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Background: Breast cancer (BC), as a leading cause of cancer mortality in

women, demands robust prediction models for early diagnosis and

personalized treatment. Artificial Intelligence (AI) and Machine Learning (ML)

algorithms offer promising solutions for automated survival prediction, driving

this study’s systematic review and meta-analysis.

Methods: Three online databases (Web of Science, PubMed, and Scopus) were

comprehensively searched (January 2016-August 2023) using key terms (“Breast

Cancer”, “Survival Prediction”, and “Machine Learning”) and their synonyms. Original

articles applying ML algorithms for BC survival prediction using clinical data were

included. The quality of studies was assessed via the Qiao Quality Assessment tool.

Results: Amongst 140 identified articles, 32 met the eligibility criteria. Analyzed ML

methods achieved a mean validation accuracy of 89.73%. Hybrid models,

combining traditional and modern ML techniques, were mostly considered to

predict survival rates (40.62%). Supervised learning was the dominant ML paradigm

(75%). Common ML methodologies included pre-processing, feature extraction,

dimensionality reduction, and classification. Deep Learning (DL), particularly

Convolutional Neural Networks (CNNs), emerged as the preferred modern

algorithm within these methodologies. Notably, 81.25% of studies relied on

internal validation, primarily using K-fold cross-validation and train/test

split strategies.

Conclusion: The findings underscore the significant potential of AI-based

algorithms in enhancing the accuracy of BC survival predictions. However, to

ensure the robustness and generalizability of these predictive models, future

research should emphasize the importance of rigorous external validation. Such

endeavors will not only validate the efficacy of these models across diverse
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populations but also pave the way for their integration into clinical practice,

ultimately contributing to personalized patient care and improved survival outcomes.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/,

identifier CRD42024513350.
KEYWORDS

breast cancer, survival prediction, machine learning, deep learning, clinical data,
systematic review, meta-analysis
1 Introduction

Breast cancer (BC) remains the most prevalent cancer and the

leading cause of cancer-related mortality in women globally (1).

This significant heterogeneity translates to substantial variations in

individual patient survival following a BC diagnosis (2). Several

factors influence BC prognosis, including patient demographics

(e.g., age) (3, 4), tumor characteristics (e.g., size and lymph node

involvement) (5), and tumor-derived biomarkers (e.g., hormone

receptor status) (6, 7). Accurate survival prediction is crucial for

understanding patient outcomes, guiding clinical decision-making,

evaluating treatment efficacy, identifying prognostic factors, and

developing personalized therapeutic strategies.

Artificial intelligence (AI), particularly machine learning (ML),

has a pivotal role in data analysis, including medical data (8–11).

These techniques offer promising avenues for enhancing BC survival

prediction accuracy (12, 13). Survival analysis aims to model the

time-to-event relationship, linking patient outcomes with associated

variables (14, 15).

Researchers have developed various ML-based survival models to

predict BC outcomes. Studies like (16) employed diverse ML classifiers,

including multilayer perceptron (MLP), random forest (RF), decision

tree (DT), and Support vectormachine (SVM) to predict BC survival in

a dataset of 4,902 patients. Additionally (17), explored deep learning

(DL) approaches for predicting BC patient survival post-operatively.

Several literature reviews have emerged, discussing, and

comparing outcomes of ML-derived prediction models in BC

(18–22, 96). Some specifically focus on BC survival prediction,
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with (22) reviewing ML applications in predicting 5-year BC

survival rates. Others, like (15), surveyed various ML and DL

algorithms used in BC patient survival prediction. However, the

rapid evolution of AI necessitates frequent review updates.

Moreover, we are motivated to carry out this systematic review to

synthesize and classify all AI algorithms used in BC survival

prediction and present them in a structured form to help

researchers select appropriate methodologies in upcoming research.

This systematic review aims to comprehensively explore the

application of AI techniques in predicting BC survivability and

examine the challenges associated with developing and refining

these models. We will analyze all prediction models published from

2017 to 2023, evaluating their performance across diverse contexts.

Through a broad analysis, we intend to investigate the advancements,

challenges, and potential of AI-based BC survival prediction. Our

review will encompass the spectrum of AI methods, data sources, and

testing methodologies employed in prior research. Furthermore, we

will critically evaluate the strengths and limitations of existing studies,

with a particular focus on external validation and real-world

performance assessment. By synthesizing these findings, we seek to

illuminate the effectiveness, reliability, and clinical utility of ML-

derived BC survival prediction models.

The remaining sections are structured as follows: Section 2 details the

employed methodology, outlining eligibility criteria, reviewed databases,

search strategy, study selection, and data extraction processes. Section 3

presents the review findings, encompassing the characteristics of

reviewed studies aligned with conventional ML workflow steps

(database selection, pre-processing, data augmentation, segmentation,

feature extraction, dimensionality reduction, classification, and

performance evaluation). Section 4 delves into a discussion of our

findings, highlighting existing challenges and future research directions.

Finally, the concluding section summarizes the key findings and their

implications for clinical practice and further research.
2 Materials and methods

This systematic review and meta-analysis were conducted

following the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines (23), and registered in the
frontiersin.org
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International Prospective Register of Systematic Reviews

(PROSPERO) (24) under registration number CRD42024513350.
2.1 Eligibility criteria

The selection of studies for this systematic review and meta-

analysis was based on specific inclusion and exclusion criteria

outlined in Table 1.
2.2 Information sources and
search strategy

A systematic search for relevant studies was conducted across

three electronic databases: Web of Science, PubMed, and Scopus,

encompassing the period from January 2016 to August 2023. The

search strategy, developed collaboratively by two authors (M.A. and

ME.A.), incorporated three core concepts: “Breast Cancer,”

“Survival Prediction,” and “Machine Learning,” along with their

synonyms derived from MeSH terms and standardized vocabulary.

English-language journal articles were exclusively included. Details

of the search strategy are provided in Appendix A.
2.3 Study selection

We employed EndNote software to manage and deduplicate the

retrieved articles. Titles and abstracts were then screened

independently by four reviewers (Z.J., S.Z., A.O., and S.R.) to assess

eligibility based on predefined criteria. Disagreements were resolved

by the other two reviewers (K.S. and M.R.). Full texts of potentially

eligible studies were subsequently assessed for final inclusion.

2.3.1 Quality assessment
The methodological quality of eligible studies was evaluated using

the Qiao Quality Assessment tool (25). This tool encompasses five key

domains: unmet need, reproducibility, robustness, generalizability, and

clinical significance, further delineated by nine specific items. Studies

were assessed independently by reviewers using a binary response

format (‘Yes’ or ‘No’) for each item in a pre-defined table. Scores were

assigned (‘1’ for ‘Yes’, ‘0’ for ‘No’), and the sum for each study

determined its overall methodological quality. A pre-established

threshold of 5 or more points (detailed in Appendix B) categorized

studies as high-quality for further inclusion in the meta-analysis.
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2.4 Data extraction

Following quality assessment, data were independently

extracted from all high-quality studies using a pre-defined data

extraction form created in Google Sheets. This form captured key

characteristics of the included studies, including publication year,

data availability, modality, number of datasets/samples, training

data details (attributes, features, pre-processing, augmentation),

feature selection and classification methods, model presentation,

ML generation, paradigm and algorithms, time window, validation

strategy, method and metrics, and best-achieved validation

accuracy. Disagreements arising during extraction were resolved

through discussion among all researchers.
2.5 Meta-analysis

In this systematic review, we extracted the best accuracy of ML

models presented in studies. Then, we averaged the reported

accuracies of each particular methodology to gain a holistic

insight. This synchronization approach was carried out to identify

the overall performance of methodologies and ease the comparison

of different categories in various conditions.
3 Results

3.1 Search results

A systematic search of three databases yielded 140 articles. After

deduplication (n=82), 58 studies underwent initial screening.

