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Objectives: This study aimed to explore the performance of a model based on

Chinese Thyroid Imaging Reporting and Data Systems (C-TIRADS), clinical

characteristics, and shear wave elastography (SWE) for the prediction of

Bethesda I thyroid nodules before fine needle aspiration (FNA).

Materials and methods: A total of 267 thyroid nodules from 267 patients were

enrolled. Ultrasound and SWE were performed for all nodules before FNA. The

nodules were scored according to the 2020 C-TIRADS, and the ultrasound and

SWE characteristics of Bethesda I and non-I thyroid nodules were compared. The

independent predictors were determined by univariate analysis and multivariate

logistic regression analysis. A predictive model was established based on

independent predictors, and the sensitivity, specificity, and area under the

curve (AUC) of the independent predictors were compared with that of

the model.

Results: Our study found that the maximum diameter of nodules that ranged

from 15 to 20 mm, the C-TIRADS category <4C, and Emax <52.5 kPa were

independent predictors for Bethesda I thyroid nodules. Based onmultiple logistic

regression, a predictive model was established: Logit (p) = -3.491 + 1.630 ×

maximum diameter + 1.719 × C-TIRADS category + 1.046 × Emax (kPa). The AUC

of the model was 0.769 (95% CI: 0.700–0.838), which was significantly higher

than that of the independent predictors alone.
Abbreviations: AUC, area under the receiver operator characteristic curve; C-TIRADS, Chinese Thyroid

Imaging Reporting and Data Systems; Emax, maximum elastic modulus; FNA, fine needle aspiration; NCI,

National Cancer Institute; PACS, Picture Archiving and Communication System; Q-box, quantification box;

ROC, receiver operator characteristic curve; SWE, shear wave elastography; TIRADS, Thyroid Imaging

Reporting and Data System; TBSRTC, The Bethesda System for Reporting Thyroid Cytopathology.
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Conclusion: We developed a predictive model for predicting Bethesda I thyroid

nodules. It might be beneficial to the clinical optimization of FNA strategy in

advance and to improve the accurate diagnostic rate of the first FNA, reducing

repeated FNA.
KEYWORDS

ultrasound, thyroid nodule, elastography, the Bethesda system for reporting thyroid
cytology, Chinese thyroid imaging reporting and data systems
1 Introduction

The global prevalence of thyroid nodules has ranged from 19%

to 76% (1). Malignant nodules account for 10% to 15% of these and

require clinical intervention (2, 3). The specificity of high-resolution

ultrasound in the diagnosis of benign and malignant thyroid

nodules is above 90%, which is of great value for the accurate

differentiation of malignant thyroid nodules, but the sensitivity is

only 26% to 87% (3–6).

To effectively identify and standardize the management of

thyroid nodules, several Thyroid Imaging Reporting and Data

Systems (TIRADS) have been proposed (7–10). The Chinese

Thyroid Imaging Recording and Data System (C-TIRADS),

introduced in 2020, is considered to have high accuracy and the

lowest rate of unnecessary biopsies (7, 11, 12). In recent years, shear

wave elastography (SWE) has received extensive attention in the

differential diagnosis of thyroid nodules due to its ability to

accurately quantify tissue stiffness (13–15). Two-dimensional

ultrasound combined with SWE can further improve the

diagnostic performance of thyroid nodules.

Fine needle aspiration (FNA) cytology is internationally

recognized as a reliable and cost-effective method to identify

thyroid nodules (16, 17). In 2010, the National Cancer Institute

(NCI) established The Bethesda System for Reporting Thyroid

Cytopathology (TBSRTC) to standardize terminology and

promote communication. TBSRTC classifies FNA results into six

categories: Bethesda I to Bethesda VI (18). Bethesda I thyroid

nodules account for 2%–20%, and the risk of malignancy is up to

20% (19). Due to insufficient cell count or poor quality of

specimens, Bethesda I thyroid nodules often cannot be diagnosed

definitely. International guidelines recommend repeat FNA for

Bethesda I thyroid nodules with suspicious ultrasound malignant

signs (7, 18–21).

