

Additionally, the study’s observational nature suggests the potential

for unmeasured confounding factors that could influence the

conclusions drawn. Despite employing advanced causal inference

techniques designed to address such concerns, the possibility of

residual confounding cannot be entirely dismissed, highlighting an

area for cautious interpretation and further investigation. Importantly,

this study is also limited because it did not directly assess radiotherapy-

related toxicity, which can be affected by altered fractionation schemes.

Unfortunately, modeling toxicity here was not possible since toxicity

data were not included in the RADCURE data set. A separate

validation data set was not used for the study, although a random

training/testing split of the large RADCURE data set was performed.

As commonly recommended in machine learning analyses, all model

optimization and fitting was performed on the training portion, while

the testing portion was not shown to any model until the evaluation

stage. Finally, the RADCURE data set was constructed using the

outdated 7-th edition American Joint Committee on cancer (AJCC)

tumor classification, which does not separate some important

predictors of tumor recurrence, such as number of nodes, nodal

location (high vs. low neck nodes), which also results in a limitation

on our study.
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Aligning with our earlier hypotheses, the current study’s

findings emphasize the importance of optimizing fraction size to

mitigate tumor repopulation. This study, employing advanced

machine learning on a contemporary clinical dataset, reinforces

the potential benefits of increased intensity of tumor killing per day

in improving HNSCC treatment. Specific examples of comparing

BEDDD and other BED variants for several treatment regimens

present in the RADCURE data set, and for some hypothetical ones,

are provided in Table 3. For example, 25×2.4 Gy, 20×2.75 Gy, and

18×3.0 Gy regimens increase BEDDD and BEDDI relative to

standard fractionation (Table 3) and may represent potentially

clinically useful hypofractionated options for treating HNSCC.

Acute toxicity from the more intense treatments can be

manageable under modern dose delivery techniques. For example, in

a multi institutional phase II study of concomitant stereotactic

reirradiation and cetuximab for recurrent head and neck cancer,

reirradiation with 36 Gy in six fractions of 6 Gy (i.e. 6 Gy/fraction)

to the 85 isodose line covering 95 of the PTV with 5 injections of

concomitant cetuximab still resulted in acceptable acute toxicity

levels39. We believe that our study contributes to the growing body

of knowledge on the role of RT fractionation in head and neck cancer

treatment, offering valuable insights for clinicians and researchers alike.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://www.cancerimagingarchive.net/

collection/radcure/.
TABLE 3 Specific examples of comparing BED variants for several treatment regimens present in the RADCURE data set, and for some hypothetical
ones (marked by *).

Number
of
fractions

Dose/
fraction
(Gy)

Total
dose (Gy)

Treatment
duration
(weeks)

BEDDD BEDDI BEDsimp

value Differrence
with standard

value Differrence
with standard

value Differrence
with standard

38 1.8*B 68.4 3.8 65.68 3.49 75.13 10.96 80.71 -3.29

18 3* 54 3.6 63.86 1.67 64.84 0.67 70.20 -13.80

20 2.75 55 4 63.60 1.41 64.32 0.15 70.13 -13.88

25 2.4 60 5 63.25 1.06 64.80 0.63 74.40 -9.60

20 2.6 52 4 63.03 0.84 59.72 -4.46 65.52 -18.48

21 2.55 53.55 4.2 62.95 0.76 60.53 -3.65 67.21 -16.79

30 2.2 66 6 62.90 0.71 65.81 1.63 80.52 -3.48

22 2.4 52.8 4.4 62.72 0.53 58.06 -6.11 65.47 -18.53

60 1.1B 66 6 62.33 0.13 58.55 -5.63 73.26 -10.74

35 2 70 7 62.19 0.00 64.17 0.00 84.00 0.00

40 1.6 64 8 60.95 -1.24 49.30 -14.87 74.24 -9.76

25 2 50 5 57.73 -4.46 50.40 -13.77 60.00 -24.00

40 1.27 50.8 4 55.46 -6.73 51.45 -12.73 57.25 -26.75
B indicates BID (twice daily) fractionation, whereas all other regimens use QD (once daily) fractionation. The italicized row indicates the standard regimen.
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