Ultimately, 32 articles met the pre-defined inclusion criteria (see

PRISMA diagram, Figure 1).
3.2 Data extraction

Data from the 32 included studies were systematically extracted

using a pre-defined form. Extracted characteristics are presented in

tabular format within Appendix C.
3.3 Characteristics of the included studies

As shown in Table 2, a marked increase in studies utilizing ML

algorithms for BC survival prediction and classification is evident.

The majority of included studies (n=26, 81.3%) were published

between 2019 and 2023.
3.4 Machine learning methods

3.4.1 ML generation
Established machine learning methods categorized as

“Traditional”, prioritize well-understood algorithms with strong

theoretical underpinnings and interpretable results (e.g., K-nearest
TABLE 1 Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

• Original research
published as journal
articles
• Articles written in the
English language
• Full-text available
papers
• Studies that employed
ML algorithms in BC
survival prediction

• Other paper types, including conference papers,
protocols, letters, book chapters, observational
studies, pilot studies, reviews, and meta-analyses
• Research focused on the application of ML
algorithms in the field of BC, except survival
prediction
• Studies employed survival prediction algorithms
for other diseases
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neighbors). “Modern” approaches leverage deep neural networks

inspired by the brain’s structure and function (e.g., convolutional

neural networks), alongside nature-inspired metaheuristic

algorithms. “Hybrid” techniques strategically combine these
Frontiers in Oncology 04
approaches to capitalize on their complementary strengths. The

integration of ML and DL applications in medical decision-making

has witnessed significant growth in recent years, often

complementing traditional methods (26–30). Modern ML

leverages automated, integrated algorithms, particularly multi-

layer neural networks, offering a unified learning framework that

addresses the limitations of traditional approaches by eliminating

the need for separate feature extraction and classification stages

(31). Common modern techniques include Convolutional Neural

Networks (CNNs), Deep Neural Networks (DNNs), Long Short-

Term Memory (LSTMs), Recurrent Neural Networks (RNNs),

ensemble methods like Random Forests, and XGBoost.

Traditional ML algorithms typically rely on a sequential approach

with distinct stages for feature extraction and classification (32).

Support Vector Machines (SVMs), K-Means Clustering, Artificial

Neural Networks (ANNs), Decision Trees (DTs), AdaBoost, and

Naive Bayes (NB) are commonly employed traditional algorithms.

This review analyzed the distribution of ML algorithm

generations used for BC survival prediction. Modern techniques
TABLE 2 Chronological distribution of the selected studies.

Year No. Contributions In terms of % Accuracy (%)

2016 1 3.12 87.90

2018 3 9.37 88.86

2019 5 15.63 90.38

2020 1 3.13 72

2021 7 21.88 94.04

2022 8 25 91.25

2023 7 21.88 87.28

32 89.73
FIGURE 1

PRISMA flow diagram for searching resources.
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were employed in 21.87% (7 studies) of the included studies with an

average accuracy of 88.72%. Traditional techniques were used in

37.5% (12 studies) with an average accuracy of 87.23%, while hybrid

methods (combining modern and traditional approaches) were

used in 40.62% (13 studies) with an average accuracy of 91.73%.

Figure 2 depicts the chronological trend of ML generation usage in

BC survival prediction studies across the eight years examined.

3.4.2 ML paradigm
ML encompasses four primary learning paradigms: supervised,

unsupervised, semi-supervised, and reinforcement learning (33).

Supervised learning utilizes labeled data for training, encompassing

popular algorithms like DT and SVM. Conversely, unsupervised

learning trains models using unlabeled data (34, 35). Semi-

supervised learning leverages both labeled and unlabeled data,

while reinforcement learning focuses on adapting to an

environment through trial and error (33, 36).

This review examined the distribution of ML paradigms for BC

survival prediction. Supervised learning emerged as the dominant

paradigm, employed in 75% (n=24) of studies with an average

accuracy of 88.82%. The combination of supervised and

unsupervised learning was the next most frequent (25%, n=8),

achieving an average accuracy of 92.07%. Notably, none of the

studies utilized semi-supervised, reinforcement, or unsupervised

learning alone (Figure 3).
3.5 Datasets

The reviewed studies employed a variety of BC datasets.

3.5.1 Data availability and analysis
Private datasets were the predominant choice, utilized in over

half of the studies (56.25%, n=18, acc=89.42%). Notably, the use of
Frontiers in Oncology 05
private datasets has increased since 2022. Publicly available datasets,

including established resources like The Cancer Genome Atlas

(TCGA) (37), Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC) (38), and Surveillance,

Epidemiology, and End Results (SEER) (39), were used in a

smaller proportion of studies (34.37%, n=11, acc=89.80%). The

characteristics of publicly available datasets are detailed in Table 3.

A small subset of studies (9.37%, n=3, acc=93.1%) employed a

combination of both public and private data.

The number of datasets per study ranged from 1 to 4. The

majority of studies (75%, n=24, acc=88.52%) relied on a single

dataset. Among these, METABRIC (n=4, 12.5%, acc=89.8%), SEER

(n=4, 12.5%, acc=87.58%), and TCGA (n=3, 9.38%, acc=93.1%)

were the most frequently used. Other, less common datasets

included WBC (40) (n=2, 6.25%, acc=98.62%), WDBC (41) (n=1,
FIGURE 3

Analysis of the ML Paradigm of the proposed BC survival
prediction methods.
FIGURE 2

The chronological distribution of the studies utilizing different ML generations in BC survival prediction.
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3.13%, acc=99.04%), WPBC (42) (n=1, 3.13%, acc=99.04%), MM-

Dataset (43) (n=1, 3.13%, acc=99.04%), and TCIA (44) (n=1, 3.13%,

acc=81%). Furthermore, 32.11% of studies (n=7, acc=96.57%)

incorporated two datasets, while one study utilized four datasets.

3.5.2 Training data partitioning
The reviewed studies employed various training data

partitioning strategies. The majority (93.75%, n=30, acc=89.34%)

utilized a single dataset for training, potentially encompassing it for

both training and testing phases. A smaller subset (6.25%, n=2,

acc=99.04%) employed multiple datasets specifically for training.
Frontiers in Oncology 06
3.5.3 Sample size and data modality
The datasets used in the studies exhibited significant variation

in sample size. Values ranged from 38 to 163,413 cases per dataset,

with an average of 12,041 cases. However, two studies lacked

information regarding sample size. Additionally, the studies

incorporated diverse data modalities, as illustrated in Figure 4.

3.5.4 Time window analysis
The reviewed studies employed various time windows to evaluate

prediction accuracy. The 5-year window emerged as the most

frequently explored timeframe, with 12 studies (37.5%) reporting
FIGURE 4

Distribution of data modalities among reviewed studies.
TABLE 3 Publicly available datasets used for BC survival prediction.

Dataset Year Source Year of Study
publication

No.
Samples

No.
Patients

Data
Modality

METABRIC (38) 2012 European
Bioinformatics Institute

2018-2019-2020-2022 2000 2000 Clinical
+ Omics

SEER (39) 1975-2020 National Cancer
Institute of the USA

2018-2021-2022 4,917,840 4,917,840 Clinical

Wisconsin breast cancer (WBC) (40) 1992 UCI Machine
Learning Repository

2021 699 699 Image

Wisconsin Diagnosis Breast Cancer
(WDBC) (41)

1995 UCI Machine
Learning Repository

2021 569 569 Image

Wisconsin Prognosis Breast Cancer
(WPBC) (42)

1995 UCI Machine
Learning Repository

2021 198 198 Image

Mammographic Mass Dataset (MM-
Dataset) (43)

2007 UCI Machine
Learning Repository

2021 961 961 Image

The Cancer Genome Atlas (TCGA) (37) 2006-2023 NCI and the National
Human Genome
Research Institute of
the USA

2018-2019-2021 – 44,451 Clinical
+ Omics

The Cancer Imaging Archive
(TCIA) (44)

2013 National Cancer
Institute (NCI)

2019 3,268,644 – Clinical + Image
frontiersin.org

https://doi.org/10.3389/fonc.2024.1420328
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Javanmard et al. 10.3389/fonc.2024.1420328
an average accuracy of 86.81%. Notably, accuracy rates appeared to

peak at the 10-year window, with 5 studies (15.625%) achieving an

impressive 97.95% average accuracy. Conversely, shorter windows (1

and 3 years) yielded lower accuracy rates, with only 1 study (3.125%)

in each achieving accuracy above 90%. Time windows exceeding 10

years also resulted in an average accuracy of 89.23% across 5 studies

(15.625%). These findings suggest a potential trend of increasing

accuracy with longer prediction horizons, although further

investigation is warranted.
3.6 Features

The studies incorporated a variety of BC features for model

development. The number of features employed ranged from 5 to

625. However, four studies (12.5%, acc=94.02%) did not report the

specific features utilized in their ML models.