Therefore, Bethesda I thyroid nodules require more than two

FNA or even diagnostic surgery to confirm the diagnosis. If

Bethesda I thyroid nodules could be predicted in advance, core

needle biopsy, performed by experienced operators, and on-site

evaluation could be used to improve the diagnostic yield at the first
02
FNA to avoid the financial burden and physical and mental stress

caused by repeated FNA (18, 22, 23).

Previous studies have analyzed the ultrasound characteristics of

Bethesda I thyroid nodules (24). However, it is not clear whether the

ultrasound characteristics of thyroid nodules could be used to

predict Bethesda I thyroid nodules. The predictive performance is

expected higher not only based on the ultrasound features but also

on the 2020 C-TIRADS category and SWE.

This study aimed to investigate the predictive performance of a

model based on ultrasound, C-TIRADS, clinical characteristics, and

SWE for the pre-puncture evaluation of Bethesda category I in

patients with thyroid nodules, which might be beneficial to the

clinical optimization of FNA strategy in advance and to improve the

accurate diagnostic rate of the first FNA, reducing the economic and

time cost caused by repeated FNA (22, 25, 26).
2 Materials and methods

2.1 Patients’ selection and data collection

A total of 1,724 patients with thyroid nodules who underwent

both ultrasound and FNA examinations from January 2021 to April

2023 were retrospectively analyzed. FNA diagnosis was based on

TBSRTC criteria. This study was approved by the Medical Ethics

Committee of our hospital for waiver of informed consent (2023

No.: LY-2023-89). The inclusion criteria were as follows: (1) solid or

predominantly solid thyroid nodules (75%), (2) age ≥18 years old,

(3) ultrasound and SWE examination were performed within 1

month before FNA, and (4) FNA and ultrasound showed the same

nodule. The exclusion criteria were as follows: (1) ultrasound image

quality could not meet the requirements, (2) lack of SWE data of

nodules, and (3) previous treatment history such as puncture and

ablation. The nodules were divided into Bethesda I and Bethesda

non-I groups according to the cytological results.

The patient’s age, gender, and other data were collected through

the Picture Archiving and Communication System (PACS) and

medical record system.
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2.2 Ultrasound examination

A Super Sonic Aixplorer system (Super Sonic Imagine, Aix en

Provence, France) was utilized to perform ultrasound and SWE

examinations, which was equipped with an L15-4 linear array

transducer. Clear ultrasound images of the targeted thyroid

nodule were first obtained. A detailed record of the characteristics

of the thyroid nodule was made, including the location, size,

orientation, margin, echogenicity, echotexture, echogenic foci, and

posterior features. All nodules were classified according to the C-

TIRADS criteria (shown in the Supplementary Material). The

length, width, and height of the nodules were measured from the

maximum longitudinal section and the maximum vertical cross-

section of the nodule, respectively. The maximum diameter value

was included in the study.

Subsequently, SWE was performed using the same transducer.

The quantification box (Q-box) method was employed to evaluate

the elastic characteristics of the nodules, and the longitudinal

section was used for SWE imaging. The stiffness range of the

color map was adjusted from blue to red (0–180 kPa). The region

of interest encompassed the nodule and part of the surrounding

normal tissue, which constituted an area approximately two to three

times the size of the nodule itself. The patients were required to hold

their breath temporarily during imaging. SWE was measured using

the quantitative box (Q-box), which was placed in the hardest part

of the nodule, excluding the calcified area and adjacent tissue (6,

27). The system automatically calculates the maximum elastic

modulus (Emax), which was measured five times and averaged

for analysis.

