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CRC poses a significant challenge in the global health domain, with a high

number of deaths attributed to this disease annually. If CRC is detected only in its

advanced stages, the difficulty of treatment increases significantly. Therefore,

biomarkers for the early detection of CRC play a crucial role in improving patient

outcomes and increasing survival rates. The development of a reliable biomarker

for early detection of CRC is particularly important for timely diagnosis and

treatment. However, current methods for CRC detection, such as endoscopic

examination, blood, and stool tests, have certain limitations and often only detect

cases in the late stages. To overcome these constraints, researchers have turned

their attention to molecular biomarkers, which are considered a promising

approach to improving CRC detection. Non-invasive methods using

biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and

proteins can provide more reliable diagnostic information. These biomarkers can

be found in blood, tissue, stool, and volatile organic compounds. Identifying

molecular biomarkers with high sensitivity and specificity for the early and safe,

economic, and easily measurable detection of CRC remains a significant

challenge for researchers.
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Introduction

CRC is a common type of cancer, ranking as the third most prevalent malignant tumor

globally and the second leading cause of cancer-related deaths (1, 2). The survival rate of

CRC patients is significantly influenced by the stage at which the tumor is detected, with a

general 5-year overall survival rate of about 65% (3). Most cases of CRC are diagnosed at an

advanced stage due to the lack of unique, early-stage disease-specific symptoms and

limitations in early diagnosis methods. The most critical portion of cancer-related deaths is

caused by metastatic cancer, with the liver being the most common site of metastasis in

CRC. More than half of the patients in stage III, and a quarter in stages II and III, appear to
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have local recurrence or metastasis (4). CRC is a unique cancer that

can be prevented and cured through early identification and

removal of high-risk adenomas (5). Thus, implementing early

detection screening programs is crucial for reducing the incidence

and mortality of the disease. Early detection increases the likelihood

of successful treatment and improves patient health outcomes (6).

Colonoscopy is a widely accepted and effective screening method

for early detection of CRC, though it carries certain risks. Patients

may experience bleeding during sampling or polyp removal, and

other complications may occur (7). In recent years, advanced

molecular techniques have played a significant role in the early

diagnosis and treatment of various cancers, including CRC, helping

to reveal some of the genetic mechanisms that lead to CRC (8).

Therefore, clarifying the molecular mechanisms of colon cancer

occurrence is crucial. In recent years, non-coding RNAs (ncRNAs)

have been proven to participate in the onset and progression of

colon cancer (9, 10). It is well-known that ncRNAs, mostly not

translated into proteins, also play significant roles in various cellular

and physiological processes (11). LncRNAs are longer than 200

nucleotides, participate in various biological processes including cell

proliferation, differentiation, development, apoptosis, and

metastasis, often acting as competitive endogenous RNAs

(ceRNAs) to regulate the expression of specific miRNAs, then

targeting molecules downstream of these miRNAs (12). In fact,

lncRNAs can interact with RNA, DNA, and proteins to form RNA-

RNA, RNA-DNA, and RNA-protein complexes, regulating gene

expression through various mechanisms, including transcriptional

regulation, mRNA stability, and translation (13, 14). Numerous

studies suggest that lncRNAs may play key roles in the biological

processes of cancer, such as apoptosis, cell proliferation, cell

invasion, and metastasis (15–17). In this article, we will

summarize the functions and mechanisms of lncRNAs in the

occurrence and malignant progression of human CRC.
The history of lncRNAs

LncRNAs is a class of RNA molecules longer than 200

nucleotides, first discovered in the 1970s. Initially, scientists

primarily focused on mRNA, which encodes proteins, while non-

coding RNAs were considered “noise” or “by-products.” However,

with technological advancements and deeper research, it gradually

became apparent that non-coding RNAs play crucial roles in gene

regulation, epigenetics, and disease occurrence. The research journey

of LncRNA can be traced back to a series of groundbreaking studies

in the late 20th and early 21st centuries. In 2002, researchers first

discovered a LncRNA associated with gene silencing on the X

chromosome (18). Subsequently, Guttman et al. discovered the

LncRNA-HOTAIR, which plays a significant role in gene locus

regulation (11). In 2009, Rinn et al. identified an lncRNA

(HOTTIP) located in the HOX gene cluster and found its crucial

involvement in gene locus regulation (19). It has also been reported

that LncRNA plays crucial roles in embryonic development (20).

Studies have also indicated the role of lncRNA in tumor initiation and

progression, sparking a research frenzy into the role of lncRNA in

cancer (12, 21, 22).
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Classification of lncRNAs

Based on the genomic database [Ensembl Release 96 (April

2019)], human lncRNAs are classified into several categories,

including 3’ overlapping ncRNA, antisense LncRNA, long

interspersed ncRNA, retained intron, sense intronic, sense

overlapping, and macro lncRNAs.Intronic lncRNA is located

within the intron regions of protein-coding genes, transcribed

from the introns of these genes, but does not itself participate in

encoding proteins (23). Antisense lncRNA overlaps with the

antisense strand of coding genes and may affect gene expression

by forming double-stranded RNA structures with coding regions

through base complementary pairing (24, 25). Intergenic lncRNA is

located in the region between two coding genes and may play a role

in the regulation of genes in its region (11), sense lncRNAs are

overlapped with the sense strand of protein coding genes containing

exons (26). Messenger lncRNA can act as a regulatory factor,

involved in regulating the expression of specific genes (20).

Structural lncRNA may play an important role in the physical

structure within cells or the chromosomal architecture within the

nucleus (27).

lncRNAs localization and related
research techniques

lncRNAs can be located in the cytoplasm (28), nucleus (29),

nucleolus (30)s, and other subcellular regions and vesicles (such as

nucleoli and exosomes), and their localization is related to their

molecular functions (28, 31). Certain sequence motifs in their

primary sequences are related to subcellular localization (32).

Exploring the localization of lncRNAs is important for

understanding their roles in gene regulation, disease development,

and cell functions. Techniques for studying the localization of lncRNAs

include in situ hybridization (33), RNA immunoprecipitation (34),

RNA-seq (35), single-cell RNA sequencing (36), FISH-Flow (37), etc.
The conservation of lncRNAs

Although lncRNAs are crucial in function, most lncRNA

sequences exhibit low conservation across different species,

meaning the same lncRNA may be difficult to identify in different

species through sequence similarity. Low conservation is considered

to reflect the diversity and specificity of lncRNA functions, as well as

their rapid changes during evolution (38). Despite low sequence

conservation, some lncRNAs exhibit a degree of structural and

functional conservation across different species. These lncRNAs

may maintain similar three-dimensional structures or play roles in

the same pathways of gene expression regulation across species (27,

39). Moreover, many lncRNAs exhibit strong species specificity,

existing in certain species while absent in others. This species

specificity suggests that lncRNAs may play specialized roles in the

development and adaptation processes of specific species (38, 40).

The conservation level of lncRNA promoters is comparable to that

of protein-coding genes (41, 42).
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LncRNAs as diagnostic biomarkers for
CRC in blood

Ease of acquisition and detectability are preferred criteria for

diagnostic biomarkers. For potential early-stage CRC patients,

undergoing a colonoscopy to obtain tissue samples might be

strongly resisted by patients. Therefore, biomarkers that can be

detected in blood or other body fluids are ideal for broader clinical

use. Over the past decade, numerous studies have demonstrated

that lncRNAs are stable in the bloodstream and hold diagnostic

potential. This makes lncRNAs promising candidates for non-

invasive diagnostic tests in CRC (43–46). LncRNAs are present in

different body fluids such as blood and urine because they can cross

cellular membranes. This property allows for their detection in non-

invasive diagnostic tests (47). LncRNAs in body fluids directly

represent the expression levels of certain genes and can

differentiate between cancer patients and healthy individuals (48).

Additionally, a key characteristic of circulating lncRNAs is their

ability to resist degradation by RNase enzymes (49, 50). Apoptotic

bodies, microvesicles, and exosomes are vesicles encapsulated by a

phospholipid bilayer that contain DNA, RNA, lipids, proteins,

polysaccharides, and metabolites. These vesicles are released into

the human circulatory system for dissemination, facilitating the

transfer of materials between cells (51–53). Quantitative reverse

transcription PCR (qRT-PCR) is frequently employed to detect

circulating lncRNAs because of its notable sensitivity and specificity

(54). CCAT1 and HOTAIR are the first lncRNA markers reported

to show significantly higher levels in the plasma of CRC patients

compared to healthy individuals (55). Numerous other circulating
Frontiers in Oncology 03
lncRNAs have also been identified as potential biomarkers for

detecting CRC (Table 1).
The role and regulatory axes of
LncRNAs in CRC

As research progresses, it has been discovered that lncRNAs

play a crucial role in the onset and development of CRC (68).

LncRNAs play multifaceted roles in CRC, influencing various

biological processes including cell cycle control, cell proliferation,

epithelial-mesenchymal transition (EMT), migration, invasion,

drug resistance, apoptosis, and cellular stemness. This section will

elaborate on the specific roles of lncRNAs within CRC, highlighting

how they contribute to both the development and progression of the

disease. We will also focus on the signaling pathways associated

with lncRNAs, enhancing our understanding of their mechanistic

impact on the pathophysiology of CRC (Table 2).
Regulation of cell proliferation
by LncRNAs

Increasing research evidence suggests that lncRNAs play a

crucial role in regulating cellular proliferation. Many studies have

shown that abnormal expression of lncRNAs is closely associated

with the regulation of proliferation in CRC cells. LncRNAs can

promote and inhibit cancer cell proliferation. Generally speaking,

lncRNAs that promote cancer cell proliferation are highly expressed
TABLE 1 Studies on LncRNAs as diagnostic biomarkers for CRC.