Several studies incorporated clinicopathological features

directly related to BC, including age, cancer stage, grade, tumor

size, estrogen receptor (ER) status, progesterone receptor (PR)

status, and human epidermal growth factor receptor 2 (HER2)

status. A good description of the predictors may be accessed in (45).
3.7 Methodology for breast cancer
survival prediction

3.7.1 Pre-processing
Pre-processing is a critical step that transforms raw data into a

format suitable for ML algorithms, ultimately enhancing model

performance and accuracy (46, 47). Common techniques include

data normalization (e.g., standardization, rescaling), augmentation,

segmentation, and feature selection. Pre-processing also improves

data quality by handling missing values, reducing noise (48, 49),

correcting anomalies, and ensuring compatibility with modeling

algorithms (50, 51).

This review found that 78.125% (n=25, acc=89.54%) of studies

acknowledged employing at least one pre-processing technique.

Various standardization methods were utilized, including mean

removal and unit variance scaling (52), Transformation and

resampling techniques (14, 16, 53, 54), data integration (16),

SMOTE for imbalanced data (55), outlier detection with boxplots

(56), one-hot encoding for categorical data (57), segmentation (58),

and min-max scaling (59, 60) were also reported.

For missing value imputation, some studies employed methods

like DL and K-Nearest Neighbors (KNN) (61), R mice package

Predictive mean matching (PMM) (62), multiple imputation (MI)

(56), Missing value estimation (63), or manual imputation (16, 63–

67). Notably, 7 studies (21.875%, acc=90.05%) did not explicitly

mention their pre-processing techniques.

3.7.1.1 Data augmentation

Data augmentation is a critical pre-processing technique that

mitigates the risk of overfitting in ML models by artificially

expanding the training data (68–70). This is achieved through
Frontiers in Oncology 07
methods like generating new data samples, modifying existing

data (e.g., cropping, flipping, rotating), or both (71, 72). None of

the reviewed studies utilized data augmentation techniques, so the

effect of incorporating this method needs further investigation.

3.7.1.2 Feature selection and dimensionality reduction

Dimensionality reduction is an essential step that improves ML

model performance by selecting relevant features and eliminating

redundant ones (73, 74). Common feature selection techniques

include Principal Component Analysis (PCA), Probabilistic PCA

(PPCA), and Linear Discriminant Analysis (LDA). This review

found that most studies (n=22, 68.75%, acc=89.08%) employed a

combination of these methods, while a smaller portion (n=10,

31.25%, acc=91.11%) did not utilize any feature selection

technique (Figure 5).

Within the studies that employed feature selection and

dimensionality reduction, supervised methods were the dominant

choice (46.875%, n=15, acc=87.88%). Unsupervised techniques

were implemented in a smaller subset of studies (21.875%, n=7,

acc=91.28%). Notably, only one study (31.25%, acc=99.04%)

utilized a combination of both approaches (75).

The following sections categorize and detail the various feature

selection techniques reported in the reviewed studies, differentiating

between traditional and modern methods.

3.7.1.2.1 Traditional feature selection techniques

This review identified traditional methods as the feature

selection approach of choice in 31.25% (n=10, acc=89.24%) of the

studies. Commonly employed techniques included manual

selection (n=3, 9.38%, acc=89.70%), K-means clustering (n=2,

6.25%, acc=82.55%), PCA (n=2, 6.25%, acc=96.68%), minimum

Redundancy Maximum Relevance (mRMR) (n=2, 6.25%,
FIGURE 5

Analysis of different dimensionality reduction techniques employed
for BC survival prediction.
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acc=94.60%), and Recursive Feature Elimination (RFE) (n=2,

6.25%, acc=99.04%).

For instance, studies like (66) employed manual selection,

where researchers identified and compared features to determine

the most significant ones. Similarly (17), incorporated medical

expertise for feature selection.

• Supervised Traditional Feature Selection Methods

Approximately 15.63% (n=5, acc=90.13%) of the studies utilized

supervised traditional techniques, including K-means clustering (76),

and RFE (75, 77). Other reported methods were Variable Sensitivity

Ratio (VSR) (65) and Backward Elimination (BE) (54).

• Unsupervised Traditional Feature Selection Methods

Unsupervised traditional methods were implemented in 15.63%

(n=5, acc=88.58%) of the reviewed studies. These techniques

included PCA (78, 79), mRMR (59, 63), and LightGBM (80).

3.7.1.2.2 Modern feature selection techniques

Modern feature selection techniques, minimizing human

intervention, were prevalent in the reviewed studies (n=12,

37.5%, acc=88.97%).

• Supervised Modern Feature Selection Methods

Supervised modern techniques were the dominant choice for

feature selection within this category (n=10, acc=87.04%). The most

frequently used methods were RF (n=4, 12.5%, acc=86.27%), CNNs

(n=2, 6.25%, acc=91.92%), and SHAP (n=2, 6.25%, acc=90.00%).

• Unsupervised Modern Feature Selection Methods

Modern unsupervised techniques were employed by a smaller

proportion of studies (n=2, acc=96.68%) for feature selection. PCA

was the method of choice in both studies for identifying important

features (53, 75).
3.7.2 Classification
Classification is a fundamental objective in many healthcare-

oriented ML projects (81–83). In BC survival prediction,

classification algorithms aim to distinguish between patients who

succumb to the disease and those who survive. Various ML

techniques are employed to achieve this goal.

This review found that supervised learning was the dominant

approach for classification tasks in all reviewed studies (n=32,

100%). These studies achieved an average accuracy of 89.73% in

classifying BC patient survival. Notably, two studies (6.25%, avg.

accuracy=94.95%) explored the use of unsupervised classification

algorithms alongside supervised techniques.

The following sections categorize and detail the various

classification techniques identified in the reviewed studies,

differentiating between traditional and modern methods.

3.7.2.1 Traditional classification techniques

Traditional classification algorithms were employed in 62.5%

(n=20, acc=89.38%) of the reviewed studies. Notably, some studies

implemented multiple classifiers. For example (56), used C5.0 and

RIPPER to classify BC patient survival, and (66) employed both

ANN and LR for BC survivability estimation.

• Supervised Traditional Classifiers
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Supervised traditional methods were the dominant choice

within the traditional category (n=20, 62.5%, acc=89.38%). The

most frequent method was SVM (n=12, 37.5%, acc=89.24%). Other

commonly used classifiers included DT (n=11, 34.37%,

acc=88.74%), Neural Networks (n=10, 31.25%, acc=87.52%), NB

(n=6, 18.75%, acc=96.20%), KNN (n=5, 15.625%, acc=94.51%), and

AdaBoost (n=4, 12.5%, acc=93.0%).

• Unsupervised Traditional Classifiers

Only one study (3.125%, accuracy=93.1%) util ized

unsupervised traditional classification. The authors employed K-

means clustering for predicting survival curves in BC patients (14).