To reduce measurement errors, ultrasound and SWE

examinations of all nodules in this study were performed by the

same radiologist with more than 15 years of experience in thyroid

ultrasound. Another radiologist who was trained in C-TIRADS and

had more than 10 years of experience in the diagnosis of thyroid

disease classified all nodules by C-TIRADS criteria (shown in the

Supplementary Material) (7).
2.3 Statistical analysis

SPSS 26.0 and R 4.3.0 were used for statistical analysis. Kappa

analysis or Fisher’s precision test was used to compare the clinical

features, ultrasound features, and C-TIRADS categories of Bethesda

I and non-I thyroid nodules. The threshold for statistical

significance was P < 0.05. Statistically significant variables were

obtained by univariate analysis. The receiver operating

characteristic (ROC) curve was drawn to obtain the best cutoff

value and area under the curve (AUC) to predict Bethesda I thyroid

nodules. Statistically significant variables were added to multivariate

logistic regression analysis to identify independent predictor

variables, and a combined prediction model was constructed on

this basis. The predictive efficacy of the independent predictors and

the model was evaluated using the ROC method, and the AUC,

sensitivity, and specificity of the independent predictors and the

model were compared.
Frontiers in Oncology 03
3 Results

3.1 Clinical data and ultrasound features
between the Bethesda I and non-I
thyroid nodules

A total of 267 patients were finally enrolled, with an average age

of (43 ± 12) years (208 female and 59 male) (Figure 1). There were

50 Bethesda I (18.73%) and 217 non-I thyroid nodules (81.27%).

The clinical and ultrasound characteristics are summarized in

Table 1. Only age was statistically different between the two

groups. The other clinical and ultrasound features were not

statistically significant.
3.2 Age features between the Bethesda I
and non-I thyroid nodules

The age of patients with BethesdaIand non-I thyroid nodules

exhibited a statistically significant difference (46 ± 12 years vs. 42 ±

12 years, P = 0.044). The ROC was drawn according to age to

calculate the best cutoff value to distinguish two group nodules. The

optimal cutoff value of age was 59 years old, which was close to 60

years old. The rate of Bethesda I thyroid nodules was higher in

patients over 60 years old compared to those under 60 years old

(16.0% vs. 6.0%, P = 0.038).
3.3 Maximum diameter features between
the Bethesda I and non-I thyroid nodules

The maximum diameter of 267 nodules ranged from 3 to 50

mm (12.3 ± 9.4 mm). Nine nodules had a maximum diameter of

less than 5 mm, all of which were classified as C-TIRADS 4C

category. FNA was performed after obtaining the patient’s consent.

One, five, and three nodules were classified as Bethesda VI, V, and

III categories, respectively. Five cases were postoperative

histopathology confirmed as papillary thyroid carcinoma. The

maximum diameter features between the two groups are

summarized in Table 2. The incidence of Bethesda I in thyroid

nodules with a maximum diameter of 15–20 mm was significantly

higher than that in nodules of other sizes (P = 0.014).
3.4 Emax between the Bethesda I and non-I
thyroid nodules

The range of Emax of 267 nodules was 5–300 kPa, and the

median value was 48.8 kPa (30–85 kPa). As shown in Table 3, there

was a significant difference in Emax between Bethesda I and non-I

thyroid nodules (35.95 vs. 56.6 kPa, P = 0.001). The lower the Emax

value of thyroid nodules, the higher the incidence of Bethesda I

thyroid nodules.

An ROC was drawn according to Emax of nodules to calculate

the best cutoff value to distinguish the two groups’ nodules. The
frontiersin.org
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FIGURE 1

Patient selection flow chart of this study.
TABLE 1 Conventional ultrasound features and clinical data features between the Bethesda I and Bethesda non-I group.