Sample Type Biomarker(S) Diagnostic (AUC) Study sample size (Cancer vs Control) Ref

serum CCDC144NL-AS1 0.994 60 vs 30 (56)

serum TERC 0.982 70 vs 35 (57)

serum NNT-AS1 0.964 60 vs 28 (58)

Serum circRHBDD1 0.76 24 vs 24 (59)

serum ZFAS1 0.95 60 vs 28 (60)

Plasma LncGMDS-AS1 0.721 97 vs 91 (61)

Plasma CACClnc 0.846 22 vs 22 (62)

Serum EGFR-AS1 0.938 128 vs 64 (63)

Plasma ARST 0.934 60 vs 60 (64)

Plasma
Tissue

ASB16-AS1
AFAP1-AS1

Tissue.LncRNA.ASB16-AS1:0.996
Plasma.LncRNA.ASB16-AS1:0.974

Tissue.LncRNA.AFAP1-AS1
:0.984

Plasma.LncRNA.AFAP1-
AS1:0.965

47 vs 50 (65)

serum LINC01836 0.809 137 vs 138 (66)

serum

LNCAROD
SNHG20

LINC00534
TSPOAP-AS1

LNCAROD:0.74
SNHG20:0.73

LINC00534:0.73
TSPOAP-AS1:0.63

45 vs 45 (67)
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TABLE 2 The functions of lncRNAs and their related regulatory axes.

LncRNA Sample Exp Functions Related
regulatory axes

Ref

AC092894.1 cell line ↓ Inhibit drug resistance AC092894.1/USP3/
AR/RASGRP3

(69)

AGAP2-AS1 cell line ↑ Promote growth,Promote
migration,Promote
invasion,Promote EMT

AGAP2-AS1/miR-182-
5p/CFL1

(70)

AK077216 tissue ↓ Inhibit migration,
Inhibit invasion

AK077216/miR-34a (71)

AK093407 tissue,cell line ↑ Promote proliferation,
Inhibit apoptosis,
Promote cell cycle

AK093407/p-STAT3 (72)

ASB16-AS cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote stemness,
Inhibit apoptosis

ASB16-AS1/miR-185-
5p/TEAD1

(73)

ATB tissue,cell line ↑ Promote invasion,
induces EMT

E-cadherin (74)

BBOX1-AS1 cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Inhibit apoptosis

BBOX1-AS1/miR-361-
3p/SH2B1

(75)

BCAR4 tissue ↑ Inhibit apoptosis,
Promote drug resistance

BCAR4/miR-483-
3p/RAB5C

(76)

BVES-AS1 cell line ↑ Enhance cell vitality,
Promote migration,
Promote invasion

BVES-AS1-201-50aa/
Src/mTOR

(77)

CASC2 tissue,cell line ↓ Inhibit proliferation,
Inhibit migration,
Inhibit invasion

CASC2/miR-18a-
5p/BTG3

(78)

CASC9 tissue,cell line ↑ Promote proliferation,
Inhibit apoptosis

CASC9/miR-576-
5p/AKT3

(79)

tissue,cell line ↑ Promote proliferation,
Promote invasion

CASC9/miR-542-3p/
integrin-linked kinase

(80)

CBR3-AS1 tissue ↓ Inhibit migration,
Inhibit invasion

CBR3-AS1/miR-29a (81)

CCAT1 cell line ↑ Promote drug resistance CCAT1/DNMT1/SOCS3 (82)

tissue ↑ Promote proliferation,
Promote invasion

c-Myc/CCAT1 (83)

tissue,cell line ↑ Promote drug resistance / (84)

tissue ↑ Promotes proliferation,
invasion, drug resistance

/ (85)

CCAT2 tissue ↑ Promote growth,
Promote migration

CCAT2/miR-17-
5p/TCF7L2

(86)

CCL14-AS tissue ↓ Inhibit migration,
Inhibit invasion

CCL14-AS/MEP1A (87)

CERS6-AS1 tissue,cell line ↑ Enhance vitality,
Promote proliferation,
Promote migration,
Promote invasion,
Promote EMT,
Promote stemness

CERS6-AS1/miR-15b-
5p/SPTBN2

(88)

(Continued)
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TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

CRNDE cell line ↑ Promote proliferation,
Inhibit invasion, Promote
drug resistance

CRNDE/Akt/mTORC1 (89)

CYP1B1-AS1 tissue ↓ Inhibit proliferation,
Inhibit migration,
Inhibit invasion

CYP1B1-AS1/
NOP58/SNAIL

(90)

CYTOR cell line ↑ Promotes migration,
invasion, EMT

CYTOR/b-
catenin/TCFcomplex

(91)

DANCR tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote cell cycle

DANCR/miR-185-
5p/HMGA2

(92)

DICER1-AS1 tissue ↑ Promote proliferation,
Promote migration,
Promote invasion

DICER1-AS1/miR-650/
MAPK/ERK

(93)

Duxap8 tissue,cell line ↑ Promote proliferation,
Inhibit apoptosis

Duxap8/miR-519b-
3p/ZEB1

(94)

tissue,cell line ↓ Inhibit vitality,Inhibit
growth,Inhibit
drug resistance

ELFN1-AS1/EZH2 (95)

tissue、cell line ↑ Promote immune
surveillance escape,
Inhibit NK
cell cytotoxicity

ELFN1-AS/GDF15/JNK/
NKG2D/GZMB

(96)

EPB41L4A-AS1 tissue ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote EMT

EPB41L4A-AS1/Rho/Rh (97)

EVADR cell line ↑ Promote cell cycle,
Promote migration

EVADR/miR-7 or
EVADR/miR-29b

(98)

tissue,cell line ↑ Promote migration EVADR/YBX (99)

FAM201A tissue,cell line ↑ Promote growth,Promote
stemness,Promote
drug resistance

FAM201A/miR-
3163/MACC1

(100)

FAM230B tissue ↑ Inhibit proliferation,
Enhance vitality,Promote
colony formation

FAM230B/miR-1182 (101)

FAM83H-AS1 tissue ↑ Promotes tumorigenesis SMAD1/5/9,
TGF-bsignaling

(102)

FER1L4 tissue ↓ Inhibit migration,
Inhibit invasion

FER1L4/miR-1273g-3p (103)

tissue ↓ Inhibit proliferation,
Inhibit migration,
Inhibit invasion

FER1L4/miR-106a-5p (104)

FEZF1-AS1 tissue ↑ Promote proliferation,
Promote migration,
Promote invasion

FEZF1-AS1/miR-92b-
3p/ZIC5

(105)

tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote tumorigenesis

FEZF1-AS1/miR-
632/FAM83A

(106)

FGD5-AS1 cell line ↑ Promote drug resistance FGD5-AS1/miR-330-3p/
Hexokinase 2

(107)

(Continued)
F
rontiers in Oncology
 05
 frontiersin.org

https://doi.org/10.3389/fonc.2024.1419972
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2024.1419972
TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

FOXP4-AS1 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Inhibit apoptosis

FOXP4-AS1/miR-423-
5p/NACC1

(108)

GAS5 tissue,cell line ↓ Inhibit migration, Inhibit
vitality,
Promote apoptosis

GAS5/miR-21/LIFR (109)

cell line ↓ Inhibit proliferation,
Inhibit migration,Inhibit
invasion,Inhibit cell cycle

GAS5的/miR-21/
PTEN/Akt

(110)

GAS6-AS1 cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote EMT

GAS6-AS1/TRIM14 (111)

GSEC cell line ↑ Promotes migration DHX36 (112)

H19 tissue ↑ Promote drug resistance H19/miR-675-5p/VDR (113)

cell line ↑ Promote stemness Sohlh2/LncRNA-H19/
miR-141/b-catenin

(114)

HAND2 tissue ↓ Inhibit proliferation,
Inhibit migration,
Promote apoptosis,
Inhibit
xenotransplantation

HAND2-AS1/miR-
3118/LEPR

(115)

HCG1 cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Inhibit apoptosis

HCG1/miR-26b-
5p/ARPP19

(116)

HCG11 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote drug resistance

HCG11/miR-144-
3p/PDK4

(117)

HNF1A-AS1 tissue ↑ Enhance vitality,Promote
migration,Promote
invasion,
Promote
xenotransplantation

HNF1A-AS1/miR-34a/
SIRT1/p53

(118)

HOTAIR cell line ↑ Enhance vitality,
Promote proliferation

HOTAIR/miR-1277-
5p/ZEB1

(119)

tissue ↑ Promote stemness HOTAIR/miR-211-5p/
FLT-1

(120)

tissue ↑ Promote tumorigenesis,
Promote migration

(121)

tissue ↑ Promote EMT Vimentin,Matrix
Metallopeptidase 9
(MMP9),E-cadherin

(122)

tissue ↑ Promote migration / (123)

tissue,cell line ↑ Promote growth,Promote
migration,Promote EMT

HOTAIR/SNAIL/HNF4a (124)

HOXB-AS4 cell line ↑ Promote proliferation,
Promote migration,
Inhibit apoptosis

HOXB-AS4/miR-140-
5p/HDAC7

(125)

HOXC-AS3 tissue ↓ Inhibit migration,
Inhibit invasion

HOXC-AS3/miR-1269/
TGF-b2

(126)

(Continued)
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TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

IGFL2-AS1 tissue,cell line ↑ Promote proliferation IGFL2-AS1/miR-433-
3p/PAK4

(127)

tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

IGFL2-AS1/HIF-1a/CA9 (128)