3.7.2.2 Modern classification techniques

Modern classification algorithms were adopted in over 87.5% of

the studies (n=28, acc=90.45%), demonstrating a notable increase

since late 2018. For instance (54), developed a WTTE-RNN model

to determine BC recurrence probability, and (67) used CNNs to

predict BC survival time windows.

• Supervised Modern Classifiers

Supervised methods were the prevalent choice for modern

classification (n=28, acc=90.45%). Deep Neural Networks (DNNs)

were frequently employed (n=12, 37.5%, acc=91.14%). Among

DNNs, CNNs (n=6, 50%, acc=90.57%) were most common,

followed by Dense Neural Networks (n=5, 41.67%, acc=91.89%),

LSTM (n=2, 16.67%, acc=98.0%), and RNN (n=1, 8.33%,

acc=91.0%). Bagging algorithms (n=16, 50%, acc=90.46%) and

XGBoost (n=10, 31.25%, acc=90.77%) were also widely used.

• Unsupervised Modern Classifiers

The use of modern unsupervised classification algorithms was

infrequent, with only one study (3.125%, accuracy=96.8%)

employing Restricted Boltzmann Machines (RBM) for BC

survivability prediction (17).
3.8 Performance evaluation analysis

This section analyzes the performance metrics and validation

methods employed in the reviewed studies.

3.8.1 Evaluation metrics
Accuracy emerged as the dominant evaluation metric, utilized

in 78.13% (n=25) of the studies. Consequently, it serves as the

primary basis for performance comparison across the reviewed

studies (details in the Validation Accuracy section).

3.8.2 Validation methods
Two primary validation approaches were identified: internal

and external validation. Internal validation assesses model

performance using the training data, while external validation

employs a separate dataset, improving generalizability (25).

Analysis revealed that internal validation was the predominant

approach (81.25%, n=26, acc=89.20%). A smaller portion of studies

utilized external validation (6.25%, n=2, acc=89.55%), and four

studies (12.5%, acc=93.4%) combined both methods (Figure 6).
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Table 4 details the studies that employed external validation for

performance evaluation.

3.8.3 Validation strategy
The reviewed studies employed various validation strategies. K-

fold cross-validation emerged as the dominant approach (71.88%,

n=23, acc=89.69%). The train/test split method followed in

prevalence (21.88%, n=7, acc=90.73%). Notably, bootstrapping

was the least frequent ly used strategy (3 .13%, n=1,

accuracy=87.1%). One study (3.13%, accuracy=84.42%) did not

report the validation strategy (Figure 7).

3.8.4 Validation accuracy
To comprehensively assess the validation performance of the

reviewed ML models, a statistical analysis of their accuracies was

conducted. This analysis included minimum, maximum, average,

median, variance, and standard deviation (Table 5).

Across the 25 studies reporting validation accuracy (78.13% of

the total), model accuracy ranged from 72% to 99.04% (Table 5).

The average accuracy was 89.73%, and the median accuracy was

91% (n=32). Figure 8 visually depicts the distribution of accuracy

scores within the reviewed studies.
3.9 Model presentation

The reviewed studies employed various methods to present

their models (Figure 9). Graphs or schematics were the most

prevalent approach (n=11, 34.38%), followed by a combined

presentation using graphs and formulas (n=7, 21.88%). Formula-

only presentations were the least common (n=3, 9.38%). Notably,

over a third of the studies (n=11, 34.38%) did not visually represent

their models or utilize equations.
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4 Discussion

This systematic review and meta-analysis investigated the

application of artificial intelligence in breast cancer survival

prediction research published between 2016 and 2023. The

analysis of 32 eligible studies revealed several noteworthy findings.

A diverse range of ML methods were employed for BC survival

prediction, with an overall mean validation accuracy of 89.91%.

Traditional methods remained popular, used in 25 studies (78.1%)

either solely or combined with modern techniques. Studies like (20)

also reported the prevalence of traditional ML models in BC

recurrence prediction. However, a recent surge in modern

techniques, particularly deep learning, is evident. Studies like (87,

88) highlighted the growing use of deep learning algorithms in

BC detection.

Private datasets (56.25%) were more commonly used than

public datasets (34.38%) for BC survival prediction. This aligns

with the findings of (20). However, some studies like (22, 87)

emphasized the wide use of public datasets like METABRIC, SEER,

and TCGA for BC diagnosis. Notably, reviewed studies utilizing

multiple public datasets achieved the highest validation accuracies

(e.g., 99.04% and 98.2% in (55, 75)). This suggests the potential

benefit of standard and valuable data from public sources for

enhancing ML model performance.

The number of training datasets significantly impacted the

results. Studies using multiple datasets (n=8) achieved a superior

mean validation accuracy (95.76%). This finding emphasizes the

importance of employing diverse training data to mitigate

challenges associated with limited or inappropriate datasets.

Furthermore, because of the emergence of different BC data

modalities in recent decades and their impact on the detection

and prediction of BC (89, 90), we extracted this data from datasets

used in studies as well. Review of included studies showed that no

study, except (85), employed all BC data modalities to predict BC

survival using AI-based methodologies. This issue strengthens the

necessity of utilizing diverse data to gain more precise and

trustful results.

The 5-year window was the most prevalent timeframe for BC

survival prediction, aligning with the established threshold for

assessing survival rates as reported in (22). However, studies with

a 10-year window achieved the highest mean validation accuracy

(97.95%) (e.g (31, 65)). This suggests a potential benefit from

considering longer prediction horizons.

The number of features used in the reviewed studies ranged

from 5 to 625. Similar reviews like (19, 20, 22) reported findings on

features like age, tumor size, grade, and stage as crucial predictors in

BC prognostic models.

Pre-processing was a common step, with most studies

employing at least one technique. Data augmentation, a valuable

method for managing unbalanced or limited data, was absent in

all reviewed studies. Future research should consider data

augmentation to strengthen prediction models by addressing

restricted data issues, as suggested in (20).
FIGURE 6

Distribution of the studies based on the used validation methods.
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TABLE 4 Characteristics of the studies that utilized external validation.

No.
Samples

Pre-
Processing

Feature
Selector

Classifier Evaluation Metrics Validation
Accuracy

(%)

774 Handling
missing data,

Feature
Selection

RF RF Accuracy, Sensitivity, Specificity,
C-index

87.9

1980 Handling
missing data,

Feature
Selection,
Data

normalization

mRmR CNN, RF Accuracy, Sensitivity, Specificity,
Precision, MCC (Matthew’s

correlation coefficient)

91.2

3914 Handling
missing data,

Feature
Selection

SHAP LR, LDA,
LightGBM, RF,

XGBoost,
AdaBoost,
ANN,

Ensemble

Accuracy, Sensitivity, Precision,
F1-score

90

569 Data
normalization

– NB, DT, RF,
XGBoost,

Reduced Error
Pruning Tree

Accuracy, Time Taken to Build
Model, F1 Score, Mean Absolute
Error, Root Mean Squared Error,
Relative Absolute Error, Root

Relative Squared Error

98.2

429 – – CNN, SVM C-index –

420 – – DT, RF, MLP,
XGBoost,
LR, NB

Accuracy 92

Javan
m
ard

e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
4
.14

2
0
3
2
8

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

10
Study Year ML
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Paradigm

Data
Availability

No.
Datasets

H. Li, et al. (62) 2016 Traditional Supervised Private 2

N. Arya; S. Saha (63) 2018 Hybrid Both
Supervised

and
Unsupervised

Public 2

Q. T. N. Nguyen, et al. (84) 2023 Hybrid Supervised Private 1

T. R. Mahesh, et al. (55) 2021 Hybrid Supervised Public 2

R. Albusayli, et al. (85) 2021 Hybrid Supervised Both Private
and Public

2

L. C. Ji, et al. (86) 2023 Hybrid Supervised Private 2

https://doi.org/10.3389/fonc.2024.1420328
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Javanmard et al. 10.3389/fonc.2024.1420328
Over 68% of the studies employed feature selection techniques,

primarily modern supervised methods. However, 10 studies did not

utilize any selection methods. Feature selection is recommended to

improve model performance by eliminating irrelevant features, as

suggested in (18, 88). However, studies like (22) suggest that

powerful classification methods might handle high-dimensional

datasets without requiring selection.