Variable Number Bethesda I group (n = 50) Bethesda non-I group (n = 217) X2/Z/t P

Sex
Male (n = 59) 12 (24.0%) 47 (21.7%)

0.129 0.719
Female (n = 208) 38 (76.0%) 170 (78.3%)

Echogenicity

Hypoechoic
Y (n = 236) 42 (84.0%) 194 (89.4%)

1.155 0.282
N (n = 31) 8 (16.0%) 23 (10.6%)

Markedly hypoechoic
Y (n = 29) 5 (10.0%) 24 (11.1%)

0.030 0.862
N (n = 237) 45 (90.0%) 193 (88.9%)

Hyperechoic
Y (n = 2) 0 (0.0%) 2 (0.9%)

0.464 0.496
N (n = 265) 50 (100%) 215 (99.1%)

Isoechoic
Y (n = 12) 4 (8.0%) 8 (3.7%)

1.761 0.187
N (n = 255) 46 (92%) 209 (96.3%)

Echogenic foci

Calcification
Y (n = 153) 31 (62.0%) 122 (56.2%)

0.555 0.456
N (n = 114) 19 (38.0%) 95 (43.8%)

Microcalcifications
Y (n = 123) 20 (40.0%) 103 (47.5%)

0.912 0.340
N (n = 144) 30 (60.0%) 114 (52.5%)

(Continued)
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TABLE 1 Continued

Variable Number Bethesda I group (n = 50) Bethesda non-I group (n = 217) X2/Z/t P

Margin

Irregular margin
Y (n = 188) 37 (74.0%) 151 (69.6%)

2.586 0.108
N (n = 79) 13 (26.0%) 66 (30.4%)

Ill-defined margin
Y (n = 235) 43 (86.0%) 81.7 (37.6%)

0.237 0.627
N (n = 32) 7 (14.0%) 25 (11.5%)

Extrathyroidal
Extension

Y (n = 155) 29 (58.0%) 126 (58.1%)
0.000 0.993

N (n = 112) 21 (42.0%) 91 (41.9%)

Orientation

Taller-than-wide
Y (n = 161) 30 (60.0%) 131 (60.4%)

0.002 0.962
N (n = 106) 20 (40.0%) 86 (39.6%)

Regular form
Y (n = 45) 9 (18.0%) 36 (16.6%)

0.058 0.810
N (n = 222) 41 (82.0%) 181 (83.4%)

Homogeneous
Y (n = 7) 1 (2.0%) 6 (2.8%)

0.000 1.000
N (n = 260) 49 (98.0%) 211 (97.2%)

Location

Inside
Y (n = 16) 0 (0%) 16 (7.4%)

2.722 0.099
N (n = 251) 50 (100%) 201 (92.6%)

Outside
Y (n = 22) 3 (6.0%) 19 (8.8%)

0.125 0.724
N (n = 245) 47 (94.0%) 198 (91.2%)

Deepside
Y (n = 47) 9 (18.0%) 38 (17.5%)

0.007 0.935
N (n = 220) 41 (82%) 179 (82.5%)

Shallow side
Y (n = 70) 14 (28.0%) 56 (25.8%)

0.101 0.751
N (n = 197) 36 (72.0%) 161 (74.2%)

Upper
Y (n = 26) 2 (4.0%) 24 (11.1%)

1.571 0.185
N (n = 241) 48 (96.0%) 193 (88.9%)

Lower
Y (n = 56) 14 (28.0%) 42 (19.4%)

1.832 0.177
N (n = 211) 36 (72.0%) 175 (80.6 %)

Position

Left lobe (n = 120) 23 (46.0%) 97 (80.8 %)

1.754 0.464Right lobe (n = 139) 24 (48.0%) 115 (53.0%)

Isthmus (n = 8) 3 (6.0%) 5 (2.3%)

Age (years) (n = 267) 46 ± 12 42 ± 12 -2.026 0.044*

≥60 (n = 21) 8 (16.0%) 13 (6.0%)
4.322 0.038*

<60 (n = 246) 42 (84.0%) 204 (94.0%)
F
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optimal cutoff value of Emax was 52.5 kPa. Thyroid nodules with

Emax values below 52.5 kPa were significantly more likely to be

Bethesda I thyroid nodules than those with Emax values above 52.5

kPa (76.0% vs. 24.0%, P <0.001).
3.5 C-TIRADS categories between the
Bethesda I and non-I thyroid nodules

As shown in Table 3, the constituent ratio of C-TIRADS

categories of the two groups’ nodules was statistically different

(P < 0.001). The majority of Bethesda I thyroid nodules were C-

TIRADS 4A (28% vs. 12.9%, P = 0.008) and 4B category (48% vs.