KCNQ1OT1 tissue ↓ Inhibit drug resistance KCNQ1OT1/miR-
34a/ATG4B

(129)

LBX2-AS1 tissue ↑ Promote growth,Promote
proliferation, Promote
migration,
Inhibit invasion

LBX2-AS1/miR-627-5p/
RAC1/PI3K/AKT

(130)

LEF1-AS1 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

LEF1-AS1/LEF1/FUT8 (131)

LINC00174 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Inhibit apoptosis

LINC00174/miR-2467-
3p/USP21

(132)

LINC00261 cell line ↓ Promote apoptosis,
Inhibit vitality,Inhibit
migration,Inhibit
invasion,Inhibit
drug resistance

LINC00261/b-catenin/
Wnt-pathway

(133)

LINC00473 tissue,cell line ↑ Promote EMT,Promote
proliferation, Promote
cell cycle,
Promote invasion

LINC00473/miR-195 (134)

LINC00485 tissue,cell line ↓ Inhibit proliferation,
Inhibit migration,
Inhibit invasion

LINC00485/miR-
581/EDEM1

(135)

LINC00543 tissue ↑ Promote EMT,
Promote migration

LINC00543/pre-miR-
506-3p/FOXQ1

(136)

LINC00586 tissue ↑ Promote migration LINC00586/LSD1/ASXL1 (137)

LINC00665 cell line ↑ Promote growth,Promote
migration,Promote
invasion,Inhibit apoptosis

LINC00665/Wnt/
b-catenin

(138)

tissue,cell line ↑ Promote development LINC00665/miR-138-
5p/SIN3A

(139)

LINC00858 tissue ↑ Promote growth,
Promote migration

LINC00858/miR-132-
3p/IGF2BP1

(140)

LINC00882 tissue,cell line ↑ Promote migration,
Promote EMT

LINC00882/miR-3619-
5p/TNNB1

(141)

LINC00958 cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

LINC00958/miR-145-3p/
miR-145-3p/CDK1

(142)

tissue,cell line ↑ Promote proliferation,
Inhibit apoptosis,
Promote drug resistance,
Promote growth

LINC00958/miR-
422a/MAPK1

(143)

LINC01021 tissue,cell line ↑ Promote proliferation,
Promote colony
formation, Promote
migration,
Inhibit apoptosis

LINC021/IMP2/
MSX1/JARID2

(144)

(Continued)
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TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

LINC01088 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote immune escape

LINC01088/miR-548b-
5p/miR-548c-5p/G3BP1/
PD-L1

(145)

LINC01224 tissue,cell line ↑ Promote proliferation,
Promote invasion

LINC01224/miR-2467 (146)

tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Inhibit invasion

YY1/LINC01224/miR-
485-5p/MYO6

(147)

LINC01232 cell line ↑ Promote proliferation,
Promote angiogenesis,
Promote migration,
Promote invasion

LINC01232/miR-181a-5p (148)

LINC01287 tissue ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote EMT

LINC01287/miR-
4500/MAP3K13

(149)

LINC01315 tissue,cell line ↑ Promote migration,
Promote invasion,
Promote growth

LINC01315/miR-
484/DLK1

(150)

tissue ↑ Promote growth,
Promote invasion

LINC01315/miR-205-3p (151)

tissue,cell line ↑ Promote migration,
Promote growth,
Promote EMT

LINC01315/Wnt/
b-catenin

(152)

LINC01436 tissue ↑ Promote proliferation LINC01436/miR-466 (153)

LINC01578 tissue ↑ Enhances metastasis NF-kB,YY1 (154)

LINC01606 tissue ↑ Promote growth,Promote
invasion,
Promote stemness

LINC01606/miR-423-5p (155)

LINC01836 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

LINC01836/miR-1226-
3p/SLC17A9

(156)

LINC02038 tissue ↓ Inhibit proliferation,
Inhibit vitality,Inhibit
migration,Inhibit
invasion,
Promote apoptosis

M(6)A/LINC02038/miR-
552-5p/FAM172A

(157)

LncGMDS-AS1 tissue ↑ Promote proliferation,
Promote stemness

GMDS-AS1/HuR-
STAT3/Wnt

(61)

MALAT1 tissue,cell line ↑ Promote drug resistance MALAT1/miR-200s/JNK (158)

MAPKAPK5-AS1 tissue ↑ Promote proliferation,
Promote migration

MK5-AS1/let-7f-1-
3p/MK5

(159)

MBNL1-AS1 tissue ↓ Inhibit proliferation MBNL1-AS1/miR-29c-
3p/BVES

(160)

MCF2L-AS cell line ↑ Promote drug resistance MCF2L-AS1/miR-105/
IL-1b

(161)

MCM3AP-AS1 tissue ↓ Inhibit proliferation,
Inhibit migration

MCM3AP-AS1/miR-19a-
3p/FOXF2

(162)

MIR155HG tissue ↑ Promote proliferation,
Promote migration,

MIR155HG/miR-
650/ANXA2

(163)

(Continued)
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TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

Promote invasion,
Promote drug resistance

MIR497HG tissue,cell line ↓ Inhibit proliferation,
Inhibit migration,
Inhibit invasion

MIR497HG/miR-
3918/ACTG2

(164)

MNX1-AS1 tissue,cell line ↑ Enhance vitality,Promote
invasion,
Promote migration

MNX1-AS1/miR-744-5p (165)

tissue,cell line ↑ Promote stemness,
Promote proliferation,
Inhibit invasion,
Promote migration

MNX1-AS1/PPFIA4/
AKT/HIF-1a

(166)

NEAT1 tissue,cell line ↑ Promote proliferation,
Promote invasion

NEAT1/miR-448/ZEB1 (167)

tissue ↑ Promote proliferation,
Promote migration,
Promote invasion

NEAT1/miR-216b/YY1 (168)

NEF cell line ↓ Promote drug resistance lncRNA-NEF/DOK1/
MEK/ERK

(169)

OTUD6B-AS1 cell line ↓ Promote drug resistance OTUD6B-AS1/HuR/
TRIM16/GPX

(170)

tissue,cell line ↓ Inhibit proliferation,
Inhibit migration,Inhibit
invasion,Inhibit EMT,
Promote apoptosis

OTUD6B-AS1/miR-21-
5p/PNRC2

(171)

PCAT1 cell line ↑ Promote proliferation,
Promote migration,
Promote EMT

PCAT1/miR-329-3p/
Netrin-1

(172)

PCGEM1 tissue ↑ Promote proliferation,
Promote invasion,
Promote migration

PCGEM1/miR-129-
5p/SOX4

(173)

tissue,cell line ↑ Promote proliferation,
Promote migration,
Inhibit apoptosis

PCGEM1/miR-433-
3p/CTCF

(174)

PROX1 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote immune escape

PROX1-AS1/miR-520d/
PD-L1

(175)

PROX1-AS1 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

PROX1-AS1/miR-
326/FBXL20

(176)

PSMB8-AS1 cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote EMT,
Inhibit apoptosis

PSMB8-AS1/miR-1299/
PSMB8-AS1

(177)

LBX2-AS1 tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

LBX2-AS1/PTBP1 (178)

PVT1 cell line ↑ Promote proliferation,
Promote migration

PVT1/miR-24-3p/NRP1 (179)

tissue ↑ Promote proliferation,
Promote migration

PVT1/miR-1207-5p/
Wnt6/b-catenin2

(180)

(Continued)
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TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

tissue ↑ Promote proliferation,
Inhibit apoptosis

PVT1/miR-761/MAPK1 (181)

tissue ↑ Promotes proliferation,
migration, invasion

PVT/miR-30d-
5p/RUNX2

(182)

RAD51-AS1 tissue,cell line ↓ Promote proliferation,
Promote migration,
Promote invasion

RAD51-AS1/miR-29b/c-
3p/NDRG2

(183)

SNHG11 tissue,cell line ↑ Promote drug resistance,
Promote proliferation,
Promote migration,
Inhibit apoptosis

SNHG11/miR-1207-
5p/ABCC1

(184)

SNHG15 tissue ↑ Promote proliferation,
Promote drug resistance

TYMS,BCL2,
GLUT1,PKM2

(185)

cell line ↑ Promote
proliferation,migration

Slug (186)

SNHG16 cell line ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote EMT

SNHG16/miR-124-3p/
MCP-1

(187)

tissue,cell line ↑ Promote proliferation SNHG16/miR-214-
3p/ABCB1

(188)

cell line ↑ Promote colony
formation,Promote
proliferation,Promote
migration,Promote
invasion,Promote EMT

SNHG16/YAP1/TEAD1 (189)

SNHG17 cell line ↑ Elevates proliferation,
migration, invasion,
Promote
colony formation

SNHG17/miR-375/CBX3 (190)

SNHG8 cell line ↑ Promote growth,Promote
proliferation,
Promote EMT

SNHG8/AKT/
AMPK/mTOR

(191)

SOX2OT tissue ↑ Promote proliferation,
Promote migration,
Promote invasion,
Promote
xenotransplantation

SOX2OT/miR-194-
5p/SOX5

(192)

SPINT1-AS1 cell line ↑ Promote proliferation,
Promote migration,
Inhibit apoptosis

SPINT1-AS1/miR-
214/HDGF

(193)

cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

SPINT1-AS1/miR-433-
3p/E2F3

(194)

SURC tissue ↑ Promote proliferation,
Promote colony
formation, Promote cell
cycle,Promote growth

SURC/miR-185-
5p/CCND2

(195)

TDRG1 cell line ↑ Promote stemness TDRG1/miR-873-
5p/PRKAR2

(196)

TUG1 tissue ↑ Promote proliferation,
Promote migration

TUG1/miR-195-5p/
HDGF/DDX5/b-catenin

(197)

tissue,cell line ↑ Promote proliferation,
Promote migration,

TUG1/miR-542-
3p/TRIB2

(198)

(Continued)
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in cancer, while lncRNAs that inhibit cancer cell proliferation are

low expressed in cancer.