Both traditional and modern classification techniques were

widely used, either individually or in combination. SVM emerged

as the most popular traditional supervised method, aligning with

findings in (20) for BC recurrence prediction. Additionally, studies

like (22, 91) listed SVM among common BC prediction algorithms.

Its popularity can be attributed to its generalization capabilities,

excellent classification performance, and ability to handle high-

dimensional data as discussed in (92).

Bagging algorithms, DNNs, and XGBoost were frequently used

among modern methods. While (88) identified CNNs as the leading

model for both binary and multiclass classification, similar to (87),

the second most common algorithm reported in (22) was ANN.

While the potential utility of advanced optimization techniques,

including metaheuristic algorithms (93) game theory (94), and

quantum computing (95), warrants investigation, none of the

reviewed studies employed these approaches.

Traditional ML techniques such as DT, SVM, and LR are often

more interpretable than DL models. This interpretability is vital in

clinical environments where comprehending the decision-making
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process is essential for trust and validation. Traditional MLmethods

are also well-suited for smaller datasets, which are common in

medical research due to the limited availability of patient data.

Techniques like RF and SVM possess well-established theoretical

foundations and are widely utilized, making them reliable choices

for numerous applications.

However, traditional ML methods often necessitate extensive

manual feature engineering, which can be labor-intensive and may

not capture all pertinent patterns within the data. These methods

may encounter difficulties with very large datasets or high-

dimensional data, limiting their applicability in certain

contemporary medical applications. While effective, traditional

ML approaches may not achieve the same level of accuracy as DL

methods, particularly in complex predictive tasks.

Deep learning methods, particularly CNNs and DNNs, have

demonstrated superior performance in terms of accuracy for breast

cancer survival prediction. DL models can autonomously extract

relevant features from raw data, thereby reducing the necessity for

manual feature engineering. This capability is particularly

advantageous when dealing with complex data such as medical

images. DL methods excel in handling large datasets and intricate

data structures, rendering them suitable for applications involving

high-dimensional data.

Nevertheless, DL models are often characterized as “black boxes”

due to their lack of interpretability, which can pose a significant

drawback in clinical settings where understanding the rationale

behind predictions is crucial. DL methods typically require

substantial amounts of labeled data for effective training, which can

be a limitation in medical research where annotated data is scarce.

Furthermore, training DL models is computationally intensive and

demands considerable resources, which may not be accessible in all

research contexts.

Hybrid models that integrate traditional ML and DL techniques

leverage the strengths of both approaches. For example, they can

employ DL for feature extraction and traditional ML for classification,

resulting in enhanced performance and interpretability. These models

can adapt to various types of data and often exhibit greater robustness

in handling diverse clinical scenarios. However, hybrid models can be

complex to design and implement, requiring expertise in both

traditional ML and DL techniques. The integration of different

model types can introduce challenges, particularly in ensuring that

the strengths of each component are effectively harnessed.

The analysis highlights that although traditional ML and DL

methodologies each have unique advantages and limitations, hybrid

models offer a promising solution by integrating the strengths of both

approaches. However, these models’ complexity and substantial

resource demands are critical factors that must be considered.

Future research should prioritize enhancing the interpretability and

efficiency of DL models, alongside developing robust hybrid models

that can be more effectively incorporated into clinical settings. By

overcoming these challenges, the potential of artificial intelligence to

enhance breast cancer survival prediction can be fully harnessed,

leading to improved patient outcomes and more personalized

treatment strategies.

Accuracy, due to its frequent use, was the primary metric for

meta-analysis and performance comparison. Internal validation
FIGURE 7

Analysis of the number and accuracy of the studies based on the
used validation strategy.
TABLE 5 Performance of ML-based BC survival prediction methods.

Metric Validation Accuracy

Min. 72%

Max. 99.04%

Avg. 89.73%

Median 91%

Variance 50.005

St.D. 7.07

Count 26/32
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techniques were dominant, and employed in over 80% of the

studies, with K-fold cross-validation being the most common

approach. These findings align with other studies like (19, 20, 22).

Notably, studies employing both internal and external validation

achieved the highest mean validation accuracy.

Graphs or schematics were the most prevalent methods for

visualizing BC survival prediction models (34.38%). Formulas, and

their combination with graphs, were used in about 31% of the reviewed

studies. This aligns with the findings of (22) who reported a combined

formula and graph approach as a widely used presentation model.

The recent proliferation of AI techniques for classification tasks

has undeniably led to an upsurge in publications exploring their

implementation outcomes. Notably, while advanced analysis
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techniques are readily available, access to large, curated datasets

reflecting real-world clinical data appears limited among

researchers employing approaches discussed in this review. Among

the momentous issues documented in our study, the appropriateness

of dated datasets for the training and testing of traditional, modern,

and hybrid ML algorithms was questionable. So that, replacing this

data with new ones or mixing them with up-to-date data may alter

outcomes. This issue should be considered and examined in

forthcoming studies. Our meta-analysis suggests that recent hybrid

approaches utilizing unsupervised modern algorithms, particularly

when applied to image data, show promising potential. However, the

heterogeneity observed in study designs across the included research

limited the ability to definitively identify a single superior method.

Future research with more homogenous datasets is warranted to

validate these findings and further explore the capabilities of these

emerging techniques in breast cancer survival prediction.

There is a discernible shift towards hybrid models that

synergistically integrate traditional ML and DL techniques. These

hybrid frameworks capitalize on the respective advantages of each

approach, such as employing DL for sophisticated feature extraction

and utilizing conventional ML for classification tasks, thereby

enhancing both performance and interpretability. In particular,

DL architectures, notably CNNs, are increasingly utilized for the

automated extraction of features from intricate data types, such as

medical imaging, which significantly diminishes the necessity for

manual feature engineering. Combining diverse data modalities,

including clinical, genomic, and imaging data, is becoming

prevalent, offering a holistic understanding of breast cancer and

augmenting predictive accuracy. There is a pronounced emphasis

on the development of explainable AI models to mitigate the “black

box” nature inherent in DL. Techniques such as SHAP and LIME

are being investigated to enhance model interpretability.
FIGURE 8

Accuracy histogram of ML-based BC survival prediction methods.
FIGURE 9

Distribution of the studies based on the model
presentation approach.
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Furthermore, the adoption of transfer learning, wherein pre-trained

models are fine-tuned on specific datasets, is gaining momentum.

This strategy can substantially reduce the requisite data and

computational resources for training.

Subsequent research endeavors should prioritize rigorous

external validation to ascertain the robustness and generalizability

of predictive models across heterogeneous populations. Conducting

extensive prospective studies to validate the clinical efficacy of AI

algorithms is imperative, as these investigations will facilitate the

assessment of the real-world applicability of such models.

Formulating strategies for the seamless integration of AI models

into clinical workflows is crucial, encompassing the development of

user-friendly interfaces and ensuring models function effectively in

real-time clinical environments. Establishing ethical guidelines and

regulatory frameworks is vital to guarantee the responsible

deployment of AI in healthcare, addressing concerns related to

data privacy, algorithmic bias, and transparency. Future research

should also concentrate on devising cost-effective AI solutions that

can be widely adopted, particularly in resource-constrained settings.

Implementing data augmentation techniques and fostering data

sharing among research institutions can ameliorate the challenge of

limited data availability. The development and incorporation of

explainable AI techniques can enhance the interpretability of DL

models, rendering them more acceptable in clinical practice.

Leveraging cloud computing and federated learning can alleviate

computational resource constraints by distributing the training

process across multiple nodes. Emphasizing external validation using

diverse and independent datasets can bolster the generalizability and

robustness of AI models.