27.6%, P = 0.005). However, Bethesda non-I thyroid nodules were

mainly C-TIRADS 4C (35.5% vs. 14.0%, P = 0.003) and 5 categories

(22.6% vs. 4.0%, P = 0.003). The difference was statistically

significant. The ROC curve was drawn according to the C-
Frontiers in Oncology 06
TIRADS categories to calculate the best cutoff value to distinguish

Bethesda I and non-I thyroid nodules. The optimal cutoff value was

4C. The risk of thyroid nodules with C-TIRADS 3 to 4B categories

being Bethesda I thyroid nodules was higher than that of thyroid

nodules with C-TIRADS 4C to 5 categories (P = 0.001).
3.6 Univariate and multivariate analysis on
the predictors of Bethesda I
thyroid nodules

The binary logistic regression analysis of clinical data,

ultrasound, C-TIRADS category, and Emax value characteristics

are summarized in Table 4. The maximum diameter of the

nodules that ranges from 15 to 20 mm, C-TIRADS category <4C,

and Emax value <52.5kPa were independent predictors for Bethesda

I thyroid nodules. A combined predictive model of Bethesda I

thyroid nodules was established based on multiple logistic

regression: Logit (p) = -3.491 + 1.630 × maximum diameter +

1.719 × C-TIRADS category + 1.046 × Emax (kPa).
3.7 Comparing the predictive performance
of the combined predictive model and the
independent predictors

ROC analysis was performed on the model to assess Bethesda I

thyroid nodules (Figure 2). The AUC of the model was 0.769 (95%

CI: 0.700–0.838), which was significantly higher than that of C-

TIRADS, Emax, and other independent predictors alone (Table 5).

The model also had the best sensitivity of 76% and a better

specificity of 71.2% compared with the use of independent

predictors alone.
4 Discussion

The study compared the basic clinical information and

ultrasound imaging characteristics of Bethesda I and non-I

thyroid nodules, revealing that the maximum diameter of the

nodules that ranged from 15 to 20mm, C-TIRADS category <4C,

and Emax <52.5 kPa were independent predictors to predict

Bethesda I thyroid nodules. The AUC of a combined model based

on maximum diameter, C-TIRADS category, and Emax in predicting

Bethesda I thyroid nodules was 0.769, and the sensitivity and

specificity were 76.0% and 71.2%, respectively. The combined

model has better predictive performance than C-TIRADS or

other independent predictors alone for Bethesda I thyroid

nodules. We can optimize FNA strategies by predicting Bethesda

I thyroid nodules in advance, such as selecting core needle biopsy,

changing experienced operators, and on-site sample evaluation, to

further improve the FNA diagnostic rate and reduce repeat FNA

(21–23, 25).

A retrospective study found an effect of age on the incidence of

Bethesda I thyroid nodules (28). The results of our study are

consistent with it, and the optimal cutoff value was found to be
TABLE 2 Bethesda I rate of 267 nodules according to the
maximum diameter.

Nodule
size, mm

Bethesda I
group, n (%)

X2/Z/t P

≤5 vs. >5 0.000 0.998

≤5, n = 24 5 (20.8)

>5, n = 243 45 (18.5)

≤10 vs. >10 1.145 0.285

≤10, n = 141 23 (16.3)

>10, n = 126 27 (21.4)

≤15 vs. >15 2.136 0.144

≤15, n = 198 33 (16.7)

>15, n = 69 17 (24.6)

≤20 vs. >20 0.414 0.520

≤20, n = 233 45 (19.3)

>20, n = 34 5 (14.7)