Studies on lncRNAs that promote CRC proliferation are as

follows. Guo et al. found that AGAP2-AS1 can be transcriptionally

activated by E2F transcription factor 4(E2F4). Downregulating

AGAP2-AS1 impairs the prol i ferat ion of CRC cel ls .

Mechanistically, AGAP2-AS1 enhances CFL1 expression by

competitively binding with miR-182-5p in CRC, providing a

possible target for therapeutic intervention (70). When AK093407

is silenced, the proliferation of HCT-15 and HCT-116 cells is reduced

(72). ASB16-AS1 promotes the proliferation of CRC cells through the

ASB16-AS1-miR-185-5p/TEAD1 axis (73). BBOX1-AS1 promotes

the progression of CRC by acting as a sponge for hsa-miR-361-3p

and upregulating SH2B1 (75). Silencing CASC9 can not only

downregulate AKT3 expression by reducing the competitive

binding of CASC9 with miR-576-5p, thereby inhibiting CRC cell

proliferation (210), it can also inhibit the proliferation of CRC cells

through the miR-542-3p/integrin-linked kinase pathway (80),

CCAT2 is highly overexpressed in microsatellite stable CRC and

can enhance tumor growth by activating the WNT signaling pathway

through the CCAT2/miR-17-5p/TCF7L2 axis (86). Studies have
Frontiers in Oncology 11
found that by overexpressing or knocking down CCAT2, reducing

CCAT2 can increase miR-145, thereby inhibiting the proliferation of

cancer cells (211). A study indicated that CCDC144NL-AS1 is

upregulated in CRC tissues and cells, and the elevated expression

of CCDC144NL-AS1 promotes cell proliferation through the miR-

363-3p/GALNT7 axis (212). Another study established cell models

with either the gain or loss of function of DANCR. It was discovered

that DANCR promotes CRC cell proliferation through the miR-185-

5p/HMGA2 axis (92). Research utilizing public datasets and

experimental evaluation has explored the function and expression

of DICER1-AS1 in CRC. It was found that the upregulation of

DICER1-AS1 promotes CRC proliferation in vitro by acting as a

sponge for miR-650, thereby activating the MAPK/ERK signaling

pathway (92). Further research has revealed the DLGAP1-AS2/

CTCF/Myc axis as an oncogenic regulatory pathway in CRC,

promoting CRC cell proliferation (213). Multiple studies have

shown that ELFN1-AS1 is highly expressed in CRC and promotes

CRC proliferation through various regulatory axes (95, 214, 215).

Overexpression of FAM230B promotes tumor growth by increasing

the levels of immature miR-1182 in CRC cells, while simultaneously

inhibiting the expression levels of mature miR-1182 (101). Another
TABLE 2 Continued

LncRNA Sample Exp Functions Related
regulatory axes

Ref

Promote invasion,
Inhibit invasion

cell line ↑ Promotes proliferation,
migration, invasion,
EMT, inhibits apoptosis

TUG1/miR-26a-5p/
MMP14/p38
MAPK/Hsp27

(199)

UBXN10-AS1 SLIT3 tissue ↓ Promote proliferation,
Promote migration

UBXN10-AS1/miR-515-
5p/SLIT3

(200)

UCA1 cell line ↑ Inhibit invasion,Promote
drug resistance

UCA1/miR-495-HGF/
c-MET

(201)

tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

UCA1-miR-495-SP1/SP3 (202)

USP30-AS1 tissue ↓ Inhibit development USP30-AS1/miR-765 (203)

XIST tissue,cell line ↑ Promote growth XIST/GRHL2/miR-448 (204)

tissue,cell line ↑ Promote proliferation,
Promote migration,
Promote invasion

XIST/microRNA-338-
3p/PAX5

(205)

tissue,cell line ↑ Promotes proliferation XIST/miR-34a/Wnt/
b-catenin

(206)

XLOC_006390 tissue,cell line ↑ Inhibit apoptosis,
Promote migration,
Promote invasion

lncRNA-XLOC/u
006390/miR-
296/ONECUT2

(207)

ZFAS1 tissue,cell line,plasma ↑ Increases proliferation,
invasion, EMT, inhibits
apoptosis,
regulates cellcycle

ZEB1,E-cadherin,ZO-1,
vimentin,N-cadherin

(208)

cell line ↑ Promote migration SOX4/miR-34b/ZFAS1 (209)
"↑" indicates that the expression of lncRNA in colorectal cancer is increased, and "↓" indicates that the expression of lncRNA in colorectal cancer is decreased. "/" refers to the part not mentioned
in the article.
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study used lentiviral transfection to knock down FEZF1-AS1 in CRC

cells and found that FEZF1-AS1 likely promotes CRC proliferation

through the miR-92b-3p/ZIC5 axis by activating the PI3K/AKT

signaling pathway (105). Further research has discovered that

knocking out FEZF1-AS1 may inhibit cell proliferation through the

miR-632/FAM83A axis (106). FOXP4-AS1 acts as a molecular

sponge for miR-423-5p, with NACC1 being a direct target of miR-

423-5p.Overexpression of FOXP4-AS1 promotes the proliferation of

HCT116 cells (108). GAS6-AS1 acts as an oncogene by competitively

binding with miR-370-3p and miR-1296-5p. This interaction leads to

the upregulation of TRIM14, which positively regulates CRC

proliferation in vitro (111). GATA2-AS1 is highly expressed in

CRC cells, and knocking down GATA2-AS1 impedes the

proliferation of CRC cells (216). Guo et al. found that HCG11

enhances cell proliferation by targeting the miR-26b-5p/ARPP19

axis (116). Another found that silencing HCG11 inhibits the

proliferation of CRC cells through the miR-144-3p/PDK4 pathway

(117). HOTAIR regulates the levels of HNF4a by recruiting SNAIL.

Knocking down HOTAIR inhibits the proliferation of CRC cell lines

in vitro (124). Deng and colleagues discovered that knocking out

HOXB-AS4 inhibits proliferation, and functional restoration

experiments further confirmed the critical role of the HOXB-AS4/

miR-140-5p/HDAC7 axis in regulating the malignant phenotype of

CRC cells (125). Liu and colleagues found that silencing the lncRNA

IGFL2-AS1 impedes the malignant proliferation of HCT116 cells and

facilitates miR-433-3p-mediated inhibition of PAK4 transcription.

Conversely, overexpression of lncRNA IGFL2-AS1 has the opposite

effect, promoting cell proliferation by inhibiting miR-433-3p activity

and thereby enhancing PAK4 transcription (127). Another study on

IGFL2-AS1 also observed that it is highly upregulated in CRC tumor

tissues and cells, functionally promoting CRC cell proliferation in

vitro. Mechanistic investigations revealed that IGFL2-AS1 elevates

CA9 levels by affecting the degradation pathway of HIF-1a (128).

Overexpression of LBX2-AS1 promotes the proliferation of CRC cells

through the miR-627-5p/RAC1/PI3K/AKT pathway (130). In vitro,

LEF1-AS1 mediates the proliferation of CRC cells through the LEF1-

AS1/LEF1/FUT8 axis (131). Liang et al. demonstrated that both loss

and gain of function of LINC00174 promote CRC cell proliferation in

vitro. Mechanistic experiments revealed that LINC00174 binds to

miR-2467-3p, enhancing the expression and function of USP21,

which in turn affects the proliferation of CRC cells (132). RNA

immunoprecipitation (RIP) and RNA pull-down experiments have

confirmed that LINC00883 binds with miR-577, and miR-577

interacts with FKBP14. Disrupting the expression of LINC00883

inhibits the proliferation of CRC cells via the miR-577/FKBP14 axis

(217). Deficiency of LINC00958 inhibits the proliferation of cancer

cells. A study found that LINC00958 functions by interacting with

miR-145-3p and modulating the miR-145-3p/CDK1 axis, thereby

influencing the proliferation dynamics of the cancer cells (142),

Another study found that the pro-proliferative function of

LINC00958 is facilitated through the miR-422a/MAPK1 pathway.

This interaction contributes to the regulatory mechanism by which

LINC00958 enhances cell proliferation (143). Wu et al. confirmed

that LINC021 is significantly upregulated in CRC cell lines and

clinical tissues, and showed that the oncogenic LINC021

specifically binds with the m(6)A “reader” IMP2 protein,
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enhancing the mRNA stability of MSX1 and JARID2 through m(6)

A regulatory mechanisms during CRC tumorigenesis and

pathogenesis (144). Li’s findings suggest that LINC01088 directly

targets miR-548b-5p and miR-548c-5p, enhancing the expression of

G3BP1 and PD-L1, and thereby promoting the proliferation of CRC

cells (145). Silencing LINC01224 inhibits the proliferation of CRC

cells. This effect can be reversed by co-transfecting with an miR-2467

inhibitor, indicating that miR-2467 negatively regulates LINC01224.

RNA-binding protein immunoprecipitation (RIP) assays further

confirm that the inhibition of LINC01224 by miR-2467 is

dependent on the RNA-induced silencing complex (RISC) (146) In

CRC tissue samples and cell lines, the abundance of LINC01224 is

elevated. Knocking down LINC01224 inhibits CRC cell proliferation.