This study has some limitations. First, the search strategy was

restricted to English articles, potentially excluding relevant non-

English publications. Second, limited access to some full texts

prevented their review.

This systematic review and meta-analysis provided valuable

insights into the application of AI in BC survival prediction

research. The findings highlighted the prevalence of traditional and

modern ML methods, the importance of data quality and quantity,

and the potential benefits of longer prediction horizons and feature

selection techniques. Additionally, the review identified areas for

improvement, such as the underutilization of data augmentation and

the need for more robust validation strategies. Future research should

address these limitations and strive to developmore generalizable and

accurate ML models for BC survival prediction.
5 Conclusion

This systematic review and meta-analysis comprehensively

analyzed the application of ML in BC survival prediction research.

Our findings revealed the extensive use of diverse ML algorithms,

achieving promising results. However, a critical limitation identified

across studies was the predominant reliance on internal validation for

performance evaluation. This restricts generalizability – a crucial

factor for real-world clinical implementation. Future research should
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prioritize external validation on independent datasets and rigorous

model benchmarking to enhance the applicability of ML models in

BC survival prediction.

Furthermore, the analysis identified shortcomings in data utilization.

Inappropriate datasets and a lack of essential pre-processing techniques,

such as feature selection and data augmentation, were frequently

observed. Addressing these issues through the appropriate selection

and application of datasets and pre-processing methods in future

studies is crucial for improving model performance and generalizability.

In conclusion, AI has emerged as a significant tool for BC survival

prediction. However, further exploration and research are essential to

fully understand the true impact and effectiveness of these methods.

This study provides valuable insights into current research trends and

methodological considerations. Researchers can leverage these

findings to guide the design of future BC survival prediction

projects and address the identified shortcomings of previous

studies, ultimately propelling advancements in this domain.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

ZJ: Visualization, Writing – original draft, Writing – review &

editing. SZS: Writing – original draft, Data curation. KS: Formal

analysis, Resources, Validation, Writing – review & editing. AO:

Writing – review & editing, Investigation, Software, Validation. SR:

Software, Validation, Writing – review & editing, Formal analysis,

Methodology. MR: Writing – review & editing, Data curation,

Investigation, Visualization. MEA: Conceptualization, Project

administration, Supervision, Writing – review & editing. MA: Data

curation, Investigation, Software, Visualization, Writing – review &

editing, Conceptualization, Formal analysis, Methodology, Project

administration, Resources, Supervision, Validation, Writing –

original draft.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

During the preparation of this work the authors used Perplexity

in order to check the grammar and improve readability. After using

this tool, the authors reviewed and edited the content as needed and

take full responsibility for the content of the publication.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1420328
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Javanmard et al. 10.3389/fonc.2024.1420328
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Oncology 14
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2024.1420328/

full#supplementary-material
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
Cancer Statistics 2020: GLOBOCAN Estimates of Incidence andMortalityWorldwide for 36
Cancers in 185 Countries. CA: A Cancer J Clin. (2021) 71(3):209–49. doi: 10.3322/caac.21660

2. Jubair S, Alkhateeb A, Tabl AA, Rueda L, Ngom A. A novel approach to identify
subtype-specific network biomarkers of breast cancer survivability. Network Modeling
Anal Health Inf Bioinf. (2020) 9(1):43. doi: 10.1007/s13721-020-00249-4

3. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast
Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current
Treatment Strategies—An Updated Review. Cancers. (2021) 13(17):4287.

4. Anbari F, Yazdani Kachooei Z, Salemi M, Anbari F. Anxiety and
temporomandibular joint disorders among law students in Iran. J Dentomaxillofacial
Radiology Pathol Surg. (2020) 9(4):33–9.

5. Liu Y, He M, Zuo W-J, Hao S, Wang Z-H, Shao Z-M. Tumor Size Still Impacts
Prognosis in Breast Cancer With Extensive Nodal Involvement. Front Oncol. (2021) 11.
doi: 10.3389/fonc.2021.585613

6. Cobleigh M, Yardley DA, Brufsky AM, Rugo HS, Swain SM, Kaufman PA, et al.
Baseline Characteristics, Treatment Patterns, and Outcomes in Patients with HER2-
Positive Metastatic Breast Cancer by Hormone Receptor Status from SystHERs. Clin
Cancer Res. (2020) 26(5):1105–13. doi: 10.1158/1078-0432.CCR-19-2350

7. Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, et al.
Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases.
Stem Cell Rev Rep. (2024) p:1–34. doi: 10.1007/s12015-024-10687-6

8. Dastani M, Ehtesham H, Javanmard Z, Sabahi A, Bahador F. Identifying the
Trends of Global Publications in Health Information Technology Using Text-mining
Techniques. Shiraz E-Med J. (2022) 23(11):e123803. doi: 10.5812/semj-123803

9. Arefinia F, Aria M, Rabiei R, Hosseini A, Ghaemian A, Roshanpoor A. Non-
invasive fractional flow reserve estimation using deep learning on intermediate left
anterior descending coronary artery lesion angiography images. Sci Rep. (2024) 14
(1):1818. doi: 10.1038/s41598-024-52360-5

10. GhaderzadehM, Aria M, Hosseini A, Asadi F, Bashash D, Abolghasemi H. A fast and
efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral
blood smear images. Int J Intelligent Syst. (2022) 37(8):5113–33. doi: 10.1002/int.22753

11. Bayani A, Asadi F, Hosseini A, Hatami B, Kavousi K, Aria M, et al. Performance
of machine learning techniques on prediction of esophageal varices grades among
patients with cirrhosis. Clin Chem Lab Med (CCLM). (2022) 60(12):1955–62.
doi: 10.1515/cclm-2022-0623

12. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine
learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J.
(2015) 13:8–17. doi: 10.1016/j.csbj.2014.11.005

13. Gorgzadeh A, Hheidari A, Ghanbarikondori P, Arastonejad M, Goki TG, Aria
M, et al. Investigating the Properties and Cytotoxicity of Cisplatin-Loaded Nano-
Polybutylcyanoacrylate on Breast Cancer Cells. Asian Pacific J Cancer Biol. (2023) 8
(4):345–50. doi: 10.31557/apjcb.2023.8.4.345-350

14. Maabreh RSA, Alazzam MB, AlGhamdi AS. Machine Learning Algorithms for
Prediction of Survival Curves in Breast Cancer Patients. Appl Bionics Biomech. (2021)
2021:9338091. doi: 10.1155/2021/9338091

15. Deepa P, Gunavathi C. A systematic review on machine learning and deep
learning techniques in cancer survival prediction. Prog Biophysics Mol Biol. (2022)
174:62–71. doi: 10.1016/j.pbiomolbio.2022.07.004

16. Kalafi EY, Nor NAM, Taib NA, Ganggayah MD, Town C, Dhillon SK. Machine
Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using
Clinical Data. Folia Biol (Praha). (2019) 65(5-6):212–20. doi: 10.14712/fb2019065050212
17. Gupta S, Gupta MK. A Comparative Analysis of Deep Learning Approaches for
Predicting Breast Cancer Survivability. Arch Comput Methods Eng. (2022) 29(5):2959–
75. doi: 10.1007/s11831-021-09679-3

18. Salod Z, Singh Y. A five-year (2015 to 2019) analysis of studies focused on breast
cancer prediction using machine learning: A systematic review and bibliometric
analysis. J Public Health Res. (2020) 9(1):1792. doi: 10.4081/jphr.2020.1772

19. Phung MT, Tin Tin S, Elwood JM. Prognostic models for breast cancer: a
systematic review. BMC Cancer. (2019) 19(1):230. doi: 10.1186/s12885-019-5442-6

20. Mazo C, Aura C, Rahman A, Gallagher WM,Mooney C. Application of Artificial
Intelligence Techniques to Predict Risk of Recurrence of Breast Cancer: A Systematic
Review. J Personalized Med. (2022) 12(9):1496. doi: 10.3390/jpm12091496