>5mm, ≤10 mm
vs. others

0.216 0.269

>5mm, ≤10 mm, n
= 117

18 (15.4)

others, n = 150 32 (21.3)

>10 mm, ≤15 mm
vs. others

0.796 0.851

>10 mm, ≤15 mm, n
= 57

10 (17.5)

others, n = 210 40 (19.0)

>15 mm, ≤20 mm
vs. others

6.407 0.011*

>15 mm, ≤20 mm, n
= 35

12 (34.3)

others, n = 232 38 (16.4)
*P-value <0.05 was considered statistically significant.
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59 years. The risk of Bethesda I thyroid nodules in patients aged ≥60

years was 2.5 times that in patients aged <60 years, indicating a

higher prevalence of Bethesda I thyroid nodules among

elderly individuals.

Nodule size may influence the incidence of Bethesda I thyroid

nodules. Dong et al. found that thyroid nodules with a diameter of

more than 15 mmwere more likely to be Bethesda I thyroid nodules

(24). Our study found that thyroid nodules with a diameter range of

15 to 20 mm were five times more likely to be Bethesda I thyroid

nodules than other-sized nodules. It is possible that larger nodules

(>15 mm in diameter) are more likely to exhibit heterogeneity and

may lead to false negative results if the sampling does not

adequately cover the entire nodule at the time of FNA. As the

size of the nodule increased, the risk of malignancy increased.

Hypoechoic solid nodules larger than 15 mm in diameter are

indications of FNA (29). For such high-risk nodules, guidelines

recommend repeat biopsy, core needle biopsy, and even diagnostic

surgery to avoid a leak of malignant nodules, which undoubtedly

increases the personal and medical financial burden. Therefore,
Frontiers in Oncology 07
FNA is recommended for large thyroid nodules from multiple

angles and sites while avoiding vascular-rich areas to ensure

adequate tumor cell samples. FNA can be performed in contrast-

enhanced ultrasound mode if necessary (30). In this study, we found

that the incidence of Bethesda I thyroid nodules was not

significantly different between nodules with a diameter less than 5

mm and those with larger sizes, which suggests that FNA can still

yield satisfactory diagnostic results for nodules smaller than 5 mm.

There were no statistically significant differences in single

ultrasound features between Bethesda I and non-I thyroid

nodules. Previous studies have also suggested that a single

ultrasound feature has limited predictive sensitivity (31). This

problem could be solved by using TIRADS to comprehensively

score the ultrasound features of nodules. C-TIRADS was proposed

by the Chinese Society of Ultrasound Medicine in 2020 (7). Some

studies found that C-TIRADS had the highest AUC (0.905 vs. 0.854,

0.805, and 0.863) and AUC (0.816 vs. 0.789, 0.773, 0.763, and

0.734), higher accuracy (84.71% vs. 82.11%, 81.64%, and 78.56%),

and lower unnecessary biopsy rate (22.61% vs. 27.9% and 28.67%)
TABLE 3 Bethesda I rate of 267 nodules according to C-TIRADS and Emax.

Group X2 P

Bethesda I (n = 50)
Bethesda non-I

(n = 217)

C-TIRADS 28.399 <0.001*

3 (n = 6) 3 (6.0%) 3 (1.4%) 2.122 0.145

4A (n = 42) 14 (28.0%) 28 (12.9%) 6.987 0.008*

4B (n = 84) 24 (48.0%) 60 (27.6%) 7.805 0.005*

4C (n = 84) 7 (14.0%) 77 (35.5%) 8.698 0.003*

5 (n = 51) 2 (4.0%) 49 (22.6%) 9.045 0.003*

<4C (n = 132) 41 (82.0%) 91 (41.9%)
26.095 <0.001*

≥4C (n = 135) 9 (18.0%) 126 (58.1%)

Emax (kPa) 36.0 (25.3–54.3) 56.6 (31–90) -3.346 0.001*

Emax <52.5 kPa 38 (76.0%) 101 (46.5%)
14.128 <0.001

≥52.5 kPa 12(24%) 116(53.3%)
*P-value <0.05 was considered statistically significant.
C-TIRADS, Chinese Thyroid Imaging Reporting and Data Systems; Emax, maximum elastic modulus.
TABLE 4 Cutoff value and logistic regression analysis of risk factors predicting Bethesda I thyroid nodules.