Mechanistic studies have shown that YY1-induced LINC01224

regulates CRC proliferation through the miR-485-5p/MYO6 axis

(147). It has been observed that LINC1436 can reduce the level of

mature miR-466 without affecting its precursors. Proliferation studies

indicated that the overexpression of LINC01436 counteracted the

reduction in cell proliferation caused by miR-466. Thus, LINC01436,

which is found at elevated levels in CRC, enhances cancer cell growth

by inhibiting the maturation of miR-466 (153). Ye et al. found that

knocking down GMDS-AS1 impairs CRC cell proliferation both in

vitro and in vivo. Through RNA sequencing (RNA-seq) and mass

spectrometry (MS) studies, it was discovered that in CRC cells,

GMDS-AS1 physically interacts with the RNA-binding protein

HuR. This interaction protects HuR from polyubiquitination and

proteasomal degradation, highlighting a crucial mechanism by which

GMDS-AS1 contributes to the stabilization of proteins involved in

cancer cell proliferation (61). The lncRNA MNX1-AS1/PPFIA4

activates the downstream AKT/HIF-1a signaling pathway to

promote COAD proliferation (166). NEAT1 can regulate the miR-

448/ZEB1 axis (167), and also directly acts as a molecular sponge for

miR-216b, which in turn activates YY1 to promote CRC proliferation

(168). PCGEM1 is elevated in CRC tissues and cells, and it regulates

CRC proliferation through the miR-129-5p/SOX4 axis and the miR-

433-3p/CTCF axis (173, 174). PVT1 promotes CRC proliferation

through a variety of regulatory pathways, these pathways include the

PVT1/miR-24-3p/NRP1 axis, PVT1/miR-1207-5p/Wnt6/b-catenin
axis,PVT1/miR-761/MAPK1 axis and PVT1/miR-30d-5p/RUNX2

axis (179–182). Huang et al. found that SNHG11 is overexpressed

in bevacizumab-resistant CRC tissues and cells. Knocking down

SNHG11 inhibits cell proliferation, possibly through the miR-1207-

5p/ABCC1 axis (184). SNHG15 promotes CRC cell proliferation,

while knocking down SNHG15 inhibits it. RT-qPCR and Western

blot analyses confirm that SNHG15 enhances the expression of

TYMS, BCL2, GLUT1, and PKM2 in CRC cells (185). Additionally,

another study suggests that SNHG15 interacts with the ubiquitin-

proteasome system to block the degradation of Slug, thereby

inhibiting its breakdown (186). SNHG16 regulates CRC

proliferation through multiple pathways, including SNHG16/miR-

124-3p/MCP-1 axis, SNHG16/miR-214-3p/ABCB1 axis and

SNHG16/YAP1/TEAD1 axis (187–189). Functionally, SNHG17 can

promote the proliferation of COAD cells in vitro, and its effect is

mediated through the miR-375/CBX3 axis (190). Islam et al. used

dicer-substrate siRNA transfection to modulate the expression of

SNHG8 in the HCT-116 and SW480 cell lines. The knockdown of
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SNHG8 induced autophagy and apoptosis pathways through the

AKT/AMPK/mTOR axis, significantly reducing the proliferation of

CRC cells (191). SOX2OT is an oncogene in human CRC tissues and

cell lines. Silencing of SOX2OT in vitro inhibits cell proliferation in

CRC cells. Mechanistically, SOX2OT acts as a ceRNA that

upregulates SOX5 by sponging miR-194-5p (192). SPINT1-AS1 is

upregulated in CRC, and the silencing of SPINT1-AS1 inhibits the

proliferation of CRC cells. SPINT1-AS1 mediates the expression of

HDGF by targeting miR-214 (193). Another study indicated that

knocking down SPINT1-AS1 weakened the proliferation of KRAS-

silenced CRC cells. Rescue experiments confirmed the regulatory

effect of the SPINT1-AS1/miR-433-3p/E2F3 axis on the proliferation

of CRC cells (194). Li et al. found that mutated APC genes can

promote the transcription of SURC in CRC by reducing the

degradation of b-catenin. Functional assays showed that

knockdown of SURC inhibits the proliferation of CRC cells,

potentially through the SURC/miR-185-5p/CCND2 axis (195).

TUG1 is involved in the regulation of proliferation in CRC

through multiple pathways. Xia et al. reported that TUG1,

stabilized by IGF2BP2, promotes CRC cell proliferation through

the miR-195-5p/HDGF/DDX5/b-catenin axis (197). Liu et al.

found that knockdown of TUG1 inhibits tumor growth in vivo,

where TUG1 interacts with miR-542-3p, affecting the expression of

TRIB2 and inhibiting CRC proliferation through the Wnt/b-catenin
pathway (198). Tian et al. reported that TUG1 promotes CRC

proliferation both in vivo and in vitro by regulating the miR-26a-

5p/MMP14/p38 MAPK/Hsp27 axis (199). Liu et al. transfected

pcDNA-UCA1 plasmids to overexpress UCA1 and found that

dysregulation of the UCA1/miR-495/SP1/SP3 axis in CRC leads to

malignant proliferation of CRC cells (202). XIST is involved in the

regulation of CRC proliferation through various pathways. Yan et al.

reported that XIST is highly expressed in CRC tissues and cells, and

its downregulation in vitro inhibits CRC cell proliferation, which is

regulated through the XIST/miR-448/GRHL2 axis (204), Li et al.

found that knockdown of XIST inhibits cell proliferation through the

miR-338-3p/PAX5 axis (205). Sun et al.’s study indicates that XIST

regulates cell proliferation through the miR-34a/Wnt/b-catenin
signaling pathway (206). In cells where ZFAS1 is knocked down,

an increase in the expression of epithelial markers E-cadherin and

ZO-1 is observed, along with a decrease in the expression of

mesenchymal markers vimentin and N-cadherin (208).

The research on lncRNAs that inhibit the proliferation of CRC

is as follows. CASC2 inhibits the expression of miR-18a-5p by

acting as a molecular sponge for miR-18a-5p, positively regulates

the expression of BTG3, and thereby achieves the suppression of

CRC cell proliferation (78). Experimental studies both in vitro and

in vivo have confirmed that upregulating CYP1B1-AS1 markedly

inhibits CRC cell proliferation. Additionally, CYP1B1-AS1 directly

binds to and negatively regulates NOP58. The effects of CYP1B1-

AS1 can be reversed by the overexpression of NOP58 (90). Xiong

et al. transfected HCT-116 cells with si-GAS5 to inhibit GAS5

expression and found that this suppression led to an upregulation of

miR-21. This increase in miR-21 subsequently affected the PTEN/

Akt signaling pathway, promoting cell proliferation (110). Yi

et al.found that overexpression of HAND2-AS1 in CRC cell lines

using an expression vector, revealed that HAND2-AS1 suppresses
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CRC cell proliferation by acting as a molecular sponge for miR-

3118, which affects the LEPR axis (115). Li et al. found that

knocking down LINC00485 in FHC cells promoted cell

proliferation. Mechanistic studies revealed that LINC00485

inhibits CRC tumor proliferation by targeting the miR-581/

EDEM1 axis (135). In CRC tissues, overexpressing LINC02038

significantly inhibits CRC cell proliferation. It acts as a sponge for

miR-552-5p, protecting its target gene, FAM172A, from

degradation (157). MBNL1-AS1 primarily inhibits the

proliferation of CRC cells by regulating the miR-29c-3p/BVES

signaling pathway (160). OTUD6B-AS1 is expressed at lower

levels in CRC tissues and cells. Mechanistic studies have shown

that OTUD6B-AS1 inhibits CRC proliferation by sponging miR-21-

5p and upregulating PNRC2 (171). MBNL1-AS1 inhibits CRC cell

proliferation by regulating the miR-29c-3p/BVES signaling pathway

(218). Zhang et al. observed that RPL34-AS1 may act as a molecular

sponge for miR-3656, inhibiting CRC cell proliferation (219).
LncRNAs regulate cell apoptosis

One of the important reasons for the infinite proliferation of

cancer cells is that their apoptosis function is inhibited, thus

allowing cells to escape programmed death and continue to

proliferate, and lncRNA has the function of regulating apoptosis

of cancer cells (220, 221). The following is a summary of research on

lncRNA that promotes cell apoptosis.