21. Kajala A, Jain VK. (2020). Diagnosis of Breast Cancer using Machine Learning
Algorithms-A Review, in: 2020 International Conference on Emerging Trends in
Communication, Control and Computing (ICONC3), Lakshmangarh, India, 2020, pp.
1–5. doi: 10.1109/ICONC345789.2020.9117320

22. Li J, Zhou Z, Dong J, Fu Y, Li Y, Luan Z, et al. Predicting breast cancer 5-year
survival using machine learning: A systematic review. PloS One. (2021) 16(4):e0250370.
doi: 10.1371/journal.pone.0250370

23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al.
The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.
Int J Surg. (2021) 88:105906. doi: 10.1016/j.ijsu.2021.105906

24. Booth A, Clarke M, Ghersi D, Moher D, Petticrew M, Stewart L, et al. An
international registry of systematic-review protocols. Lancet. (2011) 377(9760):108–9.
doi: 10.1016/S0140-6736(10)60903-8

25. Qiao N. A systematic review on machine learning in sellar region diseases:
quality and reporting items. Endocrine Connections. (2019) 8(7):952–60. doi: 10.1530/
EC-19-0156

26. Habehh H, Gohel S. Machine Learning in Healthcare. Curr Genomics. (2021) 22
(4):291–300. doi: 10.2174/1389202922666210705124359

27. Farhad A, Reza R, Azamossadat H, Ali G, Arash R, Mehrad A, et al. Artificial
intelligence in estimating fractional flow reserve: a systematic literature review of
techniques. BMC Cardiovasc Disord. (2023) 23(1):407. doi: 10.1186/s12872-023-03447-w

28. Aria M, Nourani E, Golzari Oskouei A. ADA-COVID: Adversarial Deep
Domain Adaptation-Based Diagnosis of COVID-19 from Lung CT Scans Using
Triplet Embeddings. Comput Intell Neurosci. (2022) 2022:2564022. doi: 10.1155/
2022/2564022

29. Bayani A, Hosseini A, Asadi F, Hatami B, Kavousi K, Aria M, et al. Identifying
predictors of varices grading in patients with cirrhosis using ensemble learning. Clin
Chem Lab Med (CCLM). (2022) 60(12):1938–45. doi: 10.1515/cclm-2022-0508

30. Ghaderzadeh M, Asadi F, Jafari R, Bashash D, Abolghasemi H, Aria M. Deep
Convolutional Neural Network–Based Computer-Aided Detection System for COVID-
19 Using Multiple Lung Scans: Design and Implementation Study. J Med Internet Res.
(2021) 23(4):e27468. doi: 10.2196/27468

31. Othman NA, Abdel-Fattah MA, Ali AT. A Hybrid Deep Learning Framework
with Decision-Level Fusion for Breast Cancer Survival Prediction. Big Data Cogn
Computing. (2023) 7(1):50. doi: 10.3390/bdcc7010050

32. Atban F, Ekinci E, Garip Z. Traditional machine learning algorithms for breast
cancer image classification with optimized deep features. Biomed Signal Process
Control. (2023) 81:104534. doi: 10.1016/j.bspc.2022.104534

33. Al-Azzam N, Shatnawi I. Comparing supervised and semi-supervised Machine
Learning Models on Diagnosing Breast Cancer. Ann Med Surg. (2021) 62:53–64.
doi: 10.1016/j.amsu.2020.12.043
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1420328/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1420328/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1007/s13721-020-00249-4
https://doi.org/10.3389/fonc.2021.585613
https://doi.org/10.1158/1078-0432.CCR-19-2350
https://doi.org/10.1007/s12015-024-10687-6
https://doi.org/10.5812/semj-123803
https://doi.org/10.1038/s41598-024-52360-5
https://doi.org/10.1002/int.22753
https://doi.org/10.1515/cclm-2022-0623
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.31557/apjcb.2023.8.4.345-350
https://doi.org/10.1155/2021/9338091
https://doi.org/10.1016/j.pbiomolbio.2022.07.004
https://doi.org/10.14712/fb2019065050212
https://doi.org/10.1007/s11831-021-09679-3
https://doi.org/10.4081/jphr.2020.1772
https://doi.org/10.1186/s12885-019-5442-6
https://doi.org/10.3390/jpm12091496
https://doi.org/10.1109/ICONC345789.2020.9117320
https://doi.org/10.1371/journal.pone.0250370
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.1016/S0140-6736(10)60903-8
https://doi.org/10.1530/EC-19-0156
https://doi.org/10.1530/EC-19-0156
https://doi.org/10.2174/1389202922666210705124359
https://doi.org/10.1186/s12872-023-03447-w
https://doi.org/10.1155/2022/2564022
https://doi.org/10.1155/2022/2564022
https://doi.org/10.1515/cclm-2022-0508
https://doi.org/10.2196/27468
https://doi.org/10.3390/bdcc7010050
https://doi.org/10.1016/j.bspc.2022.104534
https://doi.org/10.1016/j.amsu.2020.12.043
https://doi.org/10.3389/fonc.2024.1420328
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Javanmard et al. 10.3389/fonc.2024.1420328
34. Sindhu Meena K, Suriya S. A Survey on Supervised and Unsupervised Learning
Techniques. In: Kumar L, Jayashree L, Manimegalai R. (eds) Proceedings of
International Conference on Artificial Intelligence, Smart Grid and Smart City
Applications. AISGSC 2019. Springer, Cham. (2020). doi: 10.1007/978-3-030-24051-
6_58

35. Omidi A, Mohammadshahi A, Gianchandani N, King R, Leijser L, Souza R.
editors. (2024). Unsupervised domain adaptation of MRI skull-stripping trained on
adult data to newborns. Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision.

36. Eckardt J-N, Wendt K, Bornhäuser M, Middeke JM. Reinforcement Learning for
Precision Oncology. Cancers. (2021) 13(18):4624. doi: 10.3390/cancers13184624

37. The Cancer Genome Atlas Program (TCGA) . Available online at: https://www.
cancer.gov/ccg/research/genome-sequencing/tcga (Accessed August 15, 2023).

38. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM. The genomic and
transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature.
(2012) 486(7403):346–52. doi: 10.1038/nature10983

39. The Surveillance, Epidemiology, and End Results (SEER) Program . Available
online at: https://seer.cancer.gov/ (Accessed August 15, 2023).

40. Wolberg WM, Olvi N. Street and W. Street, Breast Cancer Wisconsin (Original).
UCI Machine Learning Repository (1992).

41. Wolberg W, Mangasarian O, Street N, Street W. Breast Cancer Wisconsin
(Diagnostic). UCI Machine Learning Repository (1995).

42. Wolberg W, Mangasarian O, Street N, Street W. Breast Cancer Wisconsin
(Prognostic). UCI Machine Learning Repository (1995).

43. Elter M. Mammographic Mass. UCI Machine Learning Repository (2007).

44. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer
Imaging Archive (TCIA): maintaining and operating a public information repository. J
Digit Imaging. (2013) 26(6):1045–57. doi: 10.1007/s10278-013-9622-7

45. Tarighati E, Keivan H, Mahani H. A review of prognostic and predictive
biomarkers in breast cancer. Clin Exp Med. (2023) 23(1):1–16.