Variable Cutoff value B P OR 95% CI for OR

Age (years) 58.5 0.932 0.090 2.539 0.866 7.447

Maximum
diameter (mm)

15-20 1.630 0.001* 5.106 1.982 13.151

C-TIRADS <4C 1.719 <0.001* 5.577 2.406 12.929

Emax (kPa) 52.5 1.046 0.011* 2.848 1.277 6.349

Constant -3.491 <0.001* 0.142
*P-value <0.05 was considered statistically significant.
C-TIRADS, Chinese Thyroid Imaging Reporting and Data Systems; OR, odds ratio; Emax, maximum elastic modulus.
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(11, 12). Therefore, C-TIRADS was also used in this study to

evaluate thyroid nodules as a whole, and it was observed that the

incidence of Bethesda I thyroid nodules was lower in C-TIRADS

categories 4C and 5 than in other categories. This might be because

C-TIRADS has the highest positive predictive value among the

various TIRADS guidelines, making its 4C and 5 categories more

likely to represent malignant nodules (12).

The SWE technique is capable of visualizing the two-

dimensional distribution of tissue stiffness. Tissue stiffness is

quantified using Young’s modulus (kPa) and/or shear wave

velocity (m/s), exhibiting high repeatability among different

operators (6). Therefore, SWE can provide additional diagnostic

information to distinguish between benign and malignant thyroid

nodules. Several studies have demonstrated that among the various

parameters of SWE, Emax can serve as the most reliable diagnostic

index (6, 27, 32). In this study, it was observed that the Emax values

differed between Bethesda I and non-I thyroid nodules. The optimal

cutoff value to predict Bethesda I thyroid was 52.5 kPa, with a
Frontiers in Oncology 08
sensitivity of 75%. In other words, Bethesda I thyroid nodules were

dominated by soft nodules, with 75% of the nodules having Emax

values <52.5 kPa. This suggests that stiffer nodules might possess

higher cell density, making it easier for FNA to obtain a cell

specimen that meets the diagnostic criteria. The low incidence of

Bethesda I thyroid nodules among C-TIRADS 4C and 5 categories

of nodules found in this study is attributed to the high malignant

probability and cell density associated with these two types of

nodules, facilitating the acquisition of qualified cell samples

during FNA.

When ultrasound features, C-TIRADS category, and Emax were

combined into the analysis, the independent predictors for Bethesda

I thyroid nodules changed to nodule size, C-TIRADS category, and

Emax. Based on this, we constructed a combined prediction model

for Bethesda I thyroid nodules (Figures 3, 4). The influence of age

on Bethesda I thyroid nodule prediction was reduced by

introducing a stiffness property of the nodule. Age was no longer

an independent predictor, indicating that the combined prediction
FIGURE 2

Receiver operating characteristic curves of the independent predictors and the combined model.
TABLE 5 Prediction performance of combined predictive models and independent predictors.

Sensitivity Specificity AUC 95% confi-
dence interval

Pa

Maximum diameter (15–
20 mm)

24% 83.6% 0.567 0.474–0.660 <0.001*

C-TIRADS (<4C) 18% 41.9% 0.700 0.625–0.776 0.001*

Emax (kPa) 75% 53.5% 0.647 0.566–0.728 <0.001*

Combined prediction model 76% 71.2% 0.769 0.700–0.838
*P-value <0.05 was considered statistically significant.
aThe P-value is the statistical difference between the AUC of the independent risk predictor and the AUC of the combined prediction model.
C-TIRADS, Chinese Thyroid Imaging Reporting and Data Systems; Emax, maximum elastic modulus; AUC, area under the receiver operator characteristic curve.
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model focused more on the characteristics of the nodule itself.