In the study by Xue et al., it was found that silencing AK093407

increased the apoptosis rate of HCT-15 and HCT-116 cells (72). Yu

et al. reported that silencing ASB16-AS1 accelerates apoptosis in

CRC cells by regulating the miR-185-5p/TEAD1 axis (73). Another

study indicated that knocking down BBOX1-AS1 reduces apoptosis,

which may be achieved by upregulating SH2B1 through the sponge

effect on hsa-miR-361-3p (75). The study by Li et al. reported that

knocking down BCAR4 promotes apoptosis in CRC cells, which can

be reversed by overexpressing RAB5C.The related regulatory axis is

the BCAR4/miR-483-3p/RAB5C axis (76). Liu’s report indicates

that silencing CASC9 can promote apoptosis by downregulating

AKT3 expression through reducing the competitive binding of

CASC9 with miR-576-5p (222). Liang et al. found that Duxap8

inhibits apoptosis in vitro. Mechanistically, Duxap8 is primarily

located in the cytoplasm and acts as a competitive endogenous

RNA, affecting apoptosis by upregulating ZNF277 through the

sponge effect on miR-519b-3p (94). FOXP4-AS1 was found to act

as a molecular sponge for miR-423-5p in HCT116 cells and animal

models, with NACC1 being a direct target of miR-423-

5p.Overexpression of FOXP4-AS1 inhibits apoptosis in CRC cells

(108). Guo et al.found that knocking down HCG11 promoted

apoptosis. Through bioinformatics analysis and mechanistic

studies, HCG11, primarily located in the cytoplasm, has been

shown to competitively bind with miR-26b-5p to regulate the

expression of cAMP-regulated phosphoprotein 19 (ARPP19)

(116). Deng et al. discovered that knocking out HOXB-AS4 can

promote apoptosis.HOXB-AS4 acts as a molecular sponge by

binding and adsorbing miR-140-5p to regulate the expression of

histone deacetylase 7 (HDAC7) (125). Liang et al. demonstrated
frontiersin.org

https://doi.org/10.3389/fonc.2024.1419972
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2024.1419972
through loss and gain of function studies of LINC00174 that it

enhances resistance to apoptosis in CRC cells in vitro via the miR-

2467-3p/USP21 axis (132). Another study reported that LINC00665

stimulates apoptosis in CRC by activating the Wnt/b-catenin
signaling pathway (138). LINC00958 promotes the expression of

MAPK1 by targeting miR-422a and inhibits apoptosis (143). Wu

et al. found that LINC021 directly recognizes the IMP2 protein,

which enhances the mRNA stability of transcripts such as MSX1

and JARID2 by recognizing their m(6)A-modified element

RGGAC, thereby reducing apoptosis (144). Xu et al. found that

knocking down PCGEM1 inhibits apoptosis in CRC cells (174). Liu

et al. believe that knocking down the expression of PVT1 promotes

apoptosis in CRC cells through the miR-761/MAPK1 axis (181).

Huang et al. found that knocking down SNHG11 promotes

apoptosis in bevacizumab-resistant CRC cells, potentially through

the miR-1207-5p/ABCC1 axis (184). The silencing of SPINT1-AS1

mediates the expression of HDGF by targeting miR-214, increasing

apoptosis in CRC cells (193). Ma et al.’s study reveals that silencing

XLOC_006390 inhibits apoptosis in CRC through the regulation of

the miR-296/ONECUT2 axis (207). Fang et al. believe that ZFAS1

prevents apoptosis. Knocking down ZFAS1 can reduce the

expression of ZEB1 and increase epithelial markers E-cadherin

and ZO-1, while decreasing mesenchymal markers vimentin and

N-cadherin (208).

The following is a summary of relevant studies on lncRNAs that

inhibit cell apoptosis.

A study indicates that GAS5 is significantly reduced in CRC

tumor tissues and cells, and knocking down GAS5 can promote

apoptosis in cancer cells (109). Wang et al.’s study suggests that

LINC00261 may promote apoptosis by downregulating nuclear b-
catenin through inhibiting the translocation of b-catenin from the

cytoplasm to the nucleus or by promoting the degradation of b-
catenin and inhibiting the activation of the Wnt pathway (133).

Research has found that the m(6)A/LINC02038/miR-552-5p/

FAM172A axis may represent a novel anti-tumor pathway.

Overexpression of LINC02038 can accelerate apoptosis in CRC

cells through this axis (157). Cai et al. suggest that the

overexpression of OTUD6B-AS1 promotes apoptosis through the

OTUD6B-AS1/miR-21-5p/PNRC2 axis (171).
LncRNAs regulate invasion
and metastasis

Invasion refers to the ability of cancer cells to penetrate from the

original tumor site into surrounding normal tissues, while

metastasis is the process by which cancer cells spread through the

blood or lymphatic system to form new tumors at other sites in the

body. The invasion and metastasis of CRC cells are related to a

variety of factors, including cellular pathways and molecular

mechanisms, epithelial-mesenchymal transition (EMT), and the

influence of microorganisms, all of which together promote the

aggressive and metastatic characteristics of CRC (223, 224).

LncRNAs can also promote and inhibit the migration and

invasion of cancer cells. The following is a brief summary of the

research on LncRNAs promoting cancer migration and invasion.
Frontiers in Oncology 14
The expression of AGAP2-AS1 is significantly elevated in CRC

cells. Downregulation of AGAP2-AS1 can attenuate the migration

and invasion of CRC cells. Mechanistically, miR-182-5p is a

downstream target molecule of AGAP2-AS1, and CFL1 is a target

of miR-182-5p (70). Yu et al. found that ASB16-AS1 is highly

expressed in CRC cells. Silencing ASB16-AS1 suppressed the

proliferation, migration, and invasion of CRC cells. Mechanistic

experiments revealed that ASB16-AS1 drives the progression of

CRC by regulating the miR-185-5p/TEAD1 axis (73). Yue et al.

found that the levels of lncRNA ATB are higher in three highly

invasive CRC cell lines compared to three low-invasive cell lines

(74). Knockdown of BBOX1-AS1 enhances cancer cell migration

and invasion, with its regulatory axis being hsa-miR-361-3p/SH2B1

(75). BVES-AS1 can encode a micropeptide that promotes the

migration and invasion of CRC cells in vitro (77). Zhang et al.

discovered that the CASC9/miR-542-3p/integrin-linked kinase

regulatory axis is involved in the invasion and migration of CRC

cells (80). The upregulation of CCAT1 expression promotes cell

proliferation and invasion (83). Depletion of CERS6-AS1 inhibits

cell migration and invasion through the miR-15b-5p/SPTBN2 axis

(88). Knockdown of CYTOR reduces the migration and invasion of

colon cancer cells (91). The DANCR/miR-185-5p/HMGA2 axis is

involved in the migration and invasion processes of CRC (92). The

upregulation of DICER1-AS1 promotes CRC migration and

invasion by activating the MAPK/ERK signaling pathway through

a sponge-like effect on miR-650 (93). Bin et al. found that

EPB41L4A-AS1 promotes the invasion and migration of CRC

(97). FEZF1-AS1 can activate the PI3K/AKT signaling pathway to

promote the proliferation and invasion of RKO cells (105), it can

also promote CRC migration and invasion through the miR-632/

FAM83A axis (106). ATF3-activated FOXP4-AS1 enhances CRC

migration and invasion by regulating the miR-423-5p/NACC1 axis

(108). GAS6-AS1 promotes TRIM14-mediated CRC cell migration

and invasion through a ceRNA network and FUS-dependent

mechanism (111). Guo et al. reported that upregulated HCG11 in

CRC cells can promote cell migration and invasion by targeting the

miR-26b-5p/ARPP19 axis (116), Cui reported another regulatory

axis, HCG11/miR-144-3p/PDK4 (117). Upregulated HNF1A-AS1

promotes migration and invasion of colon cancer cells in vitro and

in vivo (118). IGFL2-AS1 promotes CRC cell migration and

invasion in vitro and accelerates the occurrence of CRC in vivo

(128). Fang’s research team reported that overexpression of LBX2-

AS1 significantly promotes the metastasis of colon cancer cells

(130). Liang and others designed loss and gain of function

experiments for LINC00174, proving its key role in promoting

CRC cell migration and invasion in vitro (132). LINC00473 acts as a

ceRNA for miR-195 to promote cell invasion in CRC (134). The

expression of LINC00473 accelerates the aggressiveness of CRC

(134). Knockdown of LINC00485 promotes migration and invasion

in FHC cells, while overexpression weakens these abilities in LoVo

cells (135). LINC00665, acting as a sponge for miR-214-3p,

upregulates CTNNB1 expression, thereby activating the Wnt/b-
catenin signaling pathway and regulating CRC cell migration and

invasion (138). LINC00958 directly binds to miR-145-3p, which

interacts with downstream effector CDK1, forming the LINC00958

regulatory axis for CRC migration and invasion (142). Knockdown
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of LINC01088 inhibits proliferation, migration, invasion, and

immune evasion of CRC cells. Mechanistically, LINC01088

directly binds to miR-548b-5p and miR-548c-5p, with miR-548c-

5p significantly upregulating the expression of Ras GTPase

activating protein binding protein 1 (G3BP1) and programmed

death ligand 1 (PD-L1), thereby regulating CRC cell migration and

invasion (145). LINC01224 can promote CRC invasion through a

sponge-like mechanism on miR-2467 (146), and can also regulate

migration and invasion through the miR-485-5p/MYO6 axis (147).

Knockdown of LINC01287 inhibits colon cancer cell migration and

invasion through the LINC01287/miR-4500/MAP3K13 axis (149).

Li et al. reported that silencing of LINC01315 regulates CRC cell

migration and invasion through the miR-484/DLK1 axis (150),

while Liang and others reported another regulatory axis:

LINC01485/miR-383-5p/KRT80 (151). Liu’s team used gain and

loss of function assays to show that LINC01578 enhances colon

cancer cell vitality and migration rate in vitro, and enhances colon

cancer liver metastasis in vivo (154). LINC01606 acts as an

oncogene promoting colon cancer cell invasion in vitro and in

vivo, and is associated with the Wnt/b-catenin signaling pathway

(155). Zhou et al. found that knockdown of MIR155HG inhibits

CRC cell migration and invasion, regulated through the miR-650/

ANXA2 axis (163). Tang et al.’s study suggests that MIR497HG, as a

ceRNA regulating the miR-3918/ACTG2 axis, plays a key role in

CRC cell migration and invasion (218). MNX1-AS1 regulates miR-

744-5p (165) or the PPFIA4/AKT/HIF-1a axis (166), playing a

critical role in the invasion and migration of CRC cells.NEAT1

promotes the expression of ZEB1 by targeting miR-448 (167), or

enhances the proliferation and invasion of CRC through the miR-

216b/YY1 axis (168). Guan et al. found that PCGEM1 mediates the

invasion and migration of CRC cells through targeting the miR-

129-5p/SOX4 axis (173). Li et al.’s research confirms that PROX1-

AS1 can absorb miR-520d to upregulate PD-L1 in CRC (175), while

Liu et al. discovered that the transcription factor SP1 activates the

PROX1-AS1/miR-32/FBXL20 axis (176), both of which are

involved in the regulation of CRC cell migration and invasion. Yu

et al.’s results indicate that PVT1 can promote the metastasis of

colon cancer by inhibiting the miR-30d-5p/RUNX2 axis (182).