46. Kolivand P, Saberian P, Tanhapour M, Karimi F, Kalhori SRN, Javanmard Z,
et al. A systematic review of Earthquake Early Warning (EEW) systems based on
Artificial Intelligence. Earth Sci Inf. (2024), 1–28. doi: 10.1007/s12145-024-01253-2

47. Aria M, Hashemzadeh M, Farajzadeh N. QDL-CMFD: a Quality-independent
and Deep Learning-based Copy-Move image Forgery Detection method.
Neurocomputing. (2022) 511:213–36. doi: 10.1016/j.neucom.2022.09.017

48. Rajabi M, Golshan H, Hasanzadeh RP. Non-local adaptive hysteresis despeckling
approach for medical ultrasound images. Biomed Signal Process Control. (2023)
85:105042. doi: 10.1016/j.bspc.2023.105042

49. Rajabi M, Hasanzadeh RP. A Modified adaptive hysteresis smoothing approach
for image denoising based on spatial domain redundancy. Sens Imaging. (2021) 22
(1):42. doi: 10.1007/s11220-021-00364-0

50. Aria M, Ghaderzadeh M, Asadi F, Jafari R. COVID-19 Lung CT Scans: A large
dataset of lung CT scans for COVID-19 (SARS-CoV-2) detection. Kaggle (2021).

51. Arefanjazi H, Ataei M, Ekramian M, Montazeri A. A robust distributed observer
design for Lipschitz nonlinear systems with time-varying switching topology. J Franklin
Institute. (2023) 360(14):10728–44. doi: 10.1016/j.jfranklin.2023.07.036

52. Mihaylov I, Nisheva M, Vassilev D. Application of machine learning models for
survival prognosis in breast cancer studies. Inf (Switzerland). (2019) 10(3).
doi: 10.3390/info10030093

53. Chang CC, Chen SH. Developing a Novel Machine Learning-Based
Classification Scheme for Predicting SPCs in Breast Cancer Survivors. Front Genet.
(2019) 10. doi: 10.3389/fgene.2019.00848

54. Kim JY, Lee YS, Yu J, Park Y, Lee SK, Lee M, et al. Deep Learning-Based Prediction
Model for Breast Cancer Recurrence Using Adjuvant Breast Cancer Cohort in Tertiary
Cancer Center Registry. Front Oncol. (2021) 11:596364. doi: 10.3389/fonc.2021.596364

55. Mahesh TR, Kumar VV, Muthukumaran V, Shashikala HK, Swapna B, Guluwadi
S. Performance Analysis of XGBoost Ensemble Methods for Survivability with the
Classification of Breast Cancer. J Sensors. (2022) 2022. doi: 10.1155/2022/4649510

56. Lotfnezhad Afshar H, Jabbari N, Khalkhali HR, Esnaashari O. Prediction of Breast
Cancer Survival by Machine Learning Methods: An Application of Multiple Imputation.
Iranian J Public Health. (2021) 50(6):598–605. doi: 10.18502/ijph.v50i3.5606

57. Shahraki SZ, Looha MA, Kazaj PM, Aria M, Akbari A, Emami H, et al. Time-
related survival prediction in molecular subtypes of breast cancer using time-to-event
deep-learning-based models. Front Oncol. (2023) 13.

58. Dammu H, Ren TM, Duong TQ. Deep learning prediction of pathological
complete response, residual cancer burden, and progression-free survival in breast
cancer patients. PloS One. (2023) 18(1). doi: 10.1371/journal.pone.0280148

59. Mustafa E, Jadoon EK, Khaliq-uz-Zaman S, Humayun MA, Maray M. An
Ensembled Framework for Human Breast Cancer Survivability Prediction Using Deep
Learning. Diagnostics. (2023) 13(10). doi: 10.3390/diagnostics13101688

60. Jang W, Jeong C, Kwon K, Yoon TI, Yi O, Kim KW, et al. Artificial intelligence for
predicting five-year survival in stage IV metastatic breast cancer patients: A focus on
sarcopenia and other host factors. Front Physiol. (2022) 13. doi: 10.3389/fphys.2022.977189
Frontiers in Oncology 15
61. Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse G.
Explainable machine learning can outperform Cox regression predictions and provide
insights in breast cancer survival. Sci Rep. (2021) 11(1). doi: 10.1038/s41598-021-86327-7

62. Li H, Liu RB, Long CM, Teng Y, Cheng L, Liu Y. Development and Validation of
a New Multiparametric Random Survival Forest Predictive Model for Breast Cancer
Recurrence with a Potential Benefit to Individual Outcomes. Cancer Manage Res.
(2022) 14:909–23. doi: 10.2147/CMAR.S346871

63. Arya N, Saha S. Multi-modal advanced deep learning architectures for breast
cancer survival prediction. Knowledge-Based Syst. (2021) 221. doi: 10.1016/
j.knosys.2021.106965

64. Liu P, Fu B, Yang SX, Deng L, Zhong XR, Zheng H. Optimizing Survival Analysis
of XGBoost for Ties to Predict Disease Progression of Breast Cancer. IEEE Trans
Biomed Eng. (2021) 68(1):148–60. doi: 10.1109/TBME.10

65. Lou SJ, Hou MF, Chang HT, Lee HH, Chiu CC, Yeh SCJ, et al. Breast Cancer
Surgery 10-Year Survival Prediction by Machine Learning: A Large Prospective Cohort
Study. Biology-Basel. (2022) 11(1).

66. Mudunuru VR, Skrzypek LA. A Comparison of Artificial Neural Network and
Decision Trees with Logistic Regression as Classification Models for Breast Cancer
Survival. Int J Math Eng Manage Sci. (2020) 5(6):1170–90. doi: 10.33889/24557749

67. Salehi M, Razmara J, Lotfi S, Mahan F. A One-Dimensional Probabilistic
Convolutional Neural Network for Prediction of Breast Cancer Survivability. Comput
J. (2022) 65(10):2641–53.

68. Maharana K, Mondal S, Nemade B. A review: Data pre-processing and data
augmentation techniques. Global Transitions Proc. (2022) 3(1):91–9. doi: 10.1016/
j.gltp.2022.04.020

69. Zandi S, Luhan GA. (2023). Exploring User Interactions in AR/VR Interfaces: A
Simulation-Based Study, in: 2023 International Conference on Electrical, Computer and
Energy Technologies (ICECET), IEEE.

70. Aria M, Ghaderzadeh M, Bashash D, Abolghasemi H, Asadi F, Hosseini A. Acute
lymphoblastic leukemia (ALL) image dataset. Kaggle (2021).

71. Kazerouni A, Heydarian A, Soltany M, Mohammadshahi A, Omidi A,
Ebadollahi S, et al. An intelligent modular real-time vision-based system for
environment perception. arXiv (2023).

72. Zandi S, Luhan G. Exploring Gaze Dynamics in Virtual Reality through
Multiscale Entropy Analysis. Sensors. (2024) 24(6):1781. doi: 10.3390/s24061781

73. Xie H, Li J, Zhang Q, Wang Y. Comparison among dimensionality reduction
techniques based on Random Projection for cancer classification. Comput Biol Chem.
(2016) 65:165–72. doi: 10.1016/j.compbiolchem.2016.09.010

74. Mousavi A, Arefanjazi H, Sadeghi M, Ghahfarokhi AM, Beheshtinejad F,
Masouleh MM. Comparison of feature extraction with PCA and LTP methods and
investigating the effect of dimensionality reduction in the bat algorithm for face
recognition. Int J Robotics Control Syst. (2023) 3(3):501–9. doi: 10.31763/ijrcs.v3i3.1057

75. El Rahman SA. Predicting breast cancer survivability based on machine learning
and features selection algorithms: a comparative study. J Ambient Intell Humanized
Computing. (2021) 12(8):8585–623. doi: 10.1007/s12652-020-02590-y

76. Zhao M, Tang YS, Kim H, Hasegawa K. Machine Learning With K-Means
Dimensional Reduction for Predicting Survival Outcomes in Patients With Breast
Cancer. Cancer Inf. (2018) 17. doi: 10.1177/1176935118810215

77. Tahmassebi A, Wengert GJ, Helbich TH, Bago-Horvath Z, Alaei S, Bartsch R,
et al. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging
of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and
Survival Outcomes in Breast Cancer Patients. Invest Radiol. (2019) 54(2):110–7.
doi: 10.1097/RLI.0000000000000518
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