Compared with using independent predictors alone, the AUC of the

model was 0.769, and the sensitivity was significantly improved.

The prediction model established in this study is simple and

convenient, which could assist clinical practice to quickly predict

before the first FNA. Based on the prediction results, the optimal

FNA strategy could be selected to improve the diagnosis rate of the

first FNA, avoid the physical and mental trauma caused by repeated

FNA, and reduce the economic cost to the patient’s family

and society.

With the development of artificial intelligence (AI) technology,

many scholars are exploring the use of AI technology to improve

the ability of ultrasound to distinguish benign and malignant

thyroid nodules and even predict the pattern of cervical lymph
Frontiers in Oncology 09
node metastasis (CLNM), and the research results are encouraging

(2, 33–35). The deep learning AI model (ThyNet) developed by

Peng, S. et al. can assist radiologists in improving the diagnostic

accuracy (0.837 vs. 0.875), effectively reducing the rate of FNA

(61.9% vs. 35.2%) and the rate of missed diagnosis of malignant

tumors (18.9% vs. 17.0%). ThyGPT, developed by introducing

ChatGPT, could effectively communicate with doctors through

human–computer interaction and improve the diagnostic

efficiency (35). Yao, J. et al. further identified the categories of

Bethesda IV thyroid nodules through AI technology and obtained

an AUC of 0.90–0.95 (2). If, based on our prediction of Bethesda I

thyroid nodules, we could further predict the pathological results of

nodules through AI, the FNA rate could be further reduced and the

diagnostic process of thyroid nodules could be optimized.
FIGURE 3

The Bethesda I thyroid nodules of a 31-year-old man was predicted with the combined model. A 31-year-old man with a 7×6×6 mm thyroid nodule
in the left lobe. Conventional ultrasound showed a solid hypo-echoic, regular nodule taller than wider with coarse calcifications, which was
categorized as C-TIRADS 4B. SWE measurement showed that Emax was 36.0 kPa. The predictive value calculated by the model was 0.712(>0.226),
which might be considered a Bethesda I nodule. The FNA result was Bethesda I.
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The limitations of this study are as follows: First, this study was

a single-center retrospective study that included only patients who

underwent FNA and excluded nodules that did not meet the

recommended criteria for FNA, leading to potential selection bias.

Second, FNA procedures were performed by multiple operators,

introducing inherent individual variations. Third, surgical

pathological results were lacking for most cases in this study,

preventing further determination of the malignant rate among

Bethesda I thyroid nodules in this cohort. Fourth, this study did

not compare interobserver and intraobserver variability. Finally,

external validation to assess the model’s validity has not been

conducted yet and should be considered in future studies.
Frontiers in Oncology 10
5 Conclusion

In conclusion, it was found that the maximum diameter of

thyroid nodules in the range of 15–20 mm, C-TIRADS category

<4C, and Emax values of SWE <52.5 kPa were independent predictors

for Bethesda I thyroid nodules by multivariate logistic regression

analysis. We developed a combined predictive model to predict

Bethesda I thyroid nodules, which provided a convenient and

useful method for clinicians to predict Bethesda I thyroid nodules

in advance. This will help to optimize the FNA strategy, improve the

diagnosis rate of the first FNA, avoid the secondary trauma caused by

repeated puncture, and reduce the time and economic cost (1, 22, 36).
FIGURE 4

The Bethesda I thyroid nodules of a 52-year-old woman was predicted with the combined model. A 52-year-old woman with a 17×12×18 mm
thyroid nodule in the lower pole of the left lobe. Conventional ultrasound showed a solid hypoechoic irregular nodule with wider than taller, blurred
irregular margins and suspicious microcalcifications, which were classified as C-TIRADS 4C. SWE measurement showed that Emax was 51.0 kPa. The
predictive value calculated by the model was 0.326 (>0.226), which might be considered a Bethesda I nodule. The FNA result was Bethesda I.
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