Chen et al. found that SNHG16 facilitates CRC cell migration

through the miR-124-3p/MCP-1 axis (187). Xiang et al. discovered

that SNHG16 acts as a miRNA sponge to sequester miR-195-5p on

Ago2, thereby protecting YAP1 from inhibition and subsequently

promoting CRC cell migration and invasion (189). Liu et al.

demonstrated a new triad involving SNHG17/miR-375/CBX3 that

participates in the migration and invasion of COAD (190).

SOX2OT,acting as a ceRNA, upregulates SOX5 through a sponge-

like effect on miR-194-5p, regulating CRC cell migration and

invasion (192). Sui et al. observed that knockdown of SPINT1-

AS1 weakens the migration and invasion of CRC cells with silenced

KRAS (194). Knockdown of TUG1 not only inhibits CRCmigration

and invasion through the miR-542-3p/TRIB2 axis (198) but also, by

overexpressing it, regulates the miR-26a-5p/MMP14/p38 MAPK/

Hsp27 axis in vitro and in vivo to accelerate cancer invasion (199).

Liu et al. found that UCA1 is significantly upregulated in CRC

tissues. UCA1 enhances the migration and invasion of CRC cell

lines (202). Li et al. reported that downregulation of XIST inhibits
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migration and invasion in CRC cells by regulating the miR-338-3p/

PAX5 axis (205). The silencing of XLOC006390 significantly

inhibits their viability by inducing apoptosis and limiting the

migration and invasion of cancer cells (207). Fang et al.’s study

shows that ZFAS1 promotes CRC invasion, and its mechanism is

associated with E-cadherin, ZO-1, vimentin, and N-cadherin (208).

The following is an overview of research on LncRNAs inhibiting

cancer migration and invasion. Liu et al. found that AK077216 is

downregulated in CRA tissues. AK077216 may inhibit the

migration and invasion of CRA cells by downregulating miR-34a

(71). Overexpression of CASC2 inhibits the migration and invasion

capabilities of CRC cells through the miR-18a-5p/BTG3 axis (78).

CBR3-AS1 is downregulated in CRC and inhibits miR-29a-

mediated cell migration and invasion through a sponge-like

mechanism on miR-29a (81). Knockdown of CCL14-AS enhances

the invasiveness and lymph node metastatic capability of CRC cells

in nude mice, with the CCL14-AS/MEP1A axis playing a key role

(87). CYP1B1-AS1 is significantly downregulated in CRC.

Experiments conducted in vitro and in vivo have confirmed that

upregulation of CYP1B1-AS1 significantly inhibits the migration

and invasion of CRC cells (90). Knockdown of both FER1L4 and

p73 enhances the migration and invasion of CRC cells. Mechanistic

studies have found that FER1L4 promotes the expression of miR-

1273g-3p, which in turn increases the expression of PTEN (103).

Another study found that restoration of FER1L4 reduces the

expression of miR-106a-5p and significantly affects the migration

and invasion of colon cancer cells (104). GAS5 can act as a

competitive endogenous RNA for miR-21. The downregulation of

GAS5 can promote CRC migration and invasion by activating the

miR-21/PTEN/Akt signaling pathway (110). Overexpression of

HOXC-AS3 reduces cell migration and invasion (126). Wang

et al. reported that LINC00261 is downregulated in colon cancer

cell lines, tissues, and cisplatin-resistant cells; overexpression of

LINC00261 may inhibit cell migration and invasion (133).

Knockdown of LINC00485 promotes migration and invasion in

FHC cells, and the miR-581/EDEM1 axis is involved (135). Liu et al.

reported that m(6)A/LINC02038/miR-552-5p/FAM172A might be

a novel anti-tumor axis, closely related to regulating CRC migration

and invasion (157). Cai et al. reported that overexpression of

OTUD6B-AS1 inhibits the migration and invasion of CRC

cells (171).
LncRNAs regulate cell cycle

LncRNAs play a crucial role in the development of CRC by

regulating the cell cycle. LncRNAs can intervene in the control of

the cell cycle through various mechanisms. Research has found that

the levels of AK093407 are higher in the CRC cell lines HCT-15 and

HCT-116 compared to normal colonic epithelial NM460 cells.

When AK093407 is silenced, the cell cycle of HCT-15 and HCT-

116 cells stalls at the G1/S phase (72).Overexpression of DANCR

promotes the progression of the CRC cell cycle, with the DANCR/

miR-185-5p/HMGA2 axis involved in the regulation (92).

Interestingly, during the amplification of the full-length cDNA of

EVADR (named EVADR-v1), a new/shorter variant (EVADR-v2)
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was discovered. When both variants, EVADR-v1 and EVADR-v2,

are overexpressed in SW480/HCT116 cells, there is an increase in

PI3K activity and upregulation of WNT signaling, thereby

promoting cell cycle progression (98). Xiong et al. reported that

inhibiting GAS5 can upregulate the expression levels of miR-21,

decrease G1 phase cells, and increase S phase cells (110). Reports

also suggest that increased expression of LINC00473 accelerates the

cell cycle process. Li et al. demonstrated through functional assays

that knockdown of SURC inhibits the CRC cell cycle (195).
LncRNAs regulate cancer
cell stemness

Yu et al. discovered that ASB16-AS1 is highly expressed in CRC

cells, and silencing ASB16-AS1 inhibits the stemness of CRC cells.

Mechanistic exploration revealed that ASB16-AS1 drives the

progression of CRC by regulating the miR-185-5p/TEAD1 axis

(73). Zhao used sphere-formation assays to examine cell stemness

and found that depletion of CERS6-AS1 inhibits cell stemness (88).

Knockdown of FAM201A inhibits cell stemness, and its regulation is

achieved through the miR-3163/MACC1 axis (100). hang et al.

demonstrated that Sohlh2 is associated with the inhibition of the

LncRNA-H19/miR-141/b-catenin signaling pathway, leading to the

suppression of colon CSC (cancer stem cell) stemness (114). Huang

et al. used an analysis of stemness-related markers to determine cell

stemness, finding that HOTAIR promotes the expression of the miR-

211-5p target gene FLT-1, thereby regulating the characteristics of

cancer stem cells (CSC) in CRC (120). LINC01606 acts as an

oncogene and promotes the stemness of colon cancer cells both in

vitro and in vivo. Mechanistically, LINC01606 enhances the

expression of SCD1 and regulates the expression of miR-423-5p as

a competitive endogenous RNA, subsequently activating the classic

Wnt/b-catenin signaling pathway. Additionally, the transcription

factor’s binding to IGHM enhancer 3 (TFE3) increases the

transcription of LINC01606 after being recruited to the promoter

region of LINC01606 (155). Ye et al.’s study indicates that the

lncRNA GMDS-AS1 and its direct target HuR constitutively

activate the STAT3/Wnt signaling pathway and promote the

stemness of CRC tumors (61). Sun et al. reported that PPFIA4

mediates the expression of lncRNA MNX1-AS1 and affects the

stemness of COAD cells. The MNX1-AS1/PPFIA4 activates the

downstream AKT/HIF-1a signaling pathway to promote the

progression of COAD (166). TDRG1 levels are significantly

upregulated in 3D non-adherent spheroids derived from parental

CRC cells. Further studies indicate that knockdown of TDRG1

inhibits the stemness of CRC cells (196).
LncRNAs regulate EMT

LncRNAs also play an important role in the EMT process in

CRC.E2F4-stimulated AGAP2-AS1 exacerbates the EMT process in

CRC by regulating the miR-182-5p/CFL1 axis (70). lncRNA-ATB

activated by TGF-b may contribute to the development of colon

cancer by inhibiting E-cadherin expression and promoting the EMT
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process (74). Zhao et al. reported that CERS6-AS1 also participates

in regulating the EMT process (88). Yue et al.’s experiments show

that ectopic expression of CYTOR induces EMT (91).Research

indicates that knockdown of EPB41L4A-AS1 inhibits EMT (97).

Chen et al. reported that GAS6-AS1 positively regulates the CRC

EMT process in vitro through a ceRNA network and FUS-

dependent manner (111). Wu et al. consider HOTAIR to be a

pleiotropic regulator involved in EMT (122), and Jin et al.

demonstrated that HOTAIR regulates HNF4a levels by recruiting

SNAIL, thereby regulating the EMT process in CRC cells (124). Li

et al. report that LINC00473 regulates EMT progression by

modulating miR-195 expression (134). Zheng et al.’s study shows

that LINC00543 enhances CRC cell EMT through the pre-miR-506-

3p/FOXQ1 axis (136). Research shows that knockdown of

LINC00882 impedes the EMT process in CRC cells (141). Fu

et al.’s research found that the LINC01287/miR-4500/MAP3K13

axis promotes EMT in colon cancer (149). Studies also suggest that

the LINC01315/Wnt/b-catenin signaling pathway provides new

insights into regulating CRC EMT (152). Cai et al.’s study found

that the OTUD6B-AS1/miR-21-5p/PNRC2 axis is involved in

regulating CRC EMT (171). Research finds that SNHG16

promotes CRC cell EMT through the miR-124-3p/MCP-1 axis

(187) and SNHG16/YAP1/TEAD1 axis (189). Islam et al.

consider SNHG8 as an oncogene in CRC through the EMT

pathway (191). Tian et al. believe that TUG1 accelerates cancer

EMT by regulating the miR-26a-5p/MMP14/p38 MAPK/Hsp27

axis in vitro and in vivo (199). Fang et al.’s study indicates that

ZFAS1 may act as an oncogene by regulating ZEB1 to induce

EMT (208).
LncRNAs regulate drug resistance

Drug resistance is a complex process and has always been one of

the most unfavorable factors in the process of CRC.Zheng et al.’s

research, through microarray screening, identified lncRNAs

associated with resistance to oxaliplatin. They experimentally

confirmed that the AC092894.1/USP3/AR/RASGRP3 signaling axis

is a new option for treating oxaliplatin resistance (69). Li et al.

reported that BCAR4 promotes oxaliplatin resistance by inhibiting

apoptosis through the BCAR4/miR-483-3p/RAB5C axis (76). Liu

found that CCAT1 enhances CRC cell resistance to oxaliplatin by

transcriptionally activating CCAT1 through B-MYB, increasing

SOCS3 promoter methylation to recruit DNMT1, thereby

inhibiting SOCS3 expression and enhancing CRC cell resistance to

oxaliplatin (82). Another study found that downregulation of CCAT1

effectively reversed the resistance of HCT 116/5-FU and HT-29/5-FU

cells to 5-FU chemotherapy (84). Yang et al. reported that silencing

CRNDE promotes apoptosis in CRC cells and enhances sensitivity to

cisplatin, possibly through regulation of the Warburg effect mediated

by the Akt/mTORC1 pathway (89). Li et al. emphasized the potential

of targeting ELFN1-AS1 as a therapeutic agent in cell survival and

resistance to oxaliplatin (95). Gao et al., through in vitro and in vivo

xenograft experiments, showed that the specific inhibitor erlotinib

enhances the anti-tumor toxicity of 5-Fu by targeting the EGFR/

FGD5-AS1/miR-330-3p/HK2 pathway (107). Chen et al. found that
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overexpression of H19 may be one of the mechanisms by which

advanced colon cancer develops resistance to treatment with 1,25

(OH)2D3 (113). A study revealed the crucial role and molecular

mechanism of HCG11-mediated 5-FU resistance in CRC through

regulation of the miR-144-3p/PDK4/glucose metabolism pathway

(117). Zhang et al. reported that patients carrying allele 10 and having

methylation in the KCNQ1OT1 promoter exhibited the greatest

reduction in resistance to colon cancer treatment (129). Research

has found that LINC00261 reduces cisplatin resistance in colon

cancer in vivo, and enhances the anti-colon cancer effects of

cisplatin by reducing tumor volume and weight (133). LINC00958

promotes the expression of MAPK1 by targeting miR-422a,

inhibiting cell radiosensitivity (143). In Wei’s study on the

traditional Chinese medicine Zuojin Wan, it was found that

MALAT1 promotes resistance to oxaliplatin in CRC by decreasing

the expression of miR-200s. Zuojin Wan may reverse chemotherapy

resistance by inhibiting the expression of MALAT1 and regulating

the miR-200s/JNK pathway (158). Cai et al. reported that knockdown

of MCF2L-AS1 can alleviate the chemoresistance of CRC/OXA cells

(161). Zhou et al.’s research reported that MIR155HG promotes CRC

progression and enhances CRC cell resistance to oxaliplatin by

regulating the miR-650/ANXA2 axis and through M2 macrophage

polarization (163). Shi et al.’s work found that lncRNA-NEF plays a

key role in mediating oxaliplatin chemotherapy resistance in CRC,

providing a promising therapeutic strategy for CRC patients resistant

to oxaliplatin (169). Zhang et al. reported that overexpression of

OTUD6B-AS1 by binding with HuR stabilizes TRIM16 and increases

iron accumulation mediated by GPX4, thus weakening CRC’s

radioresistance (170). Another study indicated that exosomal

SNHG11 is upregulated in bevacizumab-resistant CRC cells, and

SNHG11 contributes to the resistance to bevacizumab in CRC,

depending on the regulation of miR-1207-5p and ABCC1 (184). Li

et al.’s research suggests that SNHG15 promotes 5-FU

chemoresistance in CRC by potentially regulating the expression of

TYMS, BCL2, GLUT1, and PKM2 (185). Yuan et al.’s research

provides the first evidence that the UCA1-miR-495-HGF/c-MET

regulatory network is involved in CRC resistance to cetuximab (201).
Discussion

CRC is one of the major health challenges globally, with a high

mortality rate, especially when the disease is diagnosed at a late

stage. To improve the success rate of treatments and the survival

rates of patients, the development of reliable early detection

biomarkers is particularly crucial. In recent years, researchers

have begun to focus on the potential role of LncRNAs in CRC,

especially as non-invasive molecular biomarkers (225).

LncRNAs have multifaceted functions in CRC, including the

regulation of the cell cycle, proliferation, apoptosis, and metastasis.

They often function as ceRNAs that affect the expression of specific

miRNAs and subsequently the downstream molecules of these

miRNAs. Additionally, LncRNAs play an important role in

regulating gene expression, including transcriptional regulation,

mRNA stability, and translation. Research indicates that

LncRNAs might interact with RNA, DNA, and proteins to form
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complex regulatory networks, thereby affecting the onset and

progression of CRC.Given the stability of LncRNAs in blood and

their potential in early CRC detection, they are considered a

promising tool for non-invasive testing. Furthermore, studies on

LncRNAs have also revealed their potential key roles in regulating

various pathological processes related to CRC, such as influencing

the aggressiveness and metastatic properties of cancer cells through

specific regulatory axes.

At present, the main diagnostic methods for CRC include

colonoscopy, tissue biopsy, and serum tumor marker detection.

Although these methods are widely used, they have some significant

limitations. Colonoscopy is an invasive procedure where patients

need to prepare their intestines and may experience discomfort or

pain during the examination process (226). In addition, although

tissue biopsy is the gold standard for diagnosis, the limitations of

sampling may lead to missed diagnosis (227). The detection

sensitivity and specificity of serum tumor markers such as CEA

and CA19-9 are low, and false positive and false negative results are

prone to occur, which cannot accurately reflect early carcinogenesis

(228). In terms of treatment, surgical resection is the main

treatment for early CRC, while chemotherapy and radiotherapy

are used as adjuvant treatments for advanced or postoperative

conditions. However, these treatment methods also have certain

limitations. Although surgery can remove tumors, it is difficult to

completely remove early metastases or small lesions (228).

Chemotherapy and radiation therapy may cause serious side

effects such as nausea, vomiting, and bone marrow suppression,

and some patients may develop drug resistance, leading to poor

treatment outcomes (229). In addition, although targeted therapy is

effective for patients with certain specific gene mutations, its scope

of application is limited and the treatment cost is high (227).

LncRNA provides a certain possibility to solve the above

problems. In the past decade, numerous studies have shown that

lncRNA is stable in the bloodstream and has excellent diagnostic

potential, making lncRNA a promising candidate for non-invasive

diagnostic testing of CRC (43–46). In the treatment of CRC,

LncRNA can serve as a novel therapeutic target, affecting tumor

growth and metastasis by regulating the expression of oncogenes

and tumor suppressor genes. Combining lncRNA with small

molecule drugs or gene therapy to develop novel therapies with

stronger targeting and fewer side effects may break through the

limitations of existing treatments (230, 231). LncRNA also plays an

important role in the mechanism of chemotherapy and radiation

resistance. By intervening in the function of these lncRNAs, it is

expected to reverse drug resistance and improve treatment efficacy

(232, 233).

Although lncRNAs have broad application prospects, their

application in clinical diagnosis and treatment still faces multiple

challenges:1. In the previous chapters, we listed many lncRNAs with

a diagnostic AUC value greater than 0.9 in Table 1, but most of the

experimental and control groups included in these studies were less

than 100 cases, so there may be a large bias in the research results. In

addition, the research is also limited by age, race, gender and other

factors. In order to obtain more credible results, these studies

should be verified with a larger sample size and wider population

distribution; 2. Currently, there are various methods for detecting
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lncRNA, including qRT qPCR, RNA seq, Sanger sequencing, and

Northern blot. The standardization and optimization of these

methods still need further development to ensure consistency and

reproducibility in different laboratory and clinical environments

(234, 235). 3.The data analysis process of high-throughput lncRNAs

is complex and requires high-level professional knowledge and

computing resources (236, 237). 4.Although many lncRNAs have

been found to be associated with cancer, research on their specific

functions and mechanisms is still in its early stages. The current

research lacks a comprehensive understanding of the mechanism of

action of lncRNA, which limits its potential in clinical applications

(238, 239). 5.Treatment strategies based on lncRNA, such as siRNA

and antisense oligonucleotides (ASO), face issues such as low

delivery efficiency, poor specificity, and off target effects, which

further limit their therapeutic efficacy (240).
Conclusion

In summary, research on LncRNAs provides a new perspective

for understanding the molecular mechanisms of CRC and brings

hope for the development of new diagnostic and therapeutic

strategies. Future studies are needed to further explore the specific

functions of these molecules in CRC and their potential clinical

applications, with the hope of bringing more effective treatment

options and better survival prospects for CRC patients